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Abstract: Constellations of small satellites equipped with synthetic aperture radar (SAR) payloads
can realize observations in short time intervals independently from daylight and weather conditions
and this technology is now in the early stages of development. This tool would greatly contribute
to rapid flood monitoring, which is usually one of the main missions in upcoming plans, but few
studies have focused on this potential application and a required observation performance for flood
disaster monitoring has been unclear. In this study, we propose an unprecedented method for
investigating how flood extents would be temporally and spatially observed with a SAR small-
satellite constellation and for evaluating that observation performance via an original index. The
virtual experiments of flood monitoring with designed constellations were conducted using two case
studies of flood events in Japan. Experimental results showed that a SAR small-satellite constellation
with sun-synchronous orbit at 570 km altitude, 30-km swath, 15–30◦ incidence angle, and 20 satellites
can achieve 87% acquisition of cumulative flood extent in total observations. There is a difference
between the results of observation performance in two cases because of each flood’s characteristics
and a SAR satellite’s observation system, which implies the necessity of individual assessments for
various types of rivers.

Keywords: flood monitoring; synthetic aperture radar; small satellite; satellite constellation; disas-
ter management

1. Introduction

Swift assessment of the location and extent of damage caused by disasters is vital to
real-time situational awareness and effective measures in the response phase of disaster
management [1,2]. In the case of flood disasters, adverse weather conditions and surface
inundation typically obstruct field surveys, especially at night. Remote sensing technolo-
gies can offer useful solutions in such situations; in particular, satellite-based synthetic
aperture radar (SAR) has great potential for flood detection [3]. Unlike optical sensors, SAR
can penetrate clouds and rain and collect observations independently from sunlight [4].
Moreover, satellite as a platform facilitates observation over wide swathes and global
coverage of remote areas, which cannot be achieved with aircrafts or unmanned aerial
vehicles (UAVs) [5]. SAR satellites thus play an important role as powerful tools for flood
detection across vast regions under unfavorable weather conditions by day or night.

Most SAR satellites operate in a sun-synchronous orbit (SSO), a type of near-polar
orbit. The orbit’s SSO geometry is kept nearly fixed with respect to the sun [6], so satellites
in SSO are synchronized to consistently remain in the same position relative to the sun.
That is, the satellite visits the same spot at almost the same time twice daily, for example,
at 12:00/00:00 every day. Thanks to these features, SSO provides global coverage at all
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latitudes (except for just a few degrees from the poles) [6], and enables constant observation
at the same local time. Each SSO can be identified by its mean local time (MLT) [7].

However, the observation opportunities offered by current SAR satellite systems
are insufficient from the perspective of rapid flood monitoring in the context of disaster
management. Currently, most civilian SAR satellites operate in SSO with 06:00/18:00 MLT
(the so-called dawn–dusk orbit) [8] due to its efficiency regarding solar power genera-
tion, whereas few other SAR satellites travel in SSO with other MLTs (e.g., ALOS-2 with
12:00/00:00 and NovaSAR with 10:30/22:30). Therefore, the observation opportunities
currently provided by SAR satellite systems are biased, even though any location world-
wide may be observed twice daily by each satellite. In the context of flood monitoring,
the disaster management community requires flood extent information with little latency
and frequent updating, but inadequate satellite revisit time is one issue preventing the
collection of this information [5,9]. The dynamic flood process, which may both expand
and shrink, is difficult to track within the limited time available.

The development of small satellites equipped with SAR could be key to resolving
this issue. Small satellites have attracted considerable attention due to their wide-ranging
applicability, supported by technological advancements in space engineering over the last
decade [10]. These satellites cost significantly less than conventional large satellites, and this
enables ‘constellation’ operation involving several satellites; by working in concert, groups
of satellites have an excellent capacity for high revisit rates and short revisit time [10]. One
example is Planet, which operates more than 200 optical small satellites. However, the
miniaturization of SAR satellites has been slow compared to that of optical satellites due to
the challenging design requirements of small SAR satellites, such as larger antennae and
higher power throughputs [11]. In recent years, however, the miniaturization of electronic
components and recent technological advances have finally ensured the compatibility of
SAR with small platforms [12]. Constellations of SAR-equipped small satellites are in the
early stages of development, and application-driven satellite design is favored in this early
period [12]. In other words, each space mission can be optimized through the adoption of
the appropriate constellation design and SAR device [13]. That is, the required observation
performance (such as the revisit time, spatial coverage, swath, spatial resolution, and
spectral bandwidth) should be specified in advance for a functional implementation.

Now several space companies such as QPS, Synspective, ICEYE, Capella Space, and
Umbra Lab are planning to realize the constellation of SAR-equipped small satellites.
Most of these plans considered flood monitoring as one of the main targets, but they did
not discuss the required observation performance in the application of effective flood
monitoring. Identification of this requirement needs an integrated approach that simulates
the satellites orbiting in space and river flooding on the ground to investigate how flood
extent would be temporally and spatially observed with a SAR small-satellite constellation.
Therefore, in this study, we combined the design of constellations and the hourly outputs
of a flood inundation simulation to conduct a virtual experiment of how a constellation of
SAR small-satellites would observe the fluctuation of flood extents in spatial and temporal
scales, using two flood events in Japan as case studies.

2. Methods
2.1. Design of SAR Small-Satellite Constellation
2.1.1. Constellation Configuration

In this method, the Walker Constellation (WC) method was applied in the first step
in designing SAR small-satellite constellations. The WC method consists of three integer
parameters T/P/F, where T denotes the total number of satellites, P is the number of orbit
planes, and F is the relative phase difference between satellites in adjacent planes [14,15].
The details are described in Appendix A.
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2.1.2. Orbital Elements

To determine the orbital elements of each satellite constituting a virtual constellation,
we applied two-line element (TLE) sets of an existing SAR-equipped small satellite ICEYE-
X2. The details are explained in Appendix B.

2.1.3. SAR Satellite Observation

SAR satellites observe the area of interest by adjusting the direction of their sensors.
The incidence angle φ and the off-nadir angle ψ are defined as shown in Figure 1. φ is
typically larger than ψ as a result of the curvature of the Earth. Supposing that the ground
area that can be observed by that adjustment is an observable range L [km] and assuming
that the satellite orbit is circular and that the Earth’s surface is spherical, L is calculated as
follows [16]:

L = Re(φub − ψub)− Re(φlb − ψlb) (1)

where Re [km] denotes the radius of the Earth, φub [rad] is the upper bound of incidence
angles, ψub [rad] is the upper bound of off-nadir angles, φlb [rad] is the lower bound
of incidence angles and ψlb [rad] is the lower bound of off-nadir angles. A relationship
between an incident angle and an off-nadir angle may be observed as follows [16]:

sinφ

sinψ
=

Re

Re + a
(2)

where a [km] denotes the satellite’s altitude. It is derived from Equations (1) and (2) that an
observable range is getting wider as a satellite’s altitude becomes higher.
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Figure 1. Schematic illustration of SAR satellite observation.

To define the incidence angle φ range and the satellite altitude a, the orbit and SAR
property information of a SAR-equipped small satellite (ICEYE-X2) was used (detailed
in Table 1) [17]. As shown in Table 1, an incidence angle from 15◦ to 30◦ may be used in
its Stripmap imaging mode, and it operates at an altitude of 570 km, so we determined
φlb = 15◦, φub = 30◦, and a = 570 km for the calculation of L. Regarding the inclination, we
supposed a general use of satellites including other applications in this paper, so a polar
orbit was adopted, not a lower orbital inclination. Current SAR systems are capable of
operating in different imaging modes by controlling the antenna radiation pattern, which
practically results in different combinations of the swath width and resolution [18]. The
most fundamental mode is the Stripmap mode, where the ground swath is illuminated
with a continuous sequence of pulses while the antenna beam is fixed in its orientation, thus
imaging a long strip parallel to the flight direction [18]. This imaging mode should be ideal
in this analysis because it has 30 km swath and 3 m resolution properties that are suitable
for the requirements for flood detection. For a better azimuth resolution, the Spotlight mode
is utilized, but this operation is usually at the expense of spatial coverage (1-m resolution
and 5 × 5 km2 scene in the reference SAR-equipped small satellite). For a wider swath,
the system can be operated in the ScanSAR mode, but the azimuth resolution is degraded
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when compared to the Stripmap mode (this mode is currently under development in the
reference SAR-equipped small satellite, but with 100 m resolution and 350 km swath in a
traditional SAR satellite ALOS-2) [17].

Table 1. Information of the reference SAR small-satellite.

Swath 30 km2

Look direction both LEFT and RIGHT
Incidence angle range 15.0◦–30.0◦

Nominal altitude 570 km
Inclination 97.69◦

Ground track repeat 18 days

2.2. Assessment of Revisit Rates and Revisit Time

As a preliminary step for the subsequent virtual experiment in flood monitoring using
the designed SAR small-satellite constellation, we sought the appropriate T/P/F parameter
settings in the WC method. Although the potential combinations of these parameters are
finite (assuming that F is an integer number), predetermination of the parameter setting
that is likely to perform well for each T is advisable to ensure effective analysis. Thus, revisit
rates and revisit time were assessed for all combinations of T/P/F for each T. Here, we
provisionally tried to determine the settings of T that were likely to accomplish the revisit
time in the order of one to several hours. To investigate the area to be observed by each
SAR small-satellite constellation, the mapping of observable range L along the satellites’
passes was simulated for the period of the recurrent days—18 days in this case—as listed
in Table 1. Then, several representative points were prepared to check the observation
timings. We named these points ground check points (GCPs) and set GCPs at five locations
in Japan: Sapporo, Sendai, Tokyo, Osaka, and Fukuoka, whose locations are depicted in
Figure 2 (left). Figure 2 (right) presents an example of the ground tracks of satellites (purple
line), observable range L (yellow belt zone), and swath width (orange belt zone) both in an
ascending pass and a descending pass. The revisit rates and revisit time can be calculated
by extracting the date and time when the observable zone catches the GCPs. Because the
calculation period was set at 18 days, the daily revisit rates at each GCP was calculated
by dividing the total number of observations for that point by 18. For the revisit time,
the mean revisit time was calculated by averaging the time interval between observations
for all GCPs and the maximum revisit time was calculated by extracting the largest time
interval between observations for all GCPs.
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2.3. Virtual Experiment of Flood Monitoring
2.3.1. Time Series Data of Flood Extent

We investigated how a time series fluctuation of flood extent could be observed by
the virtual SAR small-satellite constellation. However, as mentioned above, observation



Remote Sens. 2021, 13, 1959 5 of 15

data with a high temporal resolution are currently unavailable. We therefore prepared
the numerical simulation data of hourly flood depth from the catchment-based macro-
scale-floodplain (CaMa-Flood) model, and assumed that these simulation outputs can
be used as virtual truth of flood fluctuation in this analysis. The CaMa-Flood model is
designed to simulate hydrodynamics in continental-scale rivers [19]. CaMa-Flood routes
input runoff generated by a hydrological or land surface model to oceans or inland seas
along a prescribed river network map. It calculates river and floodplain water storage, river
discharge, water depth, and inundated area at each grid point. The flow characteristics
are calculated with the local inertial equations along the river network map. The detailed
model structures and parameters can refer to the original paper of Yamazaki et al. [19].
The hourly runoff data were input from Today’s Earth Japan, with a land surface model
MATSIRO and forcing inputs from MSM-GPV [20,21]. This simulation does not take into
account anthropogenic water management, such as dam operation and reservoir effect, but
this can be considered irrelevant to this virtual experiment; the simulation outputs still
provide sufficient reference for the likely behavior of flooding observed with satellites.

In the flood simulation, the spatial resolution was downscaled to 30 m. As noted
in the previous section, the designed SAR small-satellite constellation is assumed to use
Stripmap mode with a resolution of 3 m (and a corresponding observation width of 30 km).
Although this resolution does not coincide with those of simulation outputs, this may
not be a problem because the imagery resolution represents a size per pixel rather than
the discriminable size. For a specific object to be recognized, the object must typically be
10–20 times larger than the resolution. Taking this point into account, even if SAR data were
actually acquired with 3 m resolution, the flood extent that emerges after image processing
would cover an area of at least 30 × 30 m2. Therefore, the resolution of simulation outputs
may be considered reasonable for this analysis.

2.3.2. Operation Rule of Satellites

In this virtual experiment wherein the designed SAR small-satellite constellation was
operated to monitor flood fluctuation, we investigated the maximum potential of that
observation. Due to the various satellite locations and the finite swath width—30 km in
this case, based on the properties of the reference small satellite—in some instances, the
entire flood extent area could not be observed in this analysis. Therefore, we adjusted the
observation angle from 15◦ to 30◦ and between left- and right-looking at each observation
time so that each satellite could orient its SAR instrument toward a target region and
observe the largest possible extent of flood area from its location.

Concerning the limitations of the observations of SAR-equipped small satellites, we
make the following two assumptions. First, disaster observation is prioritized, given that
even satellites owned by private companies are typically used in emergencies. Second,
concerning limitations of the power system, energy generation must be equal to or greater
than the energy consumption of the SAR imaging mission sequence [22]. On the basis of
these assumptions and the assumption that the interval between observations at daytime
and night is about 12 h, small satellites can store sufficient power if disaster management
is prioritized.

2.3.3. Case Studies of Flood Events in Japan

One flood event included in the case study was heavy rainfall in the Kyushu region in
July 2012. The torrential rainfall associated with the rain front caused floods and landslides
in the northern Kyushu region, mainly in Kumamoto, Oita, Fukuoka, and Saga prefectures
from 11–14 July 2012. There were 5 points where the total amount of rainfall during 4 days
was more than 500 mm, such as 816.5 mm at the Aso city of Kumamoto, 616.5 mm at
the Hita city of Ohita, 649.0 mm at the Yame city of Fukuoka. The rainfall event caused
32 fatalities and damaged 13,263 houses (769 collapsed and 12,494 were inundated). In this
case study, the Chikugo River basin (33◦ N–34◦ N/130◦ E–131◦ E) was selected for analysis.
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The other flood event included was Typhoon No. 19 in October 2019, which caused
heavy rain, stormy winds, high waves, and storm surges across an extensive area from
10–13 October 2019. There were 17 points where the total amount of rainfall was more than
500 mm, such as 1001.5 mm at the Hakone town of Kanagawa, 760.0 mm at the Izu city of
Shizuoka, 687.0 mm at the Chichibu city of Saitama. River flooding and landslides resulted
in 99 fatalities, and 4008 houses completely or partially collapsed while 70,341 houses were
inundated. In this case study, we focused on the Chikuma River basin (36◦ N–37◦ N/138◦

E–139◦ E), where 5086 houses were inundated.

3. Results
3.1. Assessment of Revisit Rate and Revisit Time

The revisit rate, mean revisit time, and maximum revisit time were calculated from
each result of the five GCPs. Based on this calculation, we found that the mean revisit time
achieved was around 7 h with T = 8, 5 h with T = 12, 3 h with T = 20, 2.5 h with T = 24, 2 h
with T = 28, 1.5 h with T = 40, and 1 h with T = 56. These results suggest a nearly linear
correlation between the number of satellites and the revisit time. We speculated that this
correlation has its roots in the constellation design process, wherein the RAAN and MA
were arranged symmetrically at even intervals.

To assess the difference between the parameter settings of P and F, the revisit rates,
the mean revisit time, and the maximum revisit time as a function of P for each number
of T were set as shown in Figure 3. Here, the optimal parameter setting of F was set for
each P, so the figure allows us to evaluate the parameter settings of T/P/F that yield the
best performance in terms of revisit rates, mean revisit time, and maximum revisit time
when the number of satellites (T) is given. As these results indicate, the revisit rates and
mean revisit time remain almost unchanged with the variation of P, while the maximum
revisit time exhibits different behavior that roughly improves as P increases. Based on
these results, Table 2 lists the best parameter settings of P and F for the revisit rates, the
mean revisit time, and the maximum revisit time, which are for each T the largest one in
Figure 3a, the shortest one in Figure 3b, and the shortest one in Figure 3c, respectively. As
shown in Table 2, for revisit rates and mean revisit time, the product of these two values
nearly equals to 24 h. It was also found that the optimal settings of P and F are mostly the
same between these two values with an exception of T = 24. This point should be more
deeply examined in the further analysis with a higher number of GCPs in broad areas.
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Table 2. The best parameter setting of P and F, and the corresponding results of the mean revisit rates, mean revisit time,
and maximum revisit time for each T.

T P (F) Revisit Rates (/day) P (F) Mean Revisit Time P (F) Maximum Revisit Time

8 2 (1) 3.47 2 (1) 6 h 44 min 4 (2) 21 h 16 min
12 1 (-) 5.22 1 (-) 4 h 30 min 6 (2) 10 h 25 min
20 5 (4) 8.68 5 (4) 2 h 43 min 10 (7) 6 h 11 min
24 8 (7) 9.98 2 (1) 2 h 16 min 12 (7) 5 h 23 min
28 7 (2) 12.16 7 (2) 1 h 58 min 4 (3) 4 h 11 min
40 10 (9) 17.37 10 (9) 1 h 22 min 20 (1) 3 h 32 min
56 28 (10) 23.38 28 (10) 1 h 1 min 8 (1) 2 h 32 min

Based on the above results, we attempted to determine the parameter settings to be
used in the subsequent virtual experiment. In terms of emergency observation during
floods, the maximum revisit time is a critical factor in avoiding missing an observation
timing as soon as possible. Therefore, we decided to adopt the optimal parameter setting
for the maximum revisit time. However, a single setting for each T may not be sufficient
for the evaluation of the virtual experiment, so we also took the optimal parameter setting
for the revisit rates, because this was calculated using a different method than that used for
the former.

3.2. Virtual Experiment of Flood Monitoring

The virtual experiment of flood monitoring using a SAR small-satellite constellation
was executed in the two flood event case studies. Because flood simulation outputs also
included the permanent water area in the river channel, we masked this area in advance.
Figure 4 presents the results of the virtual observation of flood extent with each constellation
(T = 8, 12, 20, 24, 28, 40, and 56) in case 1 (heavy rainfall in the Kyushu region from 14:00
on July 12 to 14:00 on 13 July 2012). In this figure, the simulated flood extent at the time
of observation is represented by a blue line, and the observed simulated flood extent is
represented in a multi-colored bar graph. This multi-color graph expresses the proportion
of flood extent that was observed for the first time (1st), second time (2nd), third time
(3rd), fourth time (4th), fifth time (5th), and sixth time and above (>6 th) after the flood
occurred at 14:00 on 12 July 2012. In other words, these components express how much
new information (1st) and overlapped information (2nd to >6th) regarding flood extent are
acquired at each observation with respect to the past observations.

Here, we also introduced the damage extent and the observed damage extent. Damage
extent was defined as the area that had experienced flooding up to each time in this event,
so it was assumed to have already been damaged. In other words, the damage extent is
the cumulative flood extent, including the area where flood water has already receded.
Observed damage extent denotes how much damage extent area was acquired as a result
of multiple observations until each time. This is calculated as the summation of the ‘1st’
first area until each time because it gives the cumulative observed flood extent with no
redundancy. Comparison of the two dotted lines of damage extent and observed damage
extent demonstrates the extent to which the observation system can trace the real situation
on a spatial and temporal scale. Figure 5 presents the results for case 2 (Typhoon No. 19
from 13:00 on 12 October 2019 to 11:00 on 13 October 2019). Here, the definition of legends
is the same as that in Figure 4.
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Kyushu region from 14:00 on 12 July 2012 to 14:00 on 13 July 2012).
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3.3. Evaluation of Observation Performance

Specific observation behavior offered by each constellation was already shown in
Figures 4 and 5, but it is still difficult to judge whether each observation performance
is sufficient or not in the context of flood disaster management. In order to evaluate
this observation performance quantitatively in terms of the damage assessment in flood
disasters, an original performance index was devised in this paper. This performance index
was defined as the ratio of observed damage extent to damage extent in the final phase, and
it was named the ‘capture ratio.’ The capture ratio describes how much area of damaged
extent was acquired as a result of time series observation excluding overlapped information.
The main reason why we defined this value as the performance index is that the capture
ratio has its highest limit, which is 1 (= 100%). This limitation is crucial from the perspective
of cost estimation in the practical implementation of SAR small-satellite constellation. The
observation performance is generally improved as the number of satellites increases, but
the larger number of satellites requires a more expensive cost. Therefore, it is difficult to
determine the optimal condition of the constellation if the performance index is getting
higher infinitely. For example, the total area of observed flood extent has no limitation,
so it is not an appropriate indicator for the performance evaluation. On the other hand,
the capture ratio (= observed damage extent/damage extent) must eventually reach its
highest value. This is because observed damage extent consists of only the 1st area, and the
accumulation of the 2nd > 6th areas does not contribute to this flood damage assessment
anymore. In short, the capture ratio is a performance index that simultaneously expresses
the sufficiency and efficiency of observation and it provides the comprehensive result of
flood damage assessment on a spatiotemporal scale.

The calculation result of the capture ratio in case 1 and case 2 is presented in Table 3.
Here, the result of one large satellite (T = 1) is also shown beside that of T = 8, 12, 20,
24, 28, 40, and 56. As can be seen from this table, the capture ratio usually grew higher
as the number of T increased, but it varied with the number of P even under the same
number of T, and sometimes the smaller number of T has a better result for the capture
ratio. This implies that the number of satellites (= T) is of course a dominant parameter
that determines observation performance, but the configuration of satellite constellation
(= T/P/F) should be also carefully selected. This performance index, the capture ratio,
allows us to compare the result of multiple case studies. When we focus on the difference
between case 1 and case 2, it can be seen that in case 1 more than 56 satellites are required
to achieve 81% acquisition, while even 20 satellites accomplish 87% in case 2. This is
considered to be mainly because of the characteristics of each flood event. In case 1, the
peak flooding was happening in a short time, which means flood extent was expanding
and shrinking quickly. Thus, if the observation timing was missed or the observed area
was insufficient in that peak time, data acquisition would be difficult to recover. On the
other hand, in case 2, the flood was gradually expanding and shrinking, so it was easier
to capture most of the damage extent during that period. This result demonstrated that
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observation performance is fairly dependent on temporal and spatial flood fluctuation in
each event. As another interesting point, in fact, the whole area of damage extent was larger
in case 2 (69.49 km2) than that in case 1 (53.82 km2), but the capture ratio was generally
higher in case 2, so it seems unnatural. This is because there is a water channel network
unique to the region (Saga city) in case 1. Due to that geographical feature, the flood extent
was distributed more widely, but the total area resulted in a smaller value, which means
it was difficult to capture the whole area of flood extent at one time (but conversely it
provided more opportunities to observe a part of the flood extent). This kind of flood
feature also impacted on the observation performance.

Table 3. The performance index of the capture ratio in case 1 and 2.

T1
(Large Sat.)

T8
P4

T8
P2

T12
P6

T12
P1

T20
P10

T20
P5

T24
P12

T24
P8

T28
P4

T28
P7

T40
P20

T40
P10

T56
P8

T56
P28

Case 1 0.00 0.50 0.39 0.55 0.42 0.62 0.54 0.63 0.61 0.62 0.70 0.78 0.55 0.76 0.81

Case 2 0.16 0.48 0.51 0.63 0.54 0.87 0.74 0.91 0.80 0.85 0.89 0.94 0.75 0.96 0.92

Therefore, the required observation performance would vary depending on how
dynamically and widely each flood process would occur on a spatial and temporal scale,
which would be determined by meteorological conditions and topographical features.

4. Discussion

In both cases 1 and 2, the observed flood extent in some instances was insufficient
relative to the flood extent at each time. To investigate this issue, Figure 6 presents the
captured flood extent with the constellation of T = 56, P = 28 in case 1. The red zone
represents the observed extent, whose swath width is 30 km. Here, it is clear that the
observed area did not always match the flood area—for example, at 5:29, 7:16, and 9:20—
and this discrepancy caused insufficient data acquisition. This is generally attributable to
two factors. The first factor is the suitability of satellite passes: satellites do not always pass
over an appropriate location with respect to each area of interest, so they are sometimes
unable to capture it well. This is related to the second factor, which is the limited range of
SAR’s incidence angles. The look direction of a SAR instrument cannot be adjusted in all
ranges, and this restriction prevents flexible operation according to the target area.
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However, some discrepancy seems inevitable, particularly for satellite observations
collected using onboard SAR. Satellite passes are a predefined condition in their orbit and
cannot be easily changed according to the area of interest. About the incidence angle, in
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addition to its physical restriction, the range of angles is also bounded by the accuracy of
flood detection [23]. That is, an incidence angle that is too large or too small would disturb
the interpretation of SAR images, resulting in reduced flood detection accuracy. Therefore,
the beam angle should be maintained within a specific range to guarantee SAR observation
data quality.

One possible way to mitigate the technical challenges of SAR systems would be to
expand the swath width. Currently, small satellites can only be equipped with antennae
that are smaller than those used for large satellites, making it more difficult to achieve
wider swaths. However, technological innovations are expected to overcome this issue:
small satellites can go through more development cycles than larger, traditional satellites,
and they present more opportunities for harnessing new technologies [12]. Another way
to mitigate the technical challenges should be implemented in the operational phase,
regardless of technological innovations. As shown in Figures 4 and 5, even low levels of
acquisition can sometimes contribute to improving the extent of observed damage—for
instance, at 5:54 in T40P20 of case 1 and at 17:31 in T24P8 of case 2. This implies that a
suitable location of the observation target area relative to both the present situation and
past observations is critical for better situational awareness, even if it is bounded by the
restrictions mentioned above. Furthermore, this suggests that careful selection of the target
area should be implemented by taking into account possible future flood situations, because
the flood extent at each time does not appear prior to observation. In this regard, flood
forecasting systems based on other information, such as precipitation, river discharge, and
water level, should become useful tools for predicting which areas are likely to be affected
and allowing proper operational commands to be sent to each satellite in advance. In the
case of multi-location flood events, the required operation for a selection of target areas
might be more complicated. Thus, an integrated operation system combined with flood
forecast is desirable for effective observation by means of SAR small-satellite constellations.
At the same time, the collection of flood extent data in high spatiotemporal resolution
might also be useful in improving flood simulation and forecasting in turn. To realize
such an observation system in the future, more interactive cooperation and collaboration
between the satellite, the hydrology and the disaster management field should be essential.

5. Conclusions

In this study, we investigated how flood extents could be observed using SAR small-
satellite constellation on a spatial and temporal scale. In the first step, we designed
constellations using the Walker Constellation method, with parameters of T (total number
of satellites), P (number of equally spaced orbit planes), and F (relative phase difference
between satellites in adjacent planes). Then, the designed SAR small-satellite constellations
were applied in a virtual flood monitoring experiment involving numerical simulations of
two case studies of flood events in Japan.

Each constellation’s observation behavior was successfully presented, and an orig-
inal performance index was introduced to evaluate the flood monitoring observation
performance. The results demonstrated that a SAR small-satellite constellation with sun-
synchronous orbit at 570 km altitude, 30 km swath, 15–30◦ incidence angle, and 20 satellites
can achieve 87% acquisition of the damage extent (cumulative flood extent) in a time
series observation in one case. Comparing the results of two cases, it was found that the
observation performance depends on each flood’s characteristics and it is related to some
features of the SAR small-satellite observation system.

The results of two case studies in Japan under a condition with a specific satellite
and orbit, which are shown in this paper, would be insufficient to conclude definitively
the specific requirements of a SAR small-satellite constellation in terms of flood disaster
monitoring. However, it was suggested that an individual assessment would be needed
for each flood case in various regions with several kinds of satellite and orbit (e.g., a
lower orbital inclination which is focusing on low and middle latitudes), since the optimal
parameter settings are different in each case. In this regard, our proposed approach can be
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applied to any flood cases in regions all over the world, so this study should be useful in
that it built the first framework and established the evaluation method for future analysis.
Therefore, based on this research, more comprehensive analyses in other areas with other
small SAR satellites should be performed to determine the universal applications as needed.
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Appendix A

Appendix A describes the details of the Walker Constellation (WC) method and
how it was implemented in our method. This is the most frequently used method in
practice, and it enables continuous global coverage [14,15]. Among the several possible
ways of designing constellation configurations such as Street of Coverage and Flower
Constellation, the WC method simultaneously offers simplicity and functionality, which
is appropriate for this first attempt. It is also suitable for our objective of constructing a
virtual constellation based on the orbital elements of an existing satellite. The WC method
is based on the assumption that all orbits are circular and that they have a common altitude
and inclination with reference to the equator [14,15]. The right ascension of the ascending
node (RAAN)—the place where the satellite crosses the equator from south to north—of
each orbit plane is equally spaced on the equator plane, and all satellites are equally spaced
on each orbit plane. This arrangement is defined with integer parameters T, P, and F,
where T denotes the total number of satellites, P is the number of orbit planes and F
is the relative phase difference between satellites in adjacent planes. P orbit planes are
positioned at α = 180◦/P intervals and each has S = T/P satellites, which are placed at
β = 360◦/S intervals on each orbit plane, given that S is the number of satellites per plane.
When all orbit planes have the same relative phase difference, F is defined as an integer
number to keep the arrangement’s symmetry, and the angle difference between satellites in
adjacent planes is γ = F × 360◦/T. For reference, Figure A1 (left) presents an example of
a WC whose parameters are T = 8, P = 2, and F = 1, where S = 8/2 = 4, α = 180◦/2 = 90◦,
β = 360◦/4 = 90◦, and γ = 1 × 360◦/8 = 45◦ with an inclination 90◦.
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Appendix B

Appendix B describes how the orbital elements of each satellite were defined in our
method. We applied two-line element (TLE) sets, which are data formats comprising listed
orbital elements. Because a TLE specifies an orbit’s size and shape and how the orbit is
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oriented with respect to the Earth, we can simulate each satellite’s movement and compute
its location at a specific time. For existing satellites, public information may be available,
but for a virtual constellation that includes non-existent satellites, it is necessary to first
define their TLE. To overcome this issue, we selected an existing satellite and adjusted
some aspects of its TLE in accordance with the structure of the WC method. Here, ICEYE-
X2—one of the SAR-equipped small satellites—was selected as a reference for TLE. This
satellite offers global coverage as it is in SSO. It orbits the Earth 15 times per day, and the
inclination of its orbit is 97.69◦ with reference to the equator [17].

Supposing the reference satellite’s RAAN is RAANo [◦] and its mean anomaly (MA)
—the position of satellites on each orbit plane—is MAo [◦]. Following the WC method, as
shown in Figure A1 (right), RAANi [◦]—the RAAN of the i-th orbit—and MAi,j [◦]—the
MA of the j-th satellite on the i-th orbit—can be calculated as follows [24]:

RAANi = RAANo + i
180
P

(A1)

MAi,j = MAo + iF′ + j
360
S

(A2)

With regard to the other orbital elements in TLE, values identical to those of the
reference satellite were used for this computation.
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