Potential of a SAR Small-Satellite Constellation for Rapid Monitoring of Flood Extent
Abstract
:1. Introduction
2. Methods
2.1. Design of SAR Small-Satellite Constellation
2.1.1. Constellation Configuration
2.1.2. Orbital Elements
2.1.3. SAR Satellite Observation
2.2. Assessment of Revisit Rates and Revisit Time
2.3. Virtual Experiment of Flood Monitoring
2.3.1. Time Series Data of Flood Extent
2.3.2. Operation Rule of Satellites
2.3.3. Case Studies of Flood Events in Japan
3. Results
3.1. Assessment of Revisit Rate and Revisit Time
3.2. Virtual Experiment of Flood Monitoring
3.3. Evaluation of Observation Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Blum, J.; Eichhorn, A.; Smith, S.; Sterle-Contala, M.; Cooperstock, J. Real-Time Emergency Response: Improved Management of Real-Time Information during Crisis Situations. J. Multimodal User Interfaces 2013, 8, 161–173. [Google Scholar] [CrossRef]
- Fujiwara, H.; Nakamura, H.; Senna, S.; Otani, H.; Tomii, N.; Ohtake, K.; Mori, T.; Kataoka, S. Development of a Real-Time Damage Estimation System. J. Disaster Res. 2019, 14, 315–332. [Google Scholar] [CrossRef]
- Natsuaki, R.; Nagai, H. Synthetic Aperture Radar Flood Detection under Multiple Modes and Multiple Orbit Conditions: A Case Study in Japan on Typhoon Hagibis, 2019. Remote Sens. 2020, 12, 903. [Google Scholar] [CrossRef] [Green Version]
- Birk, R.; Camus, W.; Valenti, E.; McCandless, W. Synthetic Aperture Radar Imaging Systems. IEEE Aerosp. Electron. Syst. Mag. 1995, 10, 15–23. [Google Scholar] [CrossRef]
- Schumann, G.; Brakenridge, G.; Kettner, A.; Kashif, R.; Niebuhr, E. Assisting Flood Disaster Response with Earth Observation Data and Products: A Critical Assessment. Remote Sens. 2018, 10, 1230. [Google Scholar] [CrossRef] [Green Version]
- Boain, R. A-B-Cs of Sun-Synchronous Orbit Mission Design. In Proceedings of the 14th AAS/AIAA Space Flight Mechanics Meeting, Maui, HI, USA, 8–12 February 2004. [Google Scholar]
- Jordan, P.; Blaes, V.; Roszman, L. Analysis of the Effects of Mean Local Node-Crossing Time on the Evolution of Sun-Synchronous Orbits. In Proceedings of the Flight Mechanics/Estimation Theory Symposium 1992, Proceedings of a Symposium Sponsored by NASA Goddard Space Flight Center and Held at Goddard Space Flight Center, Greenbelt, MD, USA, 5–7 May 1992. [Google Scholar]
- Bird, R.; Whittaker, P.; Stern, B. NovaSAR-S: A Low Cost Approach to SAR Applications. In Proceedings of the 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013; pp. 84–87. [Google Scholar]
- Policelli, F.; Brakenridge, R.; Ouzounov, D.; Sun, J.; Slayback, D.; Fatoyinbo, L. Remote Sensing Based Flood Mapping for Disaster Management Applications. Agu Fall Meet. Abstr. 2010. [Google Scholar]
- Xue, Y.; Li, Y.; Guang, J.; Zhang, X.; Guo, J. Small Satellite Remote Sensing and Applications—History, Current and Future. Int. J. Remote Sens. 2008, 29, 4339–4372. [Google Scholar] [CrossRef]
- Paek, S.W.; Balasubramanian, S.; Kim, S.; de Weck, O. Small-Satellite Synthetic Aperture Radar for Continuous Global Biospheric Monitoring: A Review. Remote Sens. 2020, 12, 2546. [Google Scholar] [CrossRef]
- Filippazzo, G.; Dinand, S. The Potential Impact of Small Satellite Radar Constellations On Traditional Space Systems. In Proceedings of the 5th Federated and Fractionated Satellite Systems Workshop, ISAE SUPAERO, Toulouse, France, 2–3 November 2017. [Google Scholar]
- Santilli, G.; Vendittozzi, C.; Cappelletti, C.; Battistini, S.; Gessini, P. CubeSat Constellations for Disaster Management in Remote Areas. Acta Astronaut. 2018, 145, 11–17. [Google Scholar] [CrossRef]
- Walker, J.G. Circular Orbit Patterns Providing Continuous Whole Earth Coverage. R. Aircr. Establ. Tech. Rep. 1970, 70211. [Google Scholar]
- Walker, J.G. Continuous Whole-Earth Coverage by Circular-Orbit Satellite Patterns. R. Aircr. Establ. Tech. Rep. 1977, 77044. [Google Scholar]
- Nakamura, T. Tradeoff Studies on Total Serviceability Evaluation for Disaster Monitoring by Satellites. Aerosp. Technol. Jpn. 2016, 14, Po_4_1–Po_4_7. [Google Scholar] [CrossRef]
- ICEYE. ICEYE SAR Data: Documents. Available online: https://www.iceye.com/sar-data/documents (accessed on 28 February 2021).
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; Kanae, S.; Kim, H.; Oki, T. A Physically Based Description of Floodplain Inundation Dynamics in a Global River Routing Model. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Today’s Earth|TOP. Available online: https://www.eorc.jaxa.jp/water/ (accessed on 28 February 2021).
- Saito, K.; Fujita, T.; Yamada, Y.; Ishida, J.; Kumagai, Y.; Aranami, K.; Ohmori, S.; Nagasawa, R.; Kumagai, S.; Muroi, C.; et al. The Operational JMA Nonhydrostatic Mesoscale Model. Mon. Weather Rev. 2006, 134, 1266–1298. [Google Scholar] [CrossRef]
- Septanto, H.; Sudjana, O. Simulation-Based Energy Balance Analysis of SAR Micro-Satellite. In Proceedings of the SPIE 11372, Sixth International Symposium on LAPAN-IPB Satellite, Bogor, Indonesia, 24 December 2019. [Google Scholar] [CrossRef]
- Ohki, M.; Yamamoto, K.; Tadono, T.; Yoshimura, K. Automated Processing for Flood Area Detection Using ALOS-2 and Hydrodynamic Simulation Data. Remote Sens. 2020, 12, 2709. [Google Scholar] [CrossRef]
- Guan, M.; Xu, T.; Gao, F.; Nie, W.; Yang, H. Optimal Walker Constellation Design of LEO-Based Global Navigation and Augmentation System. Remote Sens. 2020, 12, 1845. [Google Scholar] [CrossRef]
Swath | 30 km2 |
---|---|
Look direction | both LEFT and RIGHT |
Incidence angle range | 15.0°–30.0° |
Nominal altitude | 570 km |
Inclination | 97.69° |
Ground track repeat | 18 days |
T | P | (F) | Revisit Rates (/day) | P | (F) | Mean Revisit Time | P | (F) | Maximum Revisit Time |
---|---|---|---|---|---|---|---|---|---|
8 | 2 | (1) | 3.47 | 2 | (1) | 6 h 44 min | 4 | (2) | 21 h 16 min |
12 | 1 | (-) | 5.22 | 1 | (-) | 4 h 30 min | 6 | (2) | 10 h 25 min |
20 | 5 | (4) | 8.68 | 5 | (4) | 2 h 43 min | 10 | (7) | 6 h 11 min |
24 | 8 | (7) | 9.98 | 2 | (1) | 2 h 16 min | 12 | (7) | 5 h 23 min |
28 | 7 | (2) | 12.16 | 7 | (2) | 1 h 58 min | 4 | (3) | 4 h 11 min |
40 | 10 | (9) | 17.37 | 10 | (9) | 1 h 22 min | 20 | (1) | 3 h 32 min |
56 | 28 | (10) | 23.38 | 28 | (10) | 1 h 1 min | 8 | (1) | 2 h 32 min |
T1 (Large Sat.) | T8 P4 | T8 P2 | T12 P6 | T12 P1 | T20 P10 | T20 P5 | T24 P12 | T24 P8 | T28 P4 | T28 P7 | T40 P20 | T40 P10 | T56 P8 | T56 P28 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case 1 | 0.00 | 0.50 | 0.39 | 0.55 | 0.42 | 0.62 | 0.54 | 0.63 | 0.61 | 0.62 | 0.70 | 0.78 | 0.55 | 0.76 | 0.81 |
Case 2 | 0.16 | 0.48 | 0.51 | 0.63 | 0.54 | 0.87 | 0.74 | 0.91 | 0.80 | 0.85 | 0.89 | 0.94 | 0.75 | 0.96 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitajima, N.; Seto, R.; Yamazaki, D.; Zhou, X.; Ma, W.; Kanae, S. Potential of a SAR Small-Satellite Constellation for Rapid Monitoring of Flood Extent. Remote Sens. 2021, 13, 1959. https://doi.org/10.3390/rs13101959
Kitajima N, Seto R, Yamazaki D, Zhou X, Ma W, Kanae S. Potential of a SAR Small-Satellite Constellation for Rapid Monitoring of Flood Extent. Remote Sensing. 2021; 13(10):1959. https://doi.org/10.3390/rs13101959
Chicago/Turabian StyleKitajima, Natsumi, Rie Seto, Dai Yamazaki, Xudong Zhou, Wenchao Ma, and Shinjiro Kanae. 2021. "Potential of a SAR Small-Satellite Constellation for Rapid Monitoring of Flood Extent" Remote Sensing 13, no. 10: 1959. https://doi.org/10.3390/rs13101959
APA StyleKitajima, N., Seto, R., Yamazaki, D., Zhou, X., Ma, W., & Kanae, S. (2021). Potential of a SAR Small-Satellite Constellation for Rapid Monitoring of Flood Extent. Remote Sensing, 13(10), 1959. https://doi.org/10.3390/rs13101959