Mapping Changing Population Distribution on the Qinghai–Tibet Plateau since 2000 with Multi-Temporal Remote Sensing and Point-of-Interest Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Pre-Processing
2.2.1. Demographic Data and Administrative Unit Boundaries
2.2.2. Land Use/Land Cover Data
2.2.3. Geospatial Vector Data
2.2.4. Nighttime Light and Additional Ancillary Data
2.2.5. Other Gridded Population Distribution Datasets
2.3. Methods
2.3.1. Random Forest-Based Dasymetric Population Mapping Approach
2.3.2. Technical Validation and Inter-Comparison
3. Results
3.1. Accuracy Assessment and Inter-Comparison
3.2. Importance of Variables in Explaining Population Density
3.3. Spatio-Temporal Change of Human Population Density on the QTP
4. Discussion
4.1. Advancement Using Town-Level Population Counts in Population Mapping for the QTP
4.2. Effectiveness of Local Population-Sensitive Points-of-Interest (POIs) for Improving Population Mapping in Remote Rural Areas
4.3. Population Growth on the QTP
4.4. Limitations and the Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leyk, S.; Gaughan, A.E.; Adamo, S.B.; de Sherbinin, A.; Balk, D.; Freire, S.; Rose, A.; Stevens, F.R.; Blankespoor, B.; Frye, C.; et al. The spatial allocation of population: A review of large-scale gridded population data products and their fitness for use. Earth Syst. Sci. Data 2019, 11, 1385–1409. [Google Scholar] [CrossRef] [Green Version]
- Small, C.; Cohen, J. Continental Physiography, Climate, and the Global Distribution of Human Population. Curr. Anthropol. 2004, 45, 269–277. [Google Scholar] [CrossRef]
- McGowan, P.J.K. Mapping the terrestrial human footprint. Nature 2016, 537, 172–173. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Concise Report on the World Population Situation 2014. Secretaría de la ONU. D. o. E. a. 2014. p. 2. Available online: https://www.un.org/en/development/desa/population/publications/pdf/trends/Concise%20Report%20on%20the%20World%20Population%20Situation%202014/en.pdf (accessed on 3 December 2020).
- Balk, D.L.; Deichmann, U.; Yetman, G.; Pozzi, F.; Hay, S.I.; Nelson, A. Determining Global Population Distribution: Methods, Applications and Data. Adv. Parasit. 2006, 62, 119–156. [Google Scholar]
- Wardrop, N.A.; Jochem, W.C.; Bird, T.J.; Chamberlain, H.R.; Clarke, D.; Kerr, D.; Bengtsson, L.; Juran, S.; Seaman, V.; Tatem, A.J. Spatially disaggregated population estimates in the absence of national population and housing census data. Proc. Natl. Acad. Sci. USA 2018, 115, 3529–3537. [Google Scholar] [CrossRef] [Green Version]
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e107042. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Zhou, Y.; Wang, S.; Yan, F.; Zhao, Q. Population spatialization in China based on night-time imagery and land use data. Int. J. Remote Sens. 2011, 32, 9599–9620. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, X.; Li, X.; Zhang, J.; Liang, Z.; Mai, K.; Zhang, Y. Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data. Int. J. Geogr. Inf. Sci. 2017, 31, 1220–1244. [Google Scholar] [CrossRef]
- Wu, S.; Qiu, X.; Wang, L. Population Estimation Methods in GIS and Remote Sensing: A Review. GISci. Remote Sens. 2005, 42, 80–96. [Google Scholar] [CrossRef]
- Gaughan, A.E.; Stevens, F.R.; Huang, Z.; Nieves, J.J.; Sorichetta, A.; Lai, S.; Ye, X.; Linard, C.; Hornby, G.M.; Hay, S.I.; et al. Spatiotemporal patterns of population in mainland China, 1990 to 2010. Sci. Data 2016, 3, 160005. [Google Scholar] [CrossRef]
- Doxsey-Whitfield, E.; MacManus, K.; Adamo, S.B.; Pistolesi, L.; Squires, J.; Borkovska, O.; Baptista, S.R. Taking Advantage of the Improved Availability of Census Data: A First Look at the Gridded Population of the World, Version 4. Pap. Appl. Geogr. 2015, 1, 226–234. [Google Scholar] [CrossRef]
- Reed, F.; Gaughan, A.; Stevens, F.; Yetman, G.; Sorichetta, A.; Tatem, A. Gridded Population Maps Informed by Different Built Settlement Products. Data 2018, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Sorichetta, A.; Hornby, G.M.; Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci. Data 2015, 2, 150045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, P. Modeling population density with night-time satellite imagery and GIS. Comput. Environ. Urban Syst. 1997, 21, 227–244. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Li, S.; Xin, L.; Wang, X.; Li, Q.; Li, W.; Li, Y.; Xiang, W. Modeling population density based on nighttime light images and land use data in China. Appl. Geogr. 2018, 90, 239–247. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W. Dasymetric mapping of urban population in China based on radiance corrected DMSP-OLS nighttime light and land cover data. Sci. Total Environ. 2018, 643, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ye, T.; Zhao, N.; Chen, Q.; Yue, W.; Qi, J.; Zeng, B.; Jia, P. Population Mapping with Multisensor Remote Sensing Images and Point-Of-Interest Data. Remote Sens. 2019, 11, 574. [Google Scholar] [CrossRef] [Green Version]
- Bakillah, M.; Liang, S.; Mobasheri, A.; Jokar Arsanjani, J.; Zipf, A. Fine-resolution population mapping using OpenStreetMap points-of-interest. Int. J. Geogr. Inf. Sci. 2014, 28, 1940–1963. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Q.; Zhang, Y.; Du, X. Improving the Accuracy of Fine-Grained Population Mapping Using Population-Sensitive POIs. Remote Sens. 2019, 11, 2502. [Google Scholar] [CrossRef] [Green Version]
- Hoffman-Hall, A.; Loboda, T.V.; Hall, J.V.; Carroll, M.L.; Chen, D. Mapping remote rural settlements at 30 m spatial resolution using geospatial data-fusion. Remote Sens. Environ. 2019, 233, 111386. [Google Scholar] [CrossRef]
- Miehe, G.; Schleuss, P.; Seeber, E.; Babel, W.; Biermann, T.; Braendle, M.; Chen, F.; Coners, H.; Foken, T.; Gerken, T.; et al. The Kobresia pygmaea ecosystem of the Tibetan highlands-Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem. Sci. Total Environ. 2019, 648, 754–771. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, D.; Tandong, Y.; Zhang, Y. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr. Sin. 2012, 1, 12–13. [Google Scholar]
- Wang, C.; Kan, A.; Zeng, Y.; Li, G.; Wang, M.; Ci, R. Population distribution pattern and influencing factors in Tibet based on random forest model. Acta Geogr. Sin. 2019, 74, 664–680. [Google Scholar]
- Shunbao, L.; Zehui, L. Study on spatialization of population census data based on relationship between population distribution and land use: Taking Tibet as an example. J. Nat. Resour. 2003, 18, 659–665. [Google Scholar]
- Li, S.; Zhang, Y.; Wang, Z.; Li, L. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosyst. Serv. 2018, 30, 276–286. [Google Scholar] [CrossRef]
- Nan, D.; Xiaohuan, Y.; Hongyan, C. Research progress and perspective on the spatialization of population data. J. Geo -Inform. Sci. 2016, 18, 1295–1304. [Google Scholar]
- Bai, Z.; Wang, J.; Wang, M.; Gao, M.; Sun, J. Accuracy Assessment of Multi-Source Gridded Population Distribution Datasets in China. Sustainability 2018, 10, 1363. [Google Scholar] [CrossRef] [Green Version]
- Linard, C.; Kabaria, C.W.; Gilbert, M.; Tatem, A.J.; Gaughan, A.E.; Stevens, F.R.; Sorichetta, A.; Noor, A.M.; Snow, R.W. Modelling changing population distributions: An example of the Kenyan Coast, 1979–2009. Int. J. Digit. Earth 2017, 10, 1017–1029. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Song, B.; Chen, Y.; Yan, H.; Xu, Z. Analysis of Population Distribution and Its Spatial Relationship with Terrain Elements in the Yarlung Zangbo River, Nyangqu River and Lhasa River Region, Tibet. J. Geo -Inform. Sci. 2017, 19, 225–237. [Google Scholar]
- Chen, F.; Welker, F.; Shen, C.; Bailey, S.E.; Bergmann, I.; Davis, S.; Xia, H.; Wang, H.; Fischer, R.; Freidline, S.E.; et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 2019, 569, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.R.; Venter, O.; Watson, J.E.M. Temporally inter-comparable maps of terrestrial wilderness and the Last of the Wild. Sci. Data 2017, 4, 170187. [Google Scholar] [CrossRef]
- Nieves, J.J.; Stevens, F.R.; Gaughan, A.E.; Linard, C.; Sorichetta, A.; Hornby, G.; Patel, N.N.; Tatem, A.J. Examining the correlates and drivers of human population distributions across low- and middle-income countries. J. R. Soc. Interface 2017, 14, 20170401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, N.N.; Stevens, F.R.; Huang, Z.; Gaughan, A.E.; Elyazar, I.; Tatem, A.J. Improving Large Area Population Mapping Using Geotweet Densities. Trans. GIS 2017, 21, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Wang, J.; Yang, Y.; Sun, J. Characterizing spatial patterns of population distribution at township level across the 25 provinces in China. Acta Geogr. Sin. 2015, 70, 1229–1242. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Kuang, W. A 30-m resolution national urban land-cover dataset of China, 2000–2015. Earth Syst. Sci. Data Discuss. 2019, 1–33. Available online: https://essd.copernicus.org/preprints/essd-2019-65/essd-2019-65.pdf (accessed on 3 December 2020).
- Ye, T.; Zhao, N.; Yang, X.; Ouyang, Z.; Liu, X.; Chen, Q.; Hu, K.; Yue, W.; Qi, J.; Li, Z.; et al. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Sci. Total Environ. 2019, 658, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance Calibration of DMSP-OLS Low-Light Imaging Data of Human Settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. UK 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzk-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Xu, X. China Population Spatial Distribution Kilometer Grid Dataset. In Data Registration and Publishing System of Resource and Environmental Science Data Center of Chinese Academy of Sciences; 2017; Available online: http://www.resdc.cn/DOI/DOI.aspx?DOIid=32. (accessed on 3 December 2020).
- Fu, J.Y.; Jiang, D.; Huang, Y.H. 1-km Gridded Population Dataset of China (2005, 2010). Glob. Chang. Res. Data Publ. Repos. 2014. [Google Scholar] [CrossRef]
- Gaughan, A.E.; Stevens, F.R.; Linard, C.; Patel, N.N.; Tatem, A.J. Exploring nationally and regionally defined models for large area population mapping. Int. J. Digit. Earth 2016, 8, 989–1006. [Google Scholar] [CrossRef]
- Lloyd, C.T.; Chamberlain, H.; Kerr, D.; Yetman, G.; Pistolesi, L.; Stevens, F.R.; Gaughan, A.E.; Nieves, J.J.; Hornby, G.; MacManus, K.; et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 2019, 3, 108–139. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 1–5. [Google Scholar]
- Liaw, A.W.M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Zoraghein, H.; Leyk, S. Data-enriched interpolation for temporally consistent population compositions. GISci. Remote Sens. 2018, 56, 430–461. [Google Scholar] [CrossRef]
- Liao, S.; Sun, J. GIS based spatialization of population census data in Qinghai-Tibet Plateau. Acta Geogr. Sin. 2003, 58, 25–33. [Google Scholar]
- Qi, W.; Liu, S.; Zhou, L. Regional differentiation of population in Tibetan Plateau: Insight from the “Hu Line”. Acta Geogr. Sin. 2020, 75, 255–267. [Google Scholar]
- Zhang, Y.; Hu, Z.; Qi, W.; Wu, X.; Bai, W.; Li, L.; Ding, M.; Liu, L.; Wang, Z.; Zheng, D. Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method. J. Geogr. Sci. 2016, 26, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Liu, Y.; Zhang, R.; Fu, B. China’s population spatialization based on three machine learning models. J. Clean. Prod. 2020, 256, 120644. [Google Scholar] [CrossRef]
Ancillary Dataset (Source) | Default Derived Covariate | Temporal Coverage | Type | Resolution | Format |
---|---|---|---|---|---|
Land use/land cover data | 1980s–2015 | Categorical | 30 m | Raster | |
Percentage of Cultivated areas | 2000, 2010, 2015 | Continuous | 1000 m | Raster | |
Percentage of Forest areas | 2000, 2010, 2015 | Continuous | 1000 m | Raster | |
Percentage of Grassland areas | 2000, 2010, 2015 | Continuous | 1000 m | Raster | |
Percentage of Water bodies | 2000, 2010, 2015 | Continuous | 1000 m | Raster | |
Percentage of Build-up areas | 2000, 2010, 2015 | Continuous | 1000 m | Raster | |
Percentage of Mining areas | 2000, 2010, 2015 | Continuous | 1000 m | Raster | |
Percentage of Bare areas | 2000, 2010, 2015 | Continuous | 1000 m | Raster | |
Geospatial Data | Categorical | Vector | |||
Distance to Villages | 2000, 2012, 2016 | Continuous | 1000 m | Raster | |
Distance to Hospital and Clinics | 2012, 2016 | Continuous | 1000 m | Raster | |
Distance to Schools | 2012, 2016 | Continuous | 1000 m | Raster | |
Distance to Temples | 2012, 2016 | Continuous | 1000 m | Raster | |
Distance to Tourist destinations | 2012, 2016 | Continuous | 1000 m | Raster | |
Distance to Road | 2000, 2012, 2016 | Continuous | 1000 m | Raster | |
Density of Villages | 2000, 2012, 2016 | Continuous | 1000 m | Raster | |
Density of Hospital and Clinics | 2012, 2016 | Continuous | 1000 m | Raster | |
Density of School | 2012, 2016 | Continuous | 1000 m | Raster | |
Density of Government agencies | 2012, 2016 | Continuous | 1000 m | Raster | |
Density of Tourist destinations | 2012, 2016 | Continuous | 1000 m | Raster | |
DMSP/OLS, NPP/VIIRS | 1992–2013/2013–2020 | Continuous | 15/30 arc-seconds | Raster | |
Night-lights’ intensity | 2000, 2010, 2016 | Continuous | 1000 m | Raster | |
DEM data | Continuous | 1000 m | Raster | ||
Elevation | Continuous | 1000 m | Raster | ||
Slope | Continuous | 1000 m | Raster | ||
NDVI | 2000–2016 | Continuous | 1000 m | Raster | |
Growing season NDVI | Average value | Continuous | 1000 m | Raster | |
Climate dataset | 2000–2016 | tabular | |||
Growing season temperature | Average value | Continuous | 1000 m | Raster | |
Growing season precipitation | Average value | Continuous | 1000 m | Raster |
Datasets | Data Source | Scales | Spatial Resolution | Modeling | References |
---|---|---|---|---|---|
CnPop1 | http://www.resdc.cn/DOI/doi.aspx?DOIid=32 | Mainland China | 1000 m | Multivariate regression | [43] |
CnPop2 | http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=131 | Mainland China | 1000 m | Multivariate regression | [44] |
CnPop3 | https://doi.org/10.7910/DVN/8HHUDG | Mainland China | ~100 m | RF | [11] |
GPW v4 | http://sedac.ciesin.columbia.edu/data/collection/gpw-v4/ | Global | 1000 m | Areal-weighting | [12] |
WorldPop | https://www.worldpop.org/doi/10.5258/SOTON/WP00645 | Global | ~100 m | RF | [7] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, Y.; Liu, L.; Wang, Z.; Zhang, H.; Li, S.; Ding, M. Mapping Changing Population Distribution on the Qinghai–Tibet Plateau since 2000 with Multi-Temporal Remote Sensing and Point-of-Interest Data. Remote Sens. 2020, 12, 4059. https://doi.org/10.3390/rs12244059
Li L, Zhang Y, Liu L, Wang Z, Zhang H, Li S, Ding M. Mapping Changing Population Distribution on the Qinghai–Tibet Plateau since 2000 with Multi-Temporal Remote Sensing and Point-of-Interest Data. Remote Sensing. 2020; 12(24):4059. https://doi.org/10.3390/rs12244059
Chicago/Turabian StyleLi, Lanhui, Yili Zhang, Linshan Liu, Zhaofeng Wang, Huamin Zhang, Shicheng Li, and Mingjun Ding. 2020. "Mapping Changing Population Distribution on the Qinghai–Tibet Plateau since 2000 with Multi-Temporal Remote Sensing and Point-of-Interest Data" Remote Sensing 12, no. 24: 4059. https://doi.org/10.3390/rs12244059
APA StyleLi, L., Zhang, Y., Liu, L., Wang, Z., Zhang, H., Li, S., & Ding, M. (2020). Mapping Changing Population Distribution on the Qinghai–Tibet Plateau since 2000 with Multi-Temporal Remote Sensing and Point-of-Interest Data. Remote Sensing, 12(24), 4059. https://doi.org/10.3390/rs12244059