Land Subsidence Prediction Induced by Multiple Factors Using Machine Learning Method
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. PSI
3.2. IBI
3.3. Machine Learning
3.3.1. Linear Regression and PCA
3.3.2. Random Forest
3.3.3. XGBoost
4. Results and Discussion
4.1. InSAR Results and Verification
4.2. The Relationship between Influencing Factors and Land Subsidence
4.2.1. The Influence of Urban Construction on Land Subsidence
4.2.2. The Influence of Thickness of the Quaternary Deposit on Land Subsidence
4.2.3. The Influence of Different Aquifers on Land Subsidence
4.2.4. The Nonlinear Relationship between Influencing Factors and Land Subsidence
4.3. The Result of Subsidence Prediction Model
5. Conclusions
- (1)
- The PSI results agreed well with the leveling benchmark results. The correlation coefficient was 0.9046, and the minimum absolute error and maximum absolute error were 1.52 mm/y and 28.72 mm/y, respectively. From 2016 to 2018, the maximum subsidence rate in the Beijing Plain had reached 115.96 mm/y. The land subsidence was serious in eastern Chaoyang and northwestern Tongzhou.
- (2)
- We found that the area where thickness of the Quaternary deposit reached 150–200 m was prone to land subsidence. Among the four aquifers, the groundwater exploitation of the second confined aquifer had the greatest impact on land subsidence in the Beijing Plain, with a contribution rate of 29.94% in random forest and 35.51% in XGBoost. Through Linear Regression and PCA, the relationship between groundwater level change, thickness of the Quaternary deposit, IBI, and land subsidence was nonlinear.
- (3)
- Compared with the subsidence amount obtained by PS-InSAR, the prediction accuracy of subsidence amount based on XGBoost method reached 0.9431, and the mean square error was controlled at 15.97. The accuracy of the training set and the test set on the model were similar, and there was no overfitting phenomenon. The prediction effect of XGBoost was good and reasonable. Only few points had deviations in the prediction of subsidence amount. Our research extends the application range of the land subsidence prediction model without complex hydrogeological parameters. It provides a new idea for land subsidence prediction.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galloway, D.L.; Erkens, G.; Kuniansky, E.L.; Rowland, J.C. Preface: Land subsidence processes. Hydrogeol. J. 2016, 24, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Wegmuller, U. Land subsidence in Mexico City mapped by ERS differential SAR interferometry. IEEE Int. Geosci. Remote Sens. Symp. 1999, 4, 1940–1942. [Google Scholar]
- Yamamoto, S. Land Subsidence and its Problems: With reference to the results of International Symposium on Land Subsidence, Tokyo, 1969. J. Geogr. 1970, 78, 471–482. [Google Scholar] [CrossRef]
- Hu, R.L.; Yue, Z.Q.; Wang, L.C.; Wang, S.J. Review on current status and challenging issues of land subsidence in China. Eng. Geol. 2004, 76, 65–77. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Agostini, A.; Tanteri, L.; Tacconi Stefanelli, C.; Catani, F.; Casagli, N. Subsidence mapping at regional scale using persistent scatters interferometry (PSI): The case of Tuscany region (Italy). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 328–337. [Google Scholar] [CrossRef]
- Nutalaya, P.; Yong, R.N.; Chumnankit, T.; Buapeng, S. Land Subsidence in Bangkok during 1978–1988. Sea-Level Rise Coast. Subsid. 1996, 2, 105–130. [Google Scholar]
- Hawkes, A.D.; Horton, B.P.; Nelson, A.R.; Vane, C.H.; Sawai, Y. Coastal subsidence in Oregon, USA, during the giant Cascadia earthquake of AD 1700. Quat. Sci. Rev. 2011, 30, 364–376. [Google Scholar] [CrossRef] [Green Version]
- Mingliang, G.; Huili, G.; Beibei, C.; Xiaojuan, L.; Chaofan, Z.; Min, S.; Yuan, S.; Zheng, C.; Guangyao, D. Regional Land Subsidence Analysis in Eastern Beijing Plain by InSAR Time Series and Wavelet Transforms. Remote Sens. 2018, 10, 365. [Google Scholar]
- Zuo, J.; Gong, H.; Chen, B.; Liu, K.; Zhou, C.; Ke, Y. Time-series evolution patterns of land subsidence in the Eastern Beijing Plain, China. Remote Sens. 2019, 11, 539. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Yuan, J. Analysis and Outlook of the Land Subsidence in Beijing. Urban Geol. 2012, 7, 2. [Google Scholar]
- Zhou, C.; Gong, H.; Chen, B.; Gao, M.; Shi, M. Land Subsidence Response to Different Land Use Types and Water Resource Utilization in Beijing-Tianjin-Hebei, China. Remote Sens. 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.S.; Ma, L.; Du, Y.J.; Shen, S.L. Analysis of urbanisation-induced land subsidence in Shanghai. Nat. Hazards 2012, 63, 1255–1267. [Google Scholar] [CrossRef]
- Chai, J.C.; Shen, S.L.; Zhu, H.H.; Zhang, X.L. Land subsidence due to groundwater drawdown in Shanghai. Geotechnique 2004, 56, 143–147. [Google Scholar] [CrossRef]
- Yan, X.X.; Gong, S.L.; Zeng, Z. Relationship between building density and land subsidence in Shanghai urban zone. Hydrogeol. Eng. Geol. 2002. [Google Scholar] [CrossRef]
- Yang, Q.; Ke, Y.; Zhang, D.; Chen, B.; Gong, H.; Lv, M.; Zhu, L.; Li, X. Multi-Scale Analysis of the Relationship between Land Subsidence and Buildings: A Case Study in an Eastern Beijing Urban Area Using the PS-InSAR Technique. Remote Sens. 2018, 10, 1006. [Google Scholar] [CrossRef] [Green Version]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1999, 14, 4. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2002, 88, 333–382. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry Data Interpretation and Error Analysis; Springer Science and Business Media: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483–486. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Bawden, G.W.; Thatcher, W.; Stein, R.S.; Hudnut, K.W.; Peltzer, G. Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 2001, 412, 812–815. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Bürgmann, R.; Hilley, G.; Ferretti, A.; Novali, F. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geology 2006, 34, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Ng, H.M.; Li, X.; Abidin, H.Z. Land subsidence characteristics of Bandung Basin as revealed by ENVISAT ASAR and ALOS PALSAR interferometry. Remote Sens. Environ. 2014, 154, 46–60. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. 2007, 112, B07407. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Gong, H.; Chen, Y.; Li, X.; Zhao, X. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Sci. Total Environ. 2020, 735, 139111. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, Y.; Li, X.; Lu, X.; Chen, B.; Gu, Z. Land subsidence research in Beijing based on the permanent Scatterers InSAR technology. China Acad. J. Electron. Publ. House 2009, 19, 1261–1266. [Google Scholar]
- Liu, G.X.; Zhang, R.; Li, T.; Yu, B.; Nie, Y.J. Extracting 3D ground deformation velocity field by multi-platform persistent scatterer SAR interferometry Chinese. J. Geophys. 2012, 55, 2598–2610. (In Chinese) [Google Scholar]
- Azqueta-Gavaldon, A. Developing news-based Economic Policy Uncertainty index with unsupervised machine learning. Econ. Lett. 2017, 158, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Farmer, J.D.; Packard, N.H.; Perelson, A.S. The immune system, adaptation, and machine learning. Phys. D Nonlinear Phenom. 1986, 22, 187–204. [Google Scholar] [CrossRef]
- Zhao, K.; Chen, S. Study on Artificial Neural Network Method for Ground Subsidence Prediction of Metal Mine. Procedia Earth Planet. Sci. 2011, 2, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Zamanirad, M.; Sarraf, A.; Sedghi, H.; Saremi, A.; Rezaee, P. Modeling the Influence of Groundwater Exploitation on Land Subsidence Susceptibility Using Machine Learning Algorithms. Nat. Resour. Res. 2019, 1–15. [Google Scholar] [CrossRef]
- Rahmati, O.; Golkarian, A.; Biggs, T.; Keesstra, S.; Mohammadi, F.; Daliakopoulos, I.N. Land subsidence hazard modeling: Machine learning to identify predictors and the role of human activities. J. Environ. Manag. 2019, 236, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, O.; Falah, F.; Naghibi, S.A.; Biggs, T.; Soltani, M.; Deo, R.C.; Cerdà, A.; Mohammadi, F.; Bui, D.T. Land subsidence modelling using tree-based machine learning algorithms. Sci. Total Environ. 2019, 672, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Tsangaratos, P.; Ilia, I.; Loupasakis, C. Land Subsidence Modelling Using Data Mining Techniques. The Case Study of Western Thessaly, Greece. In Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Zhou, C.; Gong, H.; Chen, B.; Li, X.; Li, J.; Wang, X.; Gao, M.; Si, Y.; Guo, L.; Shi, M. Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain, China with machine learning technology. Geomorphology 2019, 335, 48–61. [Google Scholar] [CrossRef]
- Zhou, Z.H. Ensemble Methods: Foundations and Algorithms; Taylor & Francis, CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Blaszczynski, J.; Stefanowski, J. Neighbourhood sampling in bagging for imbalanced data. Neurocomputing 2015, 150, 529–542. [Google Scholar] [CrossRef]
- Ziba, M.; Tomczak, S.K.; Tomczak, J.M. Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Expert Syst. Appl. 2016, 58, 93–101. [Google Scholar] [CrossRef]
- Tang, B.; Chen, Q.; Wang, X.; Wang, X. Reranking for Stacking Ensemble Learning. Neural Inf. Process. Theory Algorithm 2010. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Son, J.; Jung, I.; Park, K.; Han, B. Tracking-by-Segmentation with Online Gradient Boosting Decision Tree. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Volume 8, pp. 785–794. [Google Scholar]
- Bi, Y.; Xiang, D.; Ge, Z.; Li, F.; Jia, C.; Song, J. An Interpretable Prediction Model for Identifying N 7-Methylguanosine Sites Based on XGBoost and SHAP. Mol. Ther. Nucleic Acids 2020. [Google Scholar] [CrossRef]
- Xu, M.; Wei, D.; Zhu, T.; Zhang, Y. Box-Office Revenue Predictions Based on XGBoost and Sentiment Analysis. World Sci. Res. J. 2020, 6, 11. [Google Scholar]
- Wang, S.; Liu, S.; Zhang, J.; Che, X.; Yuan, Y.; Wang, Z.; Kong, D. A New Method of Diesel Fuel Brands Identification: SMOTE Oversampling Combined with XGBoost Ensemble Learning. Fuel 2020, 282, 118848. [Google Scholar] [CrossRef]
- Yuanzhang, L.; Ruixin, W.; Xu, W.; Shufang, W.; Liya, W.; Yijiao, C. Preliminary Study on Selection Schemes of Groundwater Environmental Background Values in Beijing Area. Urban Geol. 2019, 14, 4. [Google Scholar]
- Yu, L. Division of Water-bearing Zones and Compressible Layers in Beijing’s Land Subsidence Areas. City Geol. 2007, 2, 1. [Google Scholar]
- Chen, B.; Gong, H.; Lei, K.; Li, J.; Zhou, C.; Gao, M. Land subsidence lagging quantification in the main exploration aquifer layers in Beijing plain, China. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 54–67. [Google Scholar] [CrossRef]
- Deren, L.I. Progress of Permanent Scatterer Interferometry. Geomat. Inf. Sci. Wuhan Univ. 2004, 29, 8. [Google Scholar]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on Volcanoes and other natural terrains using InSAR Persistent Scatterers. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Enviorn. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Ritov, Y. Estimation in a Linear Regression Model with Censored Data. Ann. Stat. 1990, 18, 303–328. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis. J. Mark. Res. 2002, 87, 513. [Google Scholar]
- Oliphant, T.E. Python for Scientific Computing. Comput. Sci. Eng. 2007, 9, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Aiken, L.S.; West, S.G.; Pitts, S.C. Multiple Linear Regression. In Handbook of Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Chen, B. Polynomial Regression. Springer Texts Stats 1986, 235–268. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996. [Google Scholar] [CrossRef] [Green Version]
- Lerman, P.M. Fitting Segmented Regression Models by Grid Search. Appl. Stats. 1980, 29, 77–84. [Google Scholar] [CrossRef]
Fifit_Intercept | Normalize | Copy_X | n_Jobs |
---|---|---|---|
True | False | True | None |
Degree | Interaction_Only | Include_Bias |
---|---|---|
5 | False | True |
Num_Round | Eta | Subsample | xgb_Model | Objective | Alpha | Lambda | Gamma |
---|---|---|---|---|---|---|---|
600 | 0.7 | 1 | gbtree | reg:linear | 0 | 1 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Gong, H.; Chen, B.; Zhou, C. Land Subsidence Prediction Induced by Multiple Factors Using Machine Learning Method. Remote Sens. 2020, 12, 4044. https://doi.org/10.3390/rs12244044
Shi L, Gong H, Chen B, Zhou C. Land Subsidence Prediction Induced by Multiple Factors Using Machine Learning Method. Remote Sensing. 2020; 12(24):4044. https://doi.org/10.3390/rs12244044
Chicago/Turabian StyleShi, Liyuan, Huili Gong, Beibei Chen, and Chaofan Zhou. 2020. "Land Subsidence Prediction Induced by Multiple Factors Using Machine Learning Method" Remote Sensing 12, no. 24: 4044. https://doi.org/10.3390/rs12244044
APA StyleShi, L., Gong, H., Chen, B., & Zhou, C. (2020). Land Subsidence Prediction Induced by Multiple Factors Using Machine Learning Method. Remote Sensing, 12(24), 4044. https://doi.org/10.3390/rs12244044