Estimation of Ice Thickness and the Features of Subglacial Media Detected by Ground Penetrating Radar at the Baishui River Glacier No. 1 in Mt. Yulong, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Field Observation Data
2.2.2. Image Data
2.3. Methods
2.3.1. Method of GPR Measurement Data Interpretation
2.3.2. Method of Glacier Thickness Calculation
2.3.3. Method of Glacier Thickness Interpolation
3. Resultsa
3.1. Identification of the Characteristics of Each Layer in Glacier and the Ice-Bedrock Interface
3.2. Transverse and Longitudinal Profile Features of Glacier and Subglacial Terrain Variations
3.3. Spatial Distribution of Ice Thickness and Bedrock Topography
4. Discussion
4.1. Analysis on the Medium and Morphogenesis at the Glacier Bottom
4.2. Uncertainty Analysis of the Ice-Bedrock Interface
5. Conclusions
- In the central part of the BRG1, the average ice thickness along the longitudinal sections parallel to the glacier flowline was 70.28 m, with a minimum value of 46.38 m and a maximum value of 92.83 m. The average ice thickness of the transverse sections perpendicular to the glacier flowline was 66.02 m, with a varied range between 42.51 and 90.89 m.
- The bedrock topography curves from the longitudinal and transverse profiles at the temperate glacier showed a variable bedrock interface, which is different from that of a polar glacier. There was a thick glacier base layer consisting of ice-debris and a subglacial moraine layer above the bedrock interface, reflecting the glacier’s strong abrasion and plucking on the bedrock during its fast movement. There were many ice water paths, crevasses, and karst landforms in the ice-bedrock interface.
- Based on the grid data of the ice thickness from the kriging interpolation, the average ice thickness in the central part of the glacier between 4740 and 4890 m a.s.l. was 52.48 m, with a maximum value of 92.83 m. The bedrock topography map showed that there was a small basin in this area and that the central part of the ice surface was relatively flat. There were small ice steps and ice ridges in the upper and lower parts of this area.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, Z.; Liu, S.; Zhang, S. Structural characteristics of the No.12 Glacier in Laohugou Valley, Qilian mountain based on the ground penetrating radar sounding. Adv. Earth Sci. 2009, 24, 1049–1158. [Google Scholar]
- Zhang, X.; Zhu, G.; Qian, S.; Chen, J.; Shen, Y. Radar measuring ice thickness of Glacier No.1 at the source of Urumqi river, Tianshan. J. Glaciol. Geocryol. 1985, 7, 153–162. [Google Scholar]
- Zhu, G.; Jing, X.; Han, J.; Gao, X. Radar sounding and study of the bedrock topography on Collins Ice Cap. Antarct. Res. 1994, 6, 40–45. [Google Scholar]
- Sun, B.; He, M.; Zhang, P.; Jiao, K.; Wen, J.; Li, Y. Determination of ice thickness, subice topography and ice volume at Glacier No.1 in the Tianshan, China, by ground penetrating radar. Chin. J. Polar Search 2003, 15, 35–44. [Google Scholar]
- He, M.; Sun, B.; Yang, Y.; Jiao, K. Ice thickness determination and Analysis of No.1 Glacier at the source of Urumchi River, Tianshan by ground penetrating radar. J. East. China Inst. Technol. 2004, 27, 236–239. [Google Scholar]
- Ma, L.; Tian, L.; Yang, W.; Tang, W. Measuring the depth of Gurenhekou Glacier in the South of the Tibetan Plateau using GPR and estimating its volume based on the outcomes. J. Glaciol. Geocryol. 2008, 30, 783–788. [Google Scholar]
- Wang, N.; Pu, J. Ice thickness sounded by ground penetrating radar on the Bayi Glacier in Qilian Mountains, China. J. Glaciol. Geocryol. 2009, 31, 431–435. [Google Scholar]
- Wu, L.; Li, Z.; Wang, P.; Li, H.; Wang, F. Sounding the Sigong river Glacier No.4 Bogda Area, the Tianshan Mountains by using ground penetrating radar and estimating the ice volume. J. Glaciol. Geocryol. 2011, 33, 276–282. [Google Scholar]
- Wu, Z.; Zhang, S.; Liu, S.; Du, W. Structural characteristics of the No.12 Glacier in Laohugou Valley, Qilian Mountain based on the ground penetrating radar combined with FDTD simulation. Adv. Earth Sci. 2011, 26, 632–641. [Google Scholar]
- Wang, P.; Li, Z.; Li, H. Ice volume changes and their characteristics for representative Glacier against the background of climatic warming—A case study of Urumqi Glacier No.1, Tianshan, China. J. Nat. Resour. 2011, 26, 1190–1197. [Google Scholar]
- Wang, P.; Li, Z.; Wu, L.; Li, H.; Wang, W.; Wang, F. Application of ground penetrating radar to the survey of glacier thickness and bedrock topography. J. Jilin Univ. (Earth Sci. Ed.) 2011, 41, 393–400. [Google Scholar]
- Wang, P.; Li, Z.; Wu, L.; Li, H.; Wang, W.; Jin, S.; Zhou, P. Ice thickness and volume based on GPR, GPS and GIS: Example from the Heigou Glacier NO.8, Bogda-Peak Region, Tianshan China. Earth Sci. J. China Univ. Geosci. 2012, 37, 180–187. [Google Scholar]
- Huai, B.; Li, Z.; Wang, F.; Wang, W.; Wang, P.; Li, K. Volume estimation from ice-thickness data, applied to the Muz Taw glacier, Sawir Mountains, China. Environ. Earth Sci. 2015, 74, 1861–1870. [Google Scholar]
- Huai, B.; Li, Z.; Wang, F.; Wang, P.; Li, K. Ice thickness distribution and ice volume estimation of Muz Taw Glacier in Sawir mountains. Earth Sci. 2016, 41, 758–764. [Google Scholar]
- Wang, Y.; Ren, J.; Qin, X.; Liu, Y.; Zhang, T.; Chen, J.; Li, Y.; Qin, D. Ice depth and glacier-bed characteristics of the Laohugou Glacier No.12, Qilian Mountains, revealed by ground-penetrating radar. J. Glaciol. Geocryol. 2016, 38, 28–35. [Google Scholar]
- Paterson, W.S.B. The Physics of Glacier; Science Press: Beijing, China, 1987. [Google Scholar]
- Aditya, M.; Negi, B.D.S.; Argha, B.; Nainwal, H.C.; Shankar, R. Estimation of ice thickness of the Satopanth Glacier, Central Himalaya using ground penetrating radar. Curr. Sci. 2018, 114, 785–791. [Google Scholar]
- Tavi, M.; Graham, W.S.; Matt, F.; Nicola, H.G.; Mike, D.C. Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis. Glaciology 2000, 46, 389–398. [Google Scholar]
- Raymond, D.W.; Anthony, W.E. Radio-echo sounding of temperate glaciers: Ice properties and sounder design criteria. J. Glaciol. 1976, 17, 39–48. [Google Scholar]
- Francisco, J.N.; Yuri, Y.M.; Beatriz, B. Application of radar and seismic methods for the investigation of temperate glaciers. J. Appl. Geophys. 2005, 57, 193–211. [Google Scholar]
- Ola, B.; Kirsty, L.; Jack, K.; Svein-Erik, H. Detection of buried ice and sediment layers in permafrost using multifrequency Ground Penetrating Radar: A case examination on Svalbard. Remote Sens. Environ. 2007, 11, 212–227. [Google Scholar]
- Zhu, G.; Huang, Y.Z.; Gu, Z. Type B-1 experimental radar installation for measuring the thickness of glacier. J. Glaciol. Cryopedol. 1982, 4, 93–95. [Google Scholar]
- Li, J. Glaciers in the Hengduan Mountains; Science Press: Beijing, China, 1996. [Google Scholar]
- Wang, M.; Li, G.; Shen, Y.; Huang, M. Development of the hot water jet of Model Glacier-2 and its application on the Hailuogou Glacier. J. Glaciol. Geocryol. 1996, 18, 376–379. [Google Scholar]
- Yang, W.; Yao, T.; Xu, B.; Wu, G.; Ma, L.; Xin, X. Serious loss and retreat of glaciers of Gangrigabu region in the southeast of the Tibet plateau. Chin. Sci. Bull. 2008, 53, 2091–2095. [Google Scholar]
- Li, Z.; He, Y.; Wang, S.; Jia, W.; He, X.; Zhang, N.; Zhu, G.; Pu, T.; Du, J.; Xin, H. Changes of some monsoonal temperate glaciers in Hengduan Mountains Region during 1900–2007. Acta Geogr. Sin. 2009, 64, 1319–1330. [Google Scholar]
- Du, J.; He, Y.; Li, S.; Wang, S.; Niu, H. Mass balance of a typical monsoonal temperate glacier in Hengduan Mountains Region. Acta Geogr. Sin. 2015, 70, 1416–1422. [Google Scholar]
- Yue, L.; Shen, H.; Yu, W.; Zhang, L. Monitoring of Historical Glacier Recession in Yulong Mountain by the Integration of Multisource Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 388–399. [Google Scholar] [CrossRef]
- Che, Y.; Wang, S.; Liu, J. Application of Unmanned Aerial Vehicle (UVA) in the glacier region with complex terrain: A case study in Baishui River Glacier No.1 located in the Yulong Snow Mountain. J. Glaciol. Geocryol. 2019, 41, 1. [Google Scholar]
- Wang, S.; Du, J.; He, Y. Spatial-temporal characteristics of a Temperate-Glacier’s active-layer temperature and its responses to climate change: A case study of Baishui Glacier No. 1, Southeastern Tibetan Plateau. J. Earth Sci. 2014, 25, 727–734. [Google Scholar] [CrossRef]
- Qin, D.; Yao, T.; Ding, Y.; Ren, J. Introduction to Cryospheric Science; Science Press: Beijing, China, 2018. [Google Scholar]
- Ding, Y. The Cryosphere: Changes and Impacts; Science Press: Beijing, China, 2015. [Google Scholar]
- Pu, J. An Introduction to the Glaciers in China; Gansu Culture Press: Lanzhou, China, 1994; pp. 30–32. [Google Scholar]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; He, Y.; He, X.; Pang, H.; Zhao, J. The analysis of icefall at Mt.Yulong. J. Mt. Sci. 2007, 25, 412–418. [Google Scholar]
- Wang, S.; He, Y.; He, X.; Yuan, J.; Li, Z. Tourism resource protection and development in a typical Temperate Glacier Region in China. J. Yunnan Norm. Univ. (Philos. Soc. Sci. Ed.) 2008, 40, 38–43. [Google Scholar]
- He, Z.; He, Y.; Zhang, Z.; He, L.; Qi, C.; Liu, J. OSL dating of the Quaternary glacial sedimentary sequences at Mt.Yulong, China. J. Glaciol. Geocryol. 2016, 3, 1544–1552. [Google Scholar]
- Xin, H.; He, Y.; Zhang, T.; Niu, H.; Du, J. The features of climate variation and glacier response in Mt.Yulong, Southeastern Tibetan Plateau. Adv. Earth Sci. 2013, 28, 1257–1268. [Google Scholar]
- Du, J.; Xin, H.; He, Y.; Niu, H.; Pu, T.; Cao, W.; Zhang, T. Response of modern monsoon Temperate Glacier to climate change in Yulong Mountain. Sci. Geogr. Sin. 2013, 33, 890–896. [Google Scholar]
- Sevestre, H.; Benn, D.I.; Hulton, N.R.J.; Bælum, K. Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging. J. Geophys. Res. Earth Surf. 2015, 120, 2220–2236. [Google Scholar] [CrossRef] [Green Version]
- Florence, N.; Yves, B.; Wlodek, K.; Daniel, M.; Svein-Erik, H.; Pierre, B.; José, A.; Jacques, B. An HF bi-phase shift keying radar: Application to ice sounding in Western Alps and Spitsbergen glaciers. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1027–1033. [Google Scholar]
- Rodrigo, Z.; David, U.; Gonzalo, G.; Ronald, M.; José, U.; Jens, W.; Andrés, R.; Guisella, G.; Gino, C. Instruments and Methods Airborne radar sounder for temperate ice: Initial results from Patagonia. J. Glaciol. 2009, 55, 507–512. [Google Scholar]
- Irvine-Fynn, T.D.L.; Moorman, B.J.; Williams, J.L.M.; Walter, F.S.A. Seasonal changes in ground-penetrating radar signature observed at a polythermal glacier, Bylot Island, Canada. Earth Surf. Process. Landf. 2006, 31, 892–909. [Google Scholar] [CrossRef]
- Macheret, Y.Y.; Moskalevsky, M.Y.; Vasilenko, E.V. Velocity of radio waves in glaciers as an indicator of their hydrothermal state, structure and regime. J. Glaciol. 1993, 39, 373–384. [Google Scholar] [CrossRef] [Green Version]
- David, C.N.; Leary, S.F.; Hochstein, M.P.; Henry, S.A. Ground penetrating radar profiles of rubble-covered temperate glaciers: Results from the Tasman and Mueller glaciers of the Southern Alps of New Zealand. In Proceedings of the Annual Conference of the Society of Exploration Geophysicists, Los Angeles, CA, USA, 23–28 October 1994. [Google Scholar]
- Wang, K.; Yang, T.; Shao, W.; He, Y. Remote sensing monitoring on glacier change in the middle of the Alps in Switzerland from 1984 to 2013. Res. Soil Water Conserv. 2015, 22, 301–305. [Google Scholar]
- Zhu, D.; Tian, L.; Wang, J.; Cui, J. The Qiangtang Glacier No.1 in the middle of the Tibetan Plateau: Depth sounded by using GPR and volume estimated. J. Glaciol. Geocryol. 2014, 36, 278–285. [Google Scholar]
- Hausmann, H.; Krainer, K.; Brϋckl, E.; Mostler, W. Internal structure and ice content of Reichenkar rock Glacier (Stubai Alps, Austria) assessed by geophysical investigations. Permafr. Periglac. 2007, 18, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Andrew, G.F.; Joseph, S.W. Water flow through temperate glaciers. Rev. Geophys. 1998, 36, 299–328. [Google Scholar]
- Zhu, M.; Yao, T.; Yang, W.; Tian, L. Ice volume and characteristics of sub-glacial topography of the Zhadang Glacier, Nyainqêntanglha Range. J. Glaciol. 2014, 36, 268–277. [Google Scholar]
- Zhang, T.; Xiao, C.; Qin, X.; Hou, D.; Ding, M. Ice thickness oberservation and landform study of East Rongbu glacier, Mt. Qomolangma. J. Glaciol. Geocryol. 2012, 34, 1059–1066. [Google Scholar]
- Li, Y.; Liu, G.; Cui, Z. The morphological character and paleo-climate indication of the cross section of glacial valleys. J. Basic Sci. Eng. 1999, 7, 163–170. [Google Scholar]
- Su, Z.; Song, G.; Cao, Z. Maritime characteristies of Hailuogou glacier in the Gongga Mountains. J. Glaciol. Geocryol. 1996, 18, 51–59. [Google Scholar]
- Liu, G.; Zhang, Y.; Fu, H.; Chen, Y.; Shi, L. Sedimentary characteristics and subglacial processes of the glacial deposits in Hailuogou glacier, Gongga Mountain. J. Glaciol. Geocryol. 2009, 31, 376–379. [Google Scholar]
- Liu, G.; Chen, Y.; Zhang, Y.; Fu, H. Mineral deformation and subglacial processes on ice–bedrock interface of Hailuogou Glacier. Chin. Sci. Bull. 2009, 54, 3318–3325. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Z.; Yao, T.; Chen, T.; Pang, H.; Zhang, D. Modern changes of the climate and glaciers in China’s monsoonal temperate-glacier region. Acta Geogr. Sin. 2003, 58, 550–558. [Google Scholar]
Temperate Glacier | Location | Meltwater Content in Temperate Glacier | Electromagnetic Wave Propagation Velocity |
---|---|---|---|
Satopanth glacier [17] | Central Himalayas | - | 0.156 ± 0.008 m/ns |
Falljӧkull glacier [18] | Southeast of Iceland | 0.23–0.34% | 0.166 m/ns |
3–4.1% | 0.149 m/ns | ||
2.4–3% | 0.152 m/ns | ||
0.09–0.14% | 0.167 m/ns | ||
Johnsons Glacier [20] | Livingston Island, South Shetland Islands, Antarctica | 0.4–2.3% | 0.157–0.166 m/ns |
Mont-de-Lans glacier [41] | Western of the Alps | 0% | 0.168 m/ns |
1% | 0.150 m/ns | ||
5% | 0.138 m/ns | ||
Tasman and Mueller glaciers [45] | Alps in the southern New Zealand | - | 0.159 m/ns |
Mead | Mean | Root Mean Square | Mean Standardized | Root Mean Square Standardized | Average Standard Error |
---|---|---|---|---|---|
IDW with power p = 2 | 0.005411 | 2.606792 | □ | □ | □ |
Local polynomial | −0.039 | 2.482271 | |||
Ordinary Kriging | 0.000285 | 3.249798 | 0.001485 | 43.99277 | 0.118632 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, S.; He, Y.; Li, Y.; Wang, Y.; Wei, Y.; Che, Y. Estimation of Ice Thickness and the Features of Subglacial Media Detected by Ground Penetrating Radar at the Baishui River Glacier No. 1 in Mt. Yulong, China. Remote Sens. 2020, 12, 4105. https://doi.org/10.3390/rs12244105
Liu J, Wang S, He Y, Li Y, Wang Y, Wei Y, Che Y. Estimation of Ice Thickness and the Features of Subglacial Media Detected by Ground Penetrating Radar at the Baishui River Glacier No. 1 in Mt. Yulong, China. Remote Sensing. 2020; 12(24):4105. https://doi.org/10.3390/rs12244105
Chicago/Turabian StyleLiu, Jing, Shijin Wang, Yuanqing He, Yuqiang Li, Yuzhe Wang, Yanqiang Wei, and Yanjun Che. 2020. "Estimation of Ice Thickness and the Features of Subglacial Media Detected by Ground Penetrating Radar at the Baishui River Glacier No. 1 in Mt. Yulong, China" Remote Sensing 12, no. 24: 4105. https://doi.org/10.3390/rs12244105
APA StyleLiu, J., Wang, S., He, Y., Li, Y., Wang, Y., Wei, Y., & Che, Y. (2020). Estimation of Ice Thickness and the Features of Subglacial Media Detected by Ground Penetrating Radar at the Baishui River Glacier No. 1 in Mt. Yulong, China. Remote Sensing, 12(24), 4105. https://doi.org/10.3390/rs12244105