Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurement of Soil Apparent Electrical Conductivity
2.3. Soil Sampling and Analysis
2.4. Model Construction and Evaluation
2.5. Spatial Interpolation and Mapping
3. Results
3.1. Predictive Relationship between ECe and ECa
3.2. Temporal Variation of Soil Salinity
3.3. Spatio-Temporal of Distribution of Soil Electrical Conductivity in Three Dimensions
3.4. Soil Salinization Areas at Different Periods
4. Discussion
4.1. Model Performance
4.2. Controlled Factors of Soil Secondary Salinization
4.3. Impacts of Precision Agriculture on Crop Yields and the Environment
5. Conclusions
- (1)
- The inversion model showed very good performance for estimating the soil apparent conductivity with R2 ranging between 0.824 and 0.994.
- (2)
- The soil electrical conductivity showed strong spatio-temporal variations. because of strong root activity and evaporation demand from environmental forcing, surface soil layer (0–20) exhibited moderate variability while other soil layers exhibited strong variability. After the cotton was harvested on 27 October, the variability in soil electrical conductivity became stable.
- (3)
- After winter irrigation, the salt content was low, and the salts were uniformly distributed in the soil profile. After cotton sowing, salts were mainly accumulated in soil within the surface 0–40 cm depth. The main factors affecting the soil salt content and its distribution in different periods in the study area were irrigation, groundwater depth, degree of groundwater salinity, temperature, and the mulching plastic film.
- (4)
- The 3D-IDW interpolation method showed good accuracy in predicting three-dimensional spatio-temporal variability of soil conductivity multiple times, and the R2 varied between 0.76 and 0.77.
Author Contributions
Funding
Conflicts of Interest
References
- Hossain, M.S. Present Scenario of Global Salt Affected Soils, its Management and Importance of Salinity Research. Int. Res. J. Biol. Sci. 2019, 1, 1–3. [Google Scholar]
- Wicke, B.; Smeets, E.; Dornburg, V.; Vashev, B.; Gaiser, T.; Turkenburg, W.; Faaij, A. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci. 2011, 4, 2669–2681. [Google Scholar] [CrossRef] [Green Version]
- Massoud, F.I. Salt Affected Soils at a Global Scale and Concepts for Control; FAO Land and Water Development Division, Technical Paper; Food and Agriculture Organization of the United Nations, FAO: Rome, Italy, 1981; p. 21. [Google Scholar]
- Fitzpatrick, R.W.; Merry, R.; Cox, J. What are saline soils and what happens when they are drained? J. Austral. Assoc. Nat. Res. Manag. 2000, 6, 26–30. [Google Scholar]
- Corwin, D.L.; Scudiero, E. Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. Adv. Agron. 2019, 158, 1–130. [Google Scholar]
- Chang, C.; Laird, D.A. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 2002, 167, 110–116. [Google Scholar] [CrossRef]
- Shepherd, K.D.; Walsh, M.G. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 2002, 66, 988–998. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Ingvalson, R.D. Determining salinity in field soils with soil resistance measurements. Soil Sci. Soc. Am. J. 1971, 35, 54–60. [Google Scholar] [CrossRef]
- Rhoades, J.D.; van Schilfgaarde, J. An Electrical Conductivity Probe for Determining Soil Salinity. Soil Sci. Soc. Am. J. 1976, 40, 647–651. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Lesch, S.M.; LeMert, R.D.; Alves, W.J. Assessing irrigation/drainage/salinity management using spatially referenced salinity measurements. Agric. Water Manag. 1997, 35, 147–165. [Google Scholar] [CrossRef]
- Yao, R.; Yang, J.; Liu, G. Calibration of soil electromagnetic conductivity in inverted salinity profiles with an integration method. Pedosphere 2007, 17, 246–256. [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.; Zhao, R.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Gorji, T.; Yildirim, A.; Hamzehpour, N.; Tanik, A.; Sertel, E. Soil salinity analysis of Urmia Lake Basin using Landsat-8 OLI and Sentinel-2A based spectral indices and electrical conductivity measurements. Ecol. Indic. 2020, 112, 106173. [Google Scholar] [CrossRef]
- Lesch, S.M. Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties. Comput. Electron. Agric. 2005, 46, 153–179. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, Y.; Zhou, L.; Liu, T.; Wang, L.; Cheng, Y.; Zheng, G. Using proximal sensor data for soil salinity management and mapping. J. Integr. Agric. 2019, 18, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Peng, J.; Biswas, A.; Hu, J.; Zhao, R.; He, K.; Shi, Z. Characterising dryland salinity in three dimensions. Sci. Total Environ. 2019, 682, 190–199. [Google Scholar] [CrossRef]
- Marchant, B.P.; Saby, N.P.A.; Jolivet, C.C.; Arrouays, D.; Lark, R.M. Spatial prediction of soil properties with copulas. Geoderma 2011, 162, 327–334. [Google Scholar] [CrossRef]
- Saby, N.P.A.; Marchant, B.P.; Lark, R.M.; Jolivet, C.C.; Arrouays, D. Robust geostatistical prediction of trace elements across France. Geoderma 2011, 162, 303–311. [Google Scholar] [CrossRef]
- Lacarce, E.; Saby, N.P.; Martin, M.P.; Marchant, B.P.; Boulonne, L.; Meersmans, J.; Arrouays, D. Mapping soil Pb stocks and availability in mainland France combining regression trees with robust geostatistics. Geoderma 2012, 170, 359–368. [Google Scholar] [CrossRef]
- Orton, T.G.; Saby, N.P.A.; Arrouays, D.; Jolivet, C.C.; Villanneau, E.J.; Marchant, B.P.; Briand, O. Spatial distribution of Lindane concentration in topsoil across France. Sci. Total Environ. 2013, 443, 338–350. [Google Scholar] [CrossRef]
- Xia, F.; Hu, B.; Shao, S.; Xu, D.; Zhou, Y.; Zhou, Y.; Shi, Z. Improvement of Spatial Modeling of Cr, Pb, Cd, As and Ni in Soil Based on Portable X-ray Fluorescence (PXRF) and Geostatistics: A Case Study in East China. Int. J. Environ. Res. Public Health 2019, 16, 2694. [Google Scholar] [CrossRef] [Green Version]
- Boente, C.; Martín-Méndez, I.; Bellan, A.; Gallego, J.R. A novel and synergistic geostatistical approach to identify sources and cores of Potentially Toxic Elements in soils: An application in the region of Cantabria (Northern Spain). J. Geochem. Explor. 2020, 208, 106397. [Google Scholar] [CrossRef]
- Liu, W.; Xu, X.; Lu, F.; Cao, J.; Li, P.; Fu, T.; Chen, G.; Su, Q. Three-dimensional mapping of soil salinity in the southern coastal area of Laizhou Bay, China. Land Degrad. Dev. 2018, 29, 3772–3782. [Google Scholar] [CrossRef]
- Li, H.Y.; Shi, Z.; Webster, R.; Triantafilis, J. Mapping the three-dimensional variation of soil salinity in a rice-paddy soil. Geoderma 2013, 195, 31–41. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Zhang, X.; Wang, X.; Lv, Z.; Yang, J.; Shao, H.; Yu, S. GIS-mapping spatial distribution of soil salinity for Eco-restoring the Yellow River Delta in combination with Electromagnetic Induction. Ecol. Eng. 2016, 94, 306–314. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. Comparison of the EM38 and EM38-MK2 electromagnetic induction-based sensors for spatial soil analysis at field scale. Comput. Electron. Agric. 2015, 110, 267–280. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Comput. Electron. Agric. 2001, 31, 239–264. [Google Scholar] [CrossRef]
- Amakor, X.N.; Jacobson, A.R.; Cardon, G.E.; Hawks, A. A comparison of salinity measurement methods based on soil saturated pastes. Geoderma 2014, 219, 32–39. [Google Scholar] [CrossRef]
- Liu, X.; Peng, J.; Feng, C.; Wu, J.; Luo, D.; Qi, W. Research on the inversion model for soil conductivity of cotton field using EM38-MK2 data in southern Xinjiang. Acta Pedol. Sin. 2020, 57, 646–655. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; United States Salinity Laboratory Staff. Agriculture Handbook No. 60; USDA and IBH Pub. Coy Ltd.: Washington, DC, USA, 1954; pp. 98–99. [Google Scholar]
- Van Meirvenne, M.; Maes, K.; Hofman, G. Three-dimensional variability of soil nitrate-nitrogen in an agricultural field. Biol. Fertil. Soils 2003, 37, 147–153. [Google Scholar] [CrossRef]
- Saeys, W.; Mouazen, A.M.; Ramon, H. Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosyst. Eng. 2005, 91, 393–402. [Google Scholar] [CrossRef]
- Franke, R.; Nielson, G. Smooth interpolation of large sets of scattered data. Int. J. Numer. Methods Eng. 1980, 15, 1691–1704. [Google Scholar] [CrossRef]
- Robinson, T.P.; Metternicht, G.M. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput. Electeron. Agric. 2006, 50, 97–108. [Google Scholar] [CrossRef]
- Yun, A.; Ju, Z.; Hu, K.; Liang, H. Three-dimensional Spatial Interpolation of Soil Salinity Based on Inverse Distance Weighting Method. Trans. Chin. Soc. Agric. Mach. 2015, 46, 148–172. [Google Scholar]
- Shi, Z.; Li, Y.; Wang, R.C.; Makeschine, F. Assessment of temporal and spatial variability of soil salinity in a coastal saline field. Environ. Geol. 2005, 48, 171–178. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Corwin, D.L. Determining soil electrical conductivity—Depth relations using an inductive electromagnetic soil conductivity meter. Soil Sci. Soc. Am. J. 1981, 45, 255–260. [Google Scholar] [CrossRef]
- Slavich, P.G. Determining ECa-depth profiles from electromagnetic induction measurements. Aust. J. Soil. Res. 1990, 28, 443–452. [Google Scholar] [CrossRef]
- Liu, G.M.; Wu, Y.K.; Yang, J.S.; Yu, S.P. Study on Three-dimension spatial variability of regional soil salinity based on spectral indices. Spectrosc. Spectr. Anal. 2013, 33, 2758–2761. [Google Scholar]
- Wu, Y.K.; Liu, G.M.; Su, L.T. Response of three-dimensional spatial variability of soil salinity to change of season of Xinjiang based on electromagnetic induction. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2017, 33, 173–178. [Google Scholar]
- Corwin, D.L.; Lesch, S.M. A simplified regional-scale electromagnetic induction—Salinity calibration model using ANOCOVA modeling techniques. Geoderma 2014, 230, 288–295. [Google Scholar] [CrossRef]
- Simonka, V.; Nawratil, G.; Hossinger, A.; Weinbub, J.; Selberherr, S. Anisotropic interpolation method of silicon carbide oxidation growth rates for three-dimensional simulation. Solid State Electron. 2017, 128, 135–140. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Hu, B.; Shao, S.; Fu, Z.; Li, Y.; Ni, H.; Chen, S.; Zhou, Y.; Jin, B.; Shi, Z. Identifying heavy metal pollution hot spots in soil-rice systems: A case study in South of Yangtze River Delta, China. Sci. Total Environ. 2019, 658, 614–625. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef]
- Hu, B.; Zhou, Y.; Jiang, Y.; Ji, W.; Fu, Z.; Shao, S.; Li, S.; Huang, M.X.; Zhou, L.Q.; Shi, Z. Spatio-temporal variation and source changes of potentially toxic elements in soil on a typical plain of the Yangtze River Delta, China (2002–2012). J. Environ. Manag. 2020, 271, 110943. [Google Scholar] [CrossRef]
- Hu, B.; Shao, S.; Fu, T.; Fu, Z.; Zhou, Y.; Li, Y.; Qi, L.; Chen, S.C.; Shi, Z. Composite assessment of human health risk from potentially toxic elements through multiple exposure routes: A case study in farmland in an important industrial city in East China. J. Geochem. Explor. 2020, 210, 106443. [Google Scholar] [CrossRef]
- Jia, X.; Fu, T.; Hu, B.; Shi, Z.; Zhou, L.; Zhu, Y. Identification of the potential risk areas for soil heavy metal pollution based on the source-sink theory. J. Hazard. Mater. 2020, 393, 122424. [Google Scholar] [CrossRef]
- Qi, Z.; Gao, X.; Qi, Y.; Li, J. Spatial distribution of heavy metal contamination in mollisol dairy farm. Environ. Pollut. 2020, 263, 114621. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Z.; Yi, C. 3D fluorescence spectral data interpolation by using IDW. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 71, 743–745. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Chanduvi, F.; Lesch, S.M. Soil Salinity Assessment: Methods and Interpretation of Electrical Conductivity Measurements. FAO Irrigation and Drainage Paper (FAO). 1999. Available online: https://landviser.net/content/soil-salinity-assessment-methods-and-interpretation-electrical-conductivity-measurements (accessed on 4 December 2020).
- Samake, O.; Smaling, E.M.; Kropff, M.J.; Stomph, T.J.; Kodio, A. Effects of cultivation practices on spatial variation of soil fertility and millet yields in the Sahel of Mali. Agric. Ecosyst. Environ. 2005, 109, 335–345. [Google Scholar] [CrossRef]
- Yemefack, M.; Rossiter, D.G.; Njomgang, R. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma 2005, 125, 117–143. [Google Scholar] [CrossRef]
- Wei, J.B.; Xiao, D.N.; Zeng, H.; Fu, Y. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern China. Environ. Geol. 2008, 53, 1663–1672. [Google Scholar] [CrossRef]
- Corwin, D.L.; Kaffka, S.R.; Hopmans, J.W.; Mori, Y.; Van Groenigen, J.W.; Van Kessel, C.; Oster, J.D. Assessment and field-scale mapping of soil quality properties of a saline-sodic soil. Geoderma 2003, 114, 231–259. [Google Scholar] [CrossRef]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant salt tolerance. Agric. Salin. Assess. Manag. 2012, 2, 405–459. [Google Scholar]
- Amaral, J.P.; Oliveira, L.M.L.; Rodrigues, J.J.P.C.; Han, G.; Shu, L. Policy and network-based intrusion detection system for IPv6-enabled wireless sensor networks. In Proceedings of the 50th IEEE International Conference on Communications (ICC 2014), Sydney, Australia, 10–14 June 2014; pp. 1796–1801. [Google Scholar]
- Behzadan, A.; Anpalagan, A.; Woungang, I.; Ma, B.; Chao, H.C. An energy efficient utility-based distributed data routing scheme for heterogeneous sensor networks. Wirel. Commun. Mob. Comput. 2015, 15, 2020–2037. [Google Scholar] [CrossRef]
- Dhurandher, S.K.; Sharma, D.K.; Woungang, I.; Saini, A. Efficient routing based on past information to predict the future location for message passing in infrastructure-less opportunistic networks. J. Supercomput. 2015, 71, 1694–1711. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, X.; Wang, C. Integrated open geospatial web service enabled cyber-physical information infrastructure for precision agriculture monitoring. Comput. Electron. Agric. 2015, 111, 78–91. [Google Scholar] [CrossRef]
- Van Schilfgaarde, J. Is precision agriculture sustainable? Am. J. Altern. Agric. 1999, 14, 43–46. [Google Scholar] [CrossRef]
- Corwin, D.L.; Plant, R.E. Applications of apparent soil electrical conductivity in precision agriculture. Comput. Electron. Agric. 2005, 46, 1–10. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Corwin, D.L. Past, present, and future trends of soil electrical conductivity measurement using geophysical methods. In Handbook of Agricultural Geophysics; Allred, B.J., Daniels, J.J., Ehsani, M.R., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 17–44. [Google Scholar]
Date | ECa | Min (dS m−1) | Max (dSm−1) | Mean (dSm−1) | CV (%) | Skew | Kurt. |
---|---|---|---|---|---|---|---|
15 March 2018 | ECV1.5 | 0.26 | 2.05 | 0.77 | 0.63 | 1.51 | 1.34 |
ECV0.75 | 0.05 | 2.61 | 0.63 | 0.96 | 6.21 | 2.19 | |
3 June 2018 | ECV1.5 | 0.20 | 1.39 | 0.72 | 0.51 | −1.16 | 0.29 |
ECV0.75 | 0.13 | 1.73 | 0.62 | 0.75 | 0.18 | 1.04 | |
7 July 2020 | ECV1.5 | 0.19 | 1.60 | 0.79 | 0.52 | −0.64 | 0.22 |
ECV0.75 | 0.36 | 2.21 | 1.16 | 0.56 | −1.57 | 0.35 | |
27 October 2018 | ECV1.5 | 0.44 | 1.99 | 1.00 | 0.46 | −0.29 | 0.90 |
ECV0.75 | 0.49 | 1.78 | 1.05 | 0.41 | −1.10 | 0.46 |
Soil Layer/cm | 15 March 2018 | 3 June 2018 | 7 July 2018 | 27 October 2018 | ||||
---|---|---|---|---|---|---|---|---|
Models | R2 | Models | R2 | Models | R2 | Models | R2 | |
0~20 | ECe = 0.178X1 − 0.003X2 + 0.275 | 0.91 | ECe = 0.101X1 − 0.085X2 + 3.368 | 0.94 | ECe = 0.045X1 − 0.028 X2 + 0.981 | 0.75 | ECe = −0.001X1 + 0.055 X2 − 0.170 | 0.93 |
20~40 | ECe = −0.007X1 + 0.026X2 − 0.556 | 0.80 | ECe = 0.025X1 − 0.011X2 + 0.296 | 0.77 | ECe = 0.007X1 + 0.017X2 − 0.516 | 0.81 | ECe = 0.020X1 − 0.004 X2 + 0.886 | 0.96 |
40~60 | ECe = 0.003X1 + 0.012X2 − 0.194 | 0.90 | ECe = 0.003X1 + 0.018X2 − 0.318 | 0.79 | ECe = 0.002X1 + 0.011X2 − 0.075 | 0.76 | ECe = 0.0004X1 + 0.012 X2 + 0.607 | 0.96 |
60~80 | ECe = 0.004X1 + 0.011X2 − 0.135 | 0.91 | ECe = 0.001X1 + 0.017X2 − 0.188 | 0.82 | ECe = 0.003X1 + 0.022X2 − 0.895 | 0.82 | ECe = 0.013X1 − 0.002 X2 + 0.327 | 0.90 |
80~100 | ECe = −0.001X1 + 0.013X2 − 0.064 | 0.86 | ECe = −0.00X1 + 0.021X2 − 0.045 | 0.78 | ECe = −0.001X1 + 0.012X2 − 0.002 | 0.70 | ECe = 0.008X1 − 0.001X2 + 0.352 | 0.93 |
Date | Soil Layer/cm | R2 | ME | RMSE | RPD |
---|---|---|---|---|---|
15 March 2018 | 0~20 | 0.82 | −0.24 | 0.51 | 2.01 |
20~40 | 0.85 | 0.02 | 0.41 | 2.51 | |
40~60 | 0.93 | −0.06 | 0.26 | 3.03 | |
60~80 | 0.87 | −0.25 | 0.48 | 2.02 | |
80~100 | 0.85 | −0.16 | 0.46 | 2.02 | |
3 June 2018 | 0~20 | 0.85 | −0.09 | 0.86 | 2.47 |
20~40 | 0.91 | −0.15 | 0.33 | 2.48 | |
40~60 | 0.96 | 0.32 | 0.36 | 2.13 | |
60~80 | 0.89 | −0.04 | 0.23 | 2.86 | |
80~100 | 0.82 | 0.04 | 0.22 | 2.25 | |
7 July 2020 | 0~20 | 0.89 | −0.12 | 1.22 | 2.23 |
20~40 | 0.91 | −0.02 | 0.50 | 2.50 | |
40~60 | 0.98 | −0.15 | 0.35 | 2.01 | |
60~80 | 0.98 | 0.20 | 0.40 | 2.09 | |
80~100 | 0.96 | −0.01 | 0.10 | 4.78 | |
27 October 2018 | 0~20 | 0.99 | −0.45 | 0.56 | 4.56 |
20~40 | 0.92 | 0.05 | 0.21 | 3.35 | |
40~60 | 0.95 | 0.04 | 0.17 | 3.73 | |
60~80 | 0.94 | −0.02 | 0.13 | 3.97 | |
80~100 | 0.98 | −0.02 | 0.04 | 6.77 |
Date | Layer (cm) | Min (dS m−1) | Max (dS m−1) | Mean (dS m−1) | SD | CV | Skew | Kurt. |
---|---|---|---|---|---|---|---|---|
15 March 2018 | 0~20 | 0.35 | 3.19 | 0.88 | 0.48 | 0.55 | 1.63 | 2.48 |
20~40 | 0.06 | 3.72 | 0.87 | 0.61 | 0.70 | 0.86 | 1.14 | |
40~60 | 0.13 | 2.76 | 0.78 | 0.45 | 0.58 | 1.08 | 1.01 | |
60~80 | 0.21 | 2.82 | 0.88 | 0.44 | 0.50 | 1.01 | 0.94 | |
80~100 | 0.23 | 2.39 | 0.81 | 0.35 | 0.43 | 0.93 | 0.92 | |
3 June 2018 | 0~20 | 0.85 | 20.40 | 3.32 | 5.33 | 1.61 | −0.01 | −0.19 |
20~40 | 0.01 | 5.99 | 1.28 | 1.38 | 1.08 | 0.21 | −0.34 | |
40~60 | 0.05 | 4.51 | 1.36 | 0.69 | 0.51 | 0.40 | 0.06 | |
60~80 | 0.06 | 4.11 | 1.09 | 0.64 | 0.59 | 0.45 | 0.17 | |
80~100 | 0.12 | 3.51 | 0.99 | 0.52 | 0.53 | 0.51 | 0.29 | |
7 July 2018 | 0~20 | 0.26 | 6.89 | 2.45 | 1.22 | 0.50 | 0.97 | 0.03 |
20~40 | 0.58 | 8.55 | 2.25 | 1.54 | 0.67 | 0.46 | −0.04 | |
40~60 | 0.04 | 2.92 | 0.87 | 0.50 | 0.57 | 0.46 | −0.03 | |
60~80 | 0.16 | 3.52 | 0.93 | 0.59 | 0.63 | 0.45 | 0.10 | |
80~100 | 0.05 | 3.63 | 0.88 | 0.48 | 0.55 | 0.47 | 0.96 | |
27 October 2018 | 0~20 | 1.40 | 18.69 | 5.28 | 1.76 | 0.33 | 0.89 | 3.63 |
20~40 | 0.15 | 5.17 | 1.41 | 0.80 | 0.57 | 0.20 | −0.44 | |
40~60 | 0.78 | 4.83 | 1.70 | 0.425 | 0.25 | 0.78 | 2.99 | |
60~80 | 0.09 | 3.30 | 0.95 | 0.45 | 0.47 | 0.26 | −0.11 | |
80~100 | 0.74 | 2.77 | 1.19 | 0.20 | 0.17 | 1.11 | 5.04 |
Date | Layer/cm | Non-Saline | Mildly Saline | Moderately Saline | Heavily Saline | Saline Soil |
---|---|---|---|---|---|---|
15 March 2018 | 0~20 | 98.6 | 1.4 | 0 | 0 | 0 |
20~40 | 99.0 | 1.0 | 0 | 0 | 0 | |
40~60 | 99.3 | 0.7 | 0 | 0 | 0 | |
60~80 | 99.5 | 0.5 | 0 | 0 | 0 | |
80~100 | 99.6 | 0.4 | 0 | 0 | 0 | |
3 June 2018 | 0~20 | 30.9 | 41.0 | 27.0 | 1.1 | 0 |
20~40 | 41.6 | 45.9 | 12.4 | 0.2 | 0 | |
40~60 | 56.3 | 36.5 | 7.1 | 0.2 | 0 | |
60~80 | 69.3 | 25.3 | 5.3 | 0.2 | 0 | |
80~100 | 78.1 | 17.6 | 4.3 | 0.1 | 0 | |
7 July 2018 | 0~20 | 36.0 | 39.1 | 24.2 | 0.7 | 0 |
20~40 | 42.8 | 42.8 | 14.2 | 0.2 | 0 | |
40~60 | 53.8 | 40.3 | 5.9 | 0 | 0 | |
60~80 | 65.1 | 32.1 | 2.8 | 0 | 0 | |
80~100 | 75.5 | 23.0 | 1.6 | 0 | 0 | |
27 October 2018 | 0~20 | 7.8 | 62.3 | 29.7 | 0.2 | 0 |
20~40 | 18.6 | 72.8 | 8.5 | 0 | 0 | |
40~60 | 35.1 | 61.4 | 3.6 | 0 | 0 | |
60~80 | 56.0 | 41.3 | 2.7 | 0 | 0 | |
80~100 | 69.1 | 28.5 | 2.4 | 0 | 0 |
Date | R2 | RMSE (dS m−1) | ME |
---|---|---|---|
15 March 2018 | 0.77 | 0.21 | −0.02 |
3 June 2018 | 0.76 | 0.27 | −0.02 |
7 July 2020 | 0.76 | 0.40 | −0.03 |
27 October 2018 | 0.77 | 0.56 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, X.; Hu, B.; Biswas, A.; Jiang, Q.; Liu, W.; Wang, N.; Peng, J. Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions. Remote Sens. 2020, 12, 4043. https://doi.org/10.3390/rs12244043
Li H, Liu X, Hu B, Biswas A, Jiang Q, Liu W, Wang N, Peng J. Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions. Remote Sensing. 2020; 12(24):4043. https://doi.org/10.3390/rs12244043
Chicago/Turabian StyleLi, Hongyi, Xinlu Liu, Bifeng Hu, Asim Biswas, Qingsong Jiang, Weiyang Liu, Nan Wang, and Jie Peng. 2020. "Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions" Remote Sensing 12, no. 24: 4043. https://doi.org/10.3390/rs12244043
APA StyleLi, H., Liu, X., Hu, B., Biswas, A., Jiang, Q., Liu, W., Wang, N., & Peng, J. (2020). Field-Scale Characterization of Spatio-Temporal Variability of Soil Salinity in Three Dimensions. Remote Sensing, 12(24), 4043. https://doi.org/10.3390/rs12244043