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Abstract: The spatial distribution of humans on the earth is critical knowledge that informs many
disciplines and is available in a spatially explicit manner through gridded population techniques.
While many approaches exist to produce specialized gridded population maps, little has been done
to explore how remotely sensed, built-area datasets might be used to dasymetrically constrain these
estimates. This study presents the effectiveness of three different high-resolution built area datasets
for producing gridded population estimates through the dasymetric disaggregation of census counts
in Haiti, Malawi, Madagascar, Nepal, Rwanda, and Thailand. Modeling techniques include a binary
dasymetric redistribution, a random forest with a dasymetric component, and a hybrid of the previous
two. The relative merits of these approaches and the data are discussed with regards to studying
human populations and related spatially explicit phenomena. Results showed that the accuracy of
random forest and hybrid models was comparable in five of six countries.

Dataset: doi:10.5258/SOTON/WP00643

Dataset License: CC-BY-4.0

Keywords: gridded population distribution; geography; built areas; remote sensing; geographic
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1. Summary

As of 2017, the global human population is estimated to be near 7.6 billion, demonstrating a global
population growth of roughly 200 million since 2015 [1]. By 2050, the human population is estimated
to increase by at least 2 billion, with the largest global population growth per continent in Africa and
Asia [1]. This change is implicitly associated with increasing rates of urbanization, which are seen most
prominently in highly populated low- and middle-income countries, which together account for 37%
of projected population growth into 2050 [2]. These global patterns of population change highlight the
need for spatially explicit and comparable high-resolution gridded population datasets that accurately
depict the spatial distribution of the residential human population and inform many fields, including
infectious disease assessment [3–5], disaster response [6], adaptive strategies towards climate change
mitigation [7,8] and many of the Millennium Development Goals [9]. This need is met by a broad
variety of gridded population techniques.
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However, gridded population techniques vary greatly in their methods, ancillary inputs,
complexity, and resolution of interest [10]. Generally, gridded population techniques can be categorized
into top-down and bottom-up approaches, wherein bottom-up approaches refer to calculating
population size from ancillary data, whereas top-down estimates start with census data and try to
disaggregate population further within units. Among the most straightforward top-down approaches
are areal weighting, in which population is distributed uniformly across a continuous surface, as used
in the Gridded Population of the World (GPW) v2-4 [11–13]. A modification of this technique called
pycnophylactic interpolation proportionately distributes population along the edges of administrative
units, as applied in GPW v1 [14]. A dasymetric mapping approach refines estimates by distributing
population onto a weighted ancillary feature classification [15,16], as seen in the Global Rural Urban
Mapping Project (GRUMP) and AfriPop and AsiaPop projects [4,5]. Dasymetric approaches have also
been constrained in some cases to limit redistribution to certain areas and exclude it from others using
a mask (i.e., binary features of land cover class, etc.) [16,17]. The most statistically advanced models of
population redistribution are classified as smart interpolation [18], in which extensive ancillary inputs
such as night-time lights, land cover, and topography provide a weighting scheme to redistribute
population counts proportional to weights at grid-cell level [6,10,19]. In most cases, weighting layers
are then used in dasymetric redistribution to constrain the total count within a known area, such as an
administrative or census unit, to a population count for that areal unit [20]. While these methods are
preferable for supporting disaster response and health applications, other non-modelled datasets such
as GPW are still preferable for exploring the relationships between covariates [21]. Each method is
used and demonstrates distinct strengths and weaknesses dependent on the objective of the study,
the scale of the analysis, and data availability.

This paper presents the results of three different modeling approaches using three different
high-resolution built-area datasets. Population was disaggregated using a representative selection
of low- to middle-income countries, chosen for their high number of recent census administrative
units, availability of ancillary inputs, and frequent exclusion from methods applied in higher income
countries. The nine different gridded population datasets are available for six different countries for a
total of 54 datasets at three arc second resolutions (~100 m at the equator).

2. Data Description

This dataset provides a set of 54 different high-resolution, gridded population raters produced for
the purposes of methodological and built area data product comparison. Gridded products represent
population as people per pixel (ppp) at ~100 m resolution for recent census years in select countries.
This includes Madagascar, Rwanda, and Malawi from Africa, Nepal, and Thailand from Southeast
Asia, and Haiti from the Caribbean. The gridded population datasets depict population distribution
under the constraints of 3 different approaches explored in Table 3. Population estimates are presented
in GeoTIFF format along with corresponding metadata, covariate importance, explanations of variance,
and model accuracy assessment where appropriate. Examples of model outputs are previewed in
Figure 4.

3. Methods

3.1. Preprocessing of Input Data

3.1.1. Census Data

We use census data that represents the finest spatial resolution and most contemporary data that
were publically available at the time of analysis. Retrieval of census data is made on request from
country-specific National Statistics Offices. Census data are then matched to a country-specific GIS
administrative level from GDAM (https://gadm.org/index.html) that is specific to the region and
not comparable to units of the same level in different countries (Table 1) [22]. To ensure a level of
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comparability between countries, the Average Spatial Resolution (ASR) was calculated as the square
root of its surface area divided by the number of administrative units, representing the effective
resolution units within the country [4]. All models were run using a 2/3 aggregate of the finest
available census data, in which a 1/3 random selection of units was dissolved with the neighbor
sharing the longest border, as outlined in Figure 1.

Table 1. Census data for the six sampled countries and supporting data for finest available and
aggregate products. Each model is built using the aggregate data, while finest available census units
are reserved for accuracy assessment.

Type Country ISO Census Year (Adm. Lvl.) Admin Units Total Pop ASR

Finest Available Haiti HTI 2015 (3) 570 10,911,819 6.9
Madagascar MDG 2006 (4) 17,459 20,966,899 5.8

Malawi MWI 2008 (3) 12,666 13,053,968 2.7
Nepal NPL 2011 (4) 36,042 26,246,586 2.0

Rwanda RWA 2002 (4) 9192 9,482,511 1.7
Thailand THA 2010 (3) 7416 64,978,504 8.3

2/3 Aggregate Haiti HTI 2015 380 10,911,819 8.4
Madagascar MDG 2006 11,639 20,966,899 7.1

Malawi MWI 2008 8444 13,053,968 3.4
Nepal NPL 2011 24,028 26,246,586 2.5

Rwanda RWA 2002 6128 9,482,511 2.0
Thailand THA 2010 4944 64,978,504 10.2
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Figure 1. Census unit aggregation procedure in which 1/3 of the finest available units are randomly
selected independent of spatial size or any other stratification and merged with its neighbor with the
longest shared border until the target 2/3 census count is reached.

3.1.2. Built Area Data

For the purposes of this study, the term Built Area is used to describe both urban and built-up
datasets, all of which are assumed to be indicative of human settlement. To test the effectiveness
of combined dasymetric and random forest methods, we chose three built area datasets obtained
using different remote sensing techniques with different spatial resolutions and criteria under which
built-area is sensed. These publically available datasets include World Settlement Footprint (WSF),
Global Human Settlement Layer (GHSL), and the Facebook Connectivity Lab’s High-Resolution
Settlement Layer (HRSL) (Table 2).

Table 2. Three primary built/human settlement datasets and supporting information. GHSL and HRSL
datasets are accessible from their respective portals, while WSF is available upon request [23].

Built Dataset Year Source Nominal Resolution Citation

WSF 2015 Landsat 8,
Sentinel1 10 m [24]

GHSL 2014 Landsat 8 38 m [25]
HRSL 2015 DigitalGlobe 0.5 m [26]
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The first, World Settlement Footprint (WSF), represents a global coverage of earth’s land surface
from the German Space Agency (DLR) Earth Observation Center based on Landsat 8 and Sentinel
1 optical and radar imagery for 2014–2015. The initial dataset was retrieved through personal
communication with Thomas Esch and Mattia Marconcini and represents an initial version prior to
public release [23,27]. Second, the Global Human Settlement Layer (GHSL) represents a global built-up
dataset that focuses on three primary products: built-up areas, population grids, and urban/rural
classification. The derived built area classifications use a combination of supervised and unsupervised
procedures on the panchromatic channel of Landsat 8. Three land cover types are identified over
four primary epochs, as informed by ancillary data from GHSL partners [25]. The global GHSL
product is available on a global scale through the European Joint Research Center [28]. For the
Facebook Connectivity Lab population product, distribution is determined using a combination of
supervised classification and computer vision techniques on composited DigitalGlobe imagery [29].
Population distribution products may be downloaded for a limited number of countries as GeoTIFFs
from CIESIN/FCL’s associated High Resolution Settlement Layer (HRSL) project [26]. It is worth
noting that the proposed built datasets make no distinction between residential and commercial
features, as limited by their remotely sensed methodology.

3.1.3. Additional Ancillary Data

A wide range of ancillary data are used as explanatory variables of the random regression forest
used in Models 2 and 3, as outlined in Table 3. While the most recent and detailed covariates will
produce the best models [20], the best data is often regional and not consistently available across the
study area. Thus, the ancillary data products used represent readily available, high-quality data that
was present for all countries. Three types of covariate data include categorical rasters, continuous
rasters, and converted vector data as outlined in Table 4.

Table 3. Model enumeration and brief descriptions, indicating the number of resulting maps and built
area restrictions. Ordered by increasing complexity.

Model Name Description Raster Type Output Maps

1 Binary Dasymetric Redistribution of population into built areas. Built Area Restricted 24
2 Random Forest + Dasymetric Redistribution of population across weighted surface. Continuous 6
3 Hybrid Redistribution of population into weighted built areas. Built Area Restricted 24

Table 4. Covariates and data sources included in the random forest. Nominal resolutions noted with
‘as’ represent the unit arcseconds.

Description Data Source, Year Nominal Resolution Citation

C
at

eg
or

ic
al

Cultivated Terrestrial Lands

ESA CCI Land cover, 2010 10 arc-second

[30]
Woody/Trees

Shrubs
Herbaceous

Other Terrestrial Vegetation
Aquatic Vegetation

Urban Area
Bare Area

Waterbodies

C
on

ti
nu

ou
s

R
as

te
r Lights at Night Suomi VIIRS-Derived, 2012 15 arc-second [31]

Mean Temperature WorldClim/BioClim, 1950–2000 30 arc-second [32]
Mean Precipitation WorldClim/BioClim, 1950–2000 30 arc-second

Elevation HydroSHEDS, 2000 3 arc-second [33]
Slope HydroSHEDS, 2000

Built Distance to Outer Edge WSF, 2015 10 m [24]
Built Distance to Outer Edge GHSL, 2014 38 m [25]
Built Distance to Outer Edge HRSL, 2015 5 m [26]

C
on

ve
rt

ed
V

ec
to

r Generic Populated Places VMAP0 merged, 1979–1999 NA [34]
Distance to Protected Areas WDPA, IUCN, 2012 [35]

Distance to Roads OSM, 2017 [36]
Distance to Rivers/Streams OSM, 2017

Distance to Waterbodies OSM, 2017
Cities OSM, 2017

Villages OSM, 2017
Buildings OSM, 2017
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3.2. Data Production Workflow

The following section outlines the open-access archive of comparable, high-resolution datasets of
gridded population distribution for the countries of Haiti (HTI), Madagascar (MDG), Malawi (MWI),
Rwanda (RWA), Nepal (NPL), and Thailand (THA). These countries represent criteria of comparable
human distribution, heterogeneous land-cover types, and diverse continental representation. Figure 2
highlights the production of population estimates from the three models, broadly categorized into
five stages.
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The approach utilized here is adapted from published WorldPop random forest methodology
that has been altered to suit this study needs [20]. For an in-depth analysis of programmatic operation,
please refer to the procedural documents stored in [37]. The methods and scripts presented in this
paper are from R 3.4.1, Python 2.7.8, and ESRI ArcMap 10.3.1.

The covariate selection and data preparation step has three primary phases of preparation,
including built data processing, covariate standardization, and hydrofeature mask creation.

First, we process the three built areas mentioned in Table 2 into binary built feature classifications.
Resampling via presence/non-presence occurs on the binary masks to create a consistent ~100 m
resolution and standardized projection (WGS 84 geographic coordinate system) prior to model
application. It is worth noting that the described preparation here applies only for those built areas
that will be used to constrain the binary dasymetric and hybrid models (Table 3, Figure 3), and that
remaining covariates are manipulated in the parameterization of the random forest model, as described
in Forrest et al. 2015 [20]. In addition to the independent built area layers, a fourth built area layer
representing a combination of WSF, GHSL, and HRSL datasets provided a final dataset for comparison.
By combining all built features, we increase the chance of false positives but simultaneously minimize
errors of omission present in other built products.
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Next, we cluster covariates into three groups depending on their subsequent transformations
(Table 4). For example, the multi-class ESA land cover product classifications were separated
into individual feature types and transformed using a distance to outer edge (DTE) calculation in
ArcMap [30]. To produce the DTE covariate, the target feature is loaded at ~100 m resolution, refined
to show the feature class in question if multiple classifications are present and re-projected to a region
specific UTM. The same distance to outer edge calculation was also used in the preparation of the
primary built areas as specified in Table 4. Final covariates products match in regional extent, spatial
resolution (100 m resolution), and country-specific UTM projection.

The last component is generating a hydrofeatures mask based on the European Space Agency’s
land use classification product [30] and processed as a binary raster with an 8 km buffer. By including
sufficiently over-estimated borders, we ensure the combined extent of all stacked covariates will be
identical and exclude additional features that might occur within the buffered boundary. The mask
also acts to exclude a consistent representation of water features across the covariate stack. This is
necessary, because while the study area is artificially bounded, the processes are not [38].

3.3. Model Types and Construction

We use three different models and the four built area configurations across six different countries
to produce 54 models (Table 3). The first model type (Model 1, Figure 3) represents a simple binary
dasymetric approach, in which census counts are disaggregated into pixels coincident with built areas
defined by a given built product. To address the issue of census units with no built pixels, an iterative
set of selections and redistributions mitigate the potential of under-estimating the population [37].
Figure 4, Model 1, demonstrates the visible boundary of built area constraint, in addition to the visible
difference in population along administrative unit boundaries.
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Figure 4. An example of the three primary model types and the rasters they produce for Kigali, Rwanda.
Pictured built area extent on models 1 and 3 is the combination layer described in Section 3.1.2.

The second model (Model 2, Figure 3) creates a population density-weighting surface based on a
random forest (RF) statistical model, which is explained further in Stevens et al. 2015 [20]. RFs are
robust to noise, small sample sizes, and over-fitting, requiring minimal user parameterization [39,
40]. The three primary parameters include the number of covariates to be selected at each node,
the number of trees in the forest, and the number of observations allowed in the terminal nodes of
each decision tree [39]. Specifically, for the approach outlined in Reed et al. [41], we generated a forest
of 500 individual trees, based on the results of multiple experimental runs to produce stable and
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minimized out-of-bag error predictions [37]. The RF model produces a population density estimation
grid used to dasymetrically redistribute the population counts across the entire continuous weighting
layer. Figure 4, Model 2 demonstrates no visible boundary of built area constraint and shows no stark
boundaries between census administrative units.

Last, the third model (Model 3, Figure 3) uses the population density-weighting surface generated
in Model 2 but restricts the redistribution of census data to built area grid cells. In doing so, areas
excluded from the built classification are given a population count of 0, constraining where people can
be located while maintaining the predictive detail of the random forest (Figure 2). Figure 4, Model 3
shows the same patterning in Model 2 but with the built area distributional constraints of Model 1.

3.4. Technical Validation

To assess the accuracy of each model, population based on a two-thirds aggregate of available
administrative units at the finest level was resampled in Python 2.7.8 by dissolving boundaries with the
longest shared border, sorted randomly without spatial consideration. These final mapping products
are then compared to the finest level of census data available for a given country by summing gridded
population estimates within each administrative unit [20]. The statistical measures include the root
mean squared error (RMSE), percent root mean squared error (%RMSE), and the mean absolute error
(MAE) [42].

3.5. Assessment of Gridded Population Datasets

Accuracy assessment of each map featured a suite of error metrics, including the RMSE and MAE
for both population counts and density. Results show a consistent decrease in error relative to model
complexity, with a few exceptions (Table 5). Those exceptions, as well as variation in accuracy for
the more complex approaches, is ultimately dependent on the quality of the underlying RF model,
which is a function of the nominal resolution captured by input census data and covariates.

The random forest model that produces the population density-weighting layer for the RF and
Hybrid approaches has a variance explained for each country noted in Table 6. The variance explained
fell consistently between 72.3% and 84.5%. The only exception was Haiti, where only 52.4% of variance
could be explained due to an already low number of large census administrative units, which is known
to decrease the predictive capacity of the models (Table 6) [12,20,43]. In terms of covariate importance,
the HRSL built area delineations had the greatest covariate importance across all countries (Figure 5).
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Table 5. Error metrics for each of the 52 maps. Tables are shaded to indicate increasing methodological complexity. Values highlighted in red represent minimum error.
Labeled as follows a: Haiti, b: Madagascar, c: Malawi, d: Nepal, e: Rwanda, f: Thailand.

Model Built Area RMSE MAE RMSE Density MAE Density Model Built Area RMSE MAE RMSE Density MAE Density

(a) Dasymetric
Masked HRSL 12861.2 3281 8.1 1.6

H
ai

ti

(b) Dasymetric
Masked HRSL 777.4 245.9 32.9 3.9

M
ad

ag
as

ca
rDasymetric

Masked GHSL 13733.9 4807.7 8.5 2.1 Dasymetric
Masked GHSL 1142.1 401 33.5 4.8

Dasymetric
Masked WSF 12206.1 4051.2 8.3 1.8 Dasymetric

Masked WSF 887.4 371.6 34.3 4.3

Dasymetric
Masked COMBO 13148.8 3341.2 8.3 1.6 Dasymetric

Masked COMBO 835.1 252.9 36.1 4.3

Random Forest +
Dasymetric 11083.9 3021.8 7.3 1.5 Random Forest +

Dasymetric 934.5 287.9 37.6 4.7

Hybrid HRSL 11935.6 3061.9 7.9 1.5 Hybrid HRSL 727.2 256.6 37.1 3.9
Hybrid GHSL 12823.1 4779 8.1 2 Hybrid GHSL 1130.1 403.3 33.1 4.8
Hybrid WSF 12267.5 4548.4 8.1 2 Hybrid WSF 897.2 380.4 33.7 4.3
Hybrid COMBO 11897.6 3116.8 7.9 1.5 Hybrid COMBO 782.4 271.4 39.3 4.2

(c) Dasymetric
Masked HRSL 549.1 225.2 31.1 5

M
al

aw
i

(d) Dasymetric
Masked HRSL 456.3 176.2 22 3.7

N
ep

al

Dasymetric
Masked GHSL 722.5 337.9 28 5.5 Dasymetric

Masked GHSL 638.2 205 27.4 4.6

Dasymetric
Masked WSF 700.5 345 27.5 5.4 Dasymetric

Masked WSF 533 217.8 23.6 4.4

Dasymetric
Masked COMBO 615.4 238.3 30.4 5.3 Dasymetric

Masked COMBO 452 173.6 21.9 3.7

Random Forest +
Dasymetric 567.6 213.6 27.7 4.8 Random Forest +

Dasymetric 412.5 140.8 21.8 3.4

Hybrid HRSL 529 233.7 30.2 4.9 Hybrid HRSL 452.6 186.7 22.4 3.9
Hybrid GHSL 699.1 340.5 27.1 5.5 Hybrid GHSL 645.5 209 27.6 4.6
Hybrid WSF 705.9 354.3 27.1 5.5 Hybrid WSF 540.1 224.5 23.9 4.6
Hybrid COMBO 545.3 236.2 28.5 4.9 Hybrid COMBO 448.5 185.2 21.9 3.8

(e) Dasymetric
Masked HRSL 390.9 146.7 11.3 1.7

R
w

an
da

(f) Dasymetric
Masked HRSL 4040.9 1160.3 9.8 1.5

T
ha

il
an

d

Dasymetric
Masked GHSL 593.3 286.3 11.7 2.7 Dasymetric

Masked GHSL 4048.7 1493.2 9 1.5

Dasymetric
Masked WSF 575.1 271.7 11.9 2.7 Dasymetric

Masked WSF 3986.7 1208.1 9.4 1.5

Dasymetric
Masked COMBO 398.9 149.1 11.5 1.7 Dasymetric

Masked COMBO 4257.1 1183.5 10.9 1.6

Random Forest +
Dasymetric 343.4 110.3 11.1 1.4 Random Forest +

Dasymetric 3802.9 1139.5 9.9 1.4

Hybrid HRSL 376.3 153.2 10.7 1.7 Hybrid HRSL 3697.2 1278.9 8.6 1.3
Hybrid GHSL 595.7 291.4 11.4 2.7 Hybrid GHSL 4279 1789 8.3 1.6
Hybrid WSF 579 273.9 11.6 2.7 Hybrid WSF 3932.4 1462.8 8.3 1.4
Hybrid COMBO 386.1 157.7 11 1.7 Hybrid COMBO 3809.1 1299.5 9.6 1.4
Model Built Area RMSE MAE RMSE Density MAE Density Model Built Area RMSE MAE RMSE Density MAE Density
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Table 6. Variance explained captured in the random forest models of each sampled country.

Country Variance Explained Country Variance Explained

Haiti 52.4 Nepal 82.12
Madagascar 78.96 Thailand 84.49

Malawi 72.27 Rwanda 73.07

4. User Notes

The datasets presented in this paper facilitate comparisons and considerations of different
approaches to the production of gridded population data. When producing such data, it is worth
assessing the underlying built data and associated population densities to assess whether a binary
dasymetric or hybrid approach may be more appropriate than statistical or smart interpolation models.
The datasets presented here are endogenous and should not be used to explore relationships and
correlations between the ancillary datasets and the resulting population distribution [4]. Please
see Reed et al. for a full analysis of environmental queues for population model selection [41].
The provided dataset is limited by the ~100 m spatial resolution, which does not represent the same
pattern at alternate scales. Additionally, all built areas were resampled from their finest available
product by presence/non-presence and are not representative of spatial grain at the time of sensing.
Finally, model results are limited by the quality of inputs and are expected to perform more accurately
if parameterized with the finest available census data and regionally specified covariates. Processing
times for each model were dependent on computing architecture, the area of the country covered
that determines the memory demands for processing the rasters, and the total number of areal units
processed during zonal statistics calculations. The processing time, however, is also highly dependent
on the number of parallel processing units available. Both the model estimation for Random Forests
and the per-pixel predictions can be highly parallelized, allowing for total processing times to scale
directly with computing resources.

Supplementary Materials: The full body of WorldPop processing is associated with the Stevens et al.
publication [20] and a more in-depth analysis of these specific products is outlined in Reed et al., in review.
Scripts written for dasymetric models and documentation can be found at the corresponding DOI, which may be
explored by selecting ‘Browse Individual Files’ at the base of the page [37].
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