A Building Information Modeling Approach to Integrate Geomatic Data for the Documentation and Preservation of Cultural Heritage
Abstract
:1. Introduction
2. The Monastery of Batalha
3. Materials and Methods
3.1. Unmanned Aircraft System (UAS) Survey: Methodology for Façade Orthophoto Generation
3.2. Ground-Penetrating Radar (GPR) Survey: Data Acquisition and Signal Processing
3.3. Infrared Thermographic (IRT) Survey: Thermal Image Acquisition and Processing
3.4. Light Detection and Ranging (LiDAR) Survey: Data Acquisition and Processing
4. Results and Discussion
4.1. Results of the Anomalies Classification
4.2. Interpretation of the Produced GPR Images
4.3. Analysis of the Captured Thermographic Images
4.4. Three-Dimensional (3D) Model Generation and Structural Analysis
5. Data Integration into the Building Information Modeling (BIM) Model
5.1. Methodological Approach for Data Integration
5.2. Integrated Data Interpretation
6. Conclusions
- The super-high resolution orthophoto obtained by the cost-effective UAS technology allowed the automatic identification of several pathologies and the area that each pathology occupies on the façade.
- The terrestrial laser scanning proved to be capable of generating a well-documented 3D model, as well as 2D plans, and the evaluation of the real condition of the structure, which plays an important role for heritage documentation purposes. It also permitted the tilt of the columns of the Founder’s Chapel to be measured, a crucial information for assessing its stability.
- The GPR allowed determining the depth of the most superficial layers (of blocks) of the structure, detection of possible cracks, voids, variations of the depth or type of material of the blocks, etc. Moreover, the use of different frequency antennas (combining different resolutions and different depths of penetration) in the same zone sometimes led to additional information.
- The IRT information allowed detection of the presence of moisture, areas with patina and previous restoration works.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vecco, M. A definition of cultural heritage: From the tangible to the intangible. J. Cult. Herit. 2010, 11, 321–324. [Google Scholar] [CrossRef]
- La Russa, M.F.; Fermo, P.; Comite, V.; Belfiore, C.M.; Barca, D.; Cerioni, A.; De Santis, M.; Barbagallo, L.F.; Ricca, M.; Ruffolo, S.A. The Oceanus statue of the Fontana di Trevi (Rome): The analysis of black crust as a tool to investigate the urban air pollution and its impact on the stone degradation. Sci. Total Environ. 2017, 593–594, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Martín-Gil, J.; Martín-Gil, F.J.; Ramos-Sánchez, M.D.C.; Martín-Ramos, P. The Orange-Brown Patina of Salisbury Cathedral (West Porch) Surfaces: Evidence of its Man-Made Origin (5 pp). Environ. Sci. Pollut. Res. 2005, 12, 285–289. [Google Scholar] [CrossRef] [PubMed]
- La Russa, M.F.; Ruffolo, S.A.; Belfiore, C.M.; Pogliani, P.; Pelosi, C.; Andaloro, M.; Crisci, G.M. Cappadocian ignimbrite cave churches: Stone degradation and conservation strategies. Period. Mineral. 2014, 83. [Google Scholar] [CrossRef]
- Grossi, C.M.; Esbert, R.M.; Díaz-Pache, F.; Alonso, F.J. Soiling of building stones in urban environments. Build. Environ. 2003, 38, 147–159. [Google Scholar] [CrossRef]
- Barnoos, V.; Oudbashi, O.; Shekofteh, A. The deterioration process of limestone in the Anahita Temple of Kangavar (West Iran). Herit. Sci. 2020, 8, 1–19. [Google Scholar] [CrossRef]
- Janvier-Badosa, S.; Beck, K.; Brunetaud, X.; Al-Mukhtar, M. The occurrence of gypsum in the scaling of stones at the Castle of Chambord (France). Environ. Earth Sci. 2014, 71, 4751–4759. [Google Scholar] [CrossRef]
- Rosado, T.; Silva, M.; Galvão, A.; Mirão, J.; Candeias, A.; Caldeira, A.T. A first insight on the biodegradation of limestone: The case of the World Heritage Convent of Christ. Appl. Phys. A 2016, 122, 1012. [Google Scholar] [CrossRef]
- Bruno, N.; Roncella, R. HBIM for Conservation: A New Proposal for Information Modeling. Remote Sens. 2019, 11, 1751. [Google Scholar] [CrossRef] [Green Version]
- Logothetis, S.; Stylianidis, E. BIM Open Source Software (OSS) for the documentation of cultural heritage. Virtual Archaeol. Rev. 2016, 7, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Doré, C.; Murphy, M. Integration of Historic Building Information Modeling (HBIM) and 3D GIS for recording and managing cultural heritage sites. In Proceedings of the 18th International Conference on Virtual Systems and Multimedia, Xi’an, China, 18–20 October 2012; pp. 369–376. [Google Scholar]
- López, F.J.; Lerones, P.M.; Llamas, J.; Gómez-García-Bermejo, J.; Zalama, E. A Review of Heritage Building Information Modeling (H-BIM). Multimodal Technol. Interact. 2018, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Del Giudice, M.; Osello, A. BIM for Cultural Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 5, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Reinoso, J.F.; Rodríguez-Moreno, C.; Gómez-Blanco, A.J.; León-Robles, C.A. Cultural Heritage Conservation and Sustainability Based on Surveying and Modeling: The Case of the 14th Century Building Corral del Carbón (Granada, Spain). Sustainability 2018, 10, 1370. [Google Scholar] [CrossRef] [Green Version]
- Themistocleous, K.; Agapiou, A.; Hadjimitsis, D. 3D Documentation and BIM Modeling of Cultural Heritage Structures Using UAVS: The Case of the Foinikaria Church. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 42, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Oreni, D.; Brumana, R.; Della Torre, S.; Banfi, F.; Barazzetti, L.; Previtali, M. Survey turned into HBIM: The restoration and the work involved concerning the Basilica di Collemaggio after the earthquake (L’Aquila). ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Mercuri, F.; Cicero, C.; Orazi, N.; Paoloni, S.; Marinelli, M.; Zammit, U. Infrared Thermography Applied to the Study of Cultural Heritage. Int. J. Thermophys. 2015, 36, 1189–1194. [Google Scholar] [CrossRef]
- Hällström, J.; Barup, K.; Grönlund, R.; Johansson, A.; Svanberg, S.; Palombi, L.; Lognoli, D.; Raimondi, V.; Cecchi, G.; Conti, C. Documentation of soiled and biodeteriorated facades: A case study on the Coliseum, Rome, using hyperspectral imaging fluorescence lidars. J. Cult. Herit. 2009, 10, 106–115. [Google Scholar] [CrossRef]
- Yastikli, N. Documentation of cultural heritage using digital photogrammetry and laser scanning. J. Cult. Herit. 2007, 8, 423–427. [Google Scholar] [CrossRef]
- Guarnieri, A.; Remondino, F.; Vettore, A. Digital photogrammetry and TLS data fusion applied to Cultural Heritage 3D modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 1–6. [Google Scholar]
- Del Pozo, S.; Herrero-Pascual, J.; Felipe-García, B.; Hernandez-Lopez, D.; Rodriguez-Gonzalvez, P.; González-Aguilera, D. Multispectral Radiometric Analysis of Façades to Detect Pathologies from Active and Passive Remote Sensing. Remote Sens. 2016, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Pesci, A.; Bonali, E.; Galli, C.; Boschi, E. Laser scanning and digital imaging for the investigation of an ancient building: Palazzo d’Accursio study case (Bologna, Italy). J. Cult. Herit. 2012, 13, 215–220. [Google Scholar] [CrossRef]
- Russo, M.; Carnevali, L.; Russo, V.; Savastano, D.; Taddia, Y. Modeling and deterioration mapping of façades in historical urban context by close-range ultra-lightweight UAVs photogrammetry. Int. J. Arch. Herit. 2019, 13, 549–568. [Google Scholar] [CrossRef]
- Stepinac, M.; Gašparović, M. A Review of Emerging Technologies for an Assessment of Safety and Seismic Vulnerability and Damage Detection of Existing Masonry Structures. Appl. Sci. 2020, 10, 5060. [Google Scholar] [CrossRef]
- Goodman, D.; Piro, S. GPR Remote Sensing in Archaeology, Geotechnologies and the Environment; Springer: Berlin/Heidelberg, Germany, 2013; Volume 9, ISBN 978-3-642-31857-3. [Google Scholar]
- Fontul, S.; Solla, M.; Cruz, H.; Machado, J.S.; Pajewski, L. Ground Penetrating Radar Investigations in the Noble Hall of São Carlos Theater in Lisbon, Portugal. Surv. Geophys. 2018, 39, 1125–1147. [Google Scholar] [CrossRef]
- Ferrara, C.; Barone, P.M. Detecting Moisture Damage in Archaeology and Cultural Heritage Sites Using the GPR Technique: A Brief Introduction. Int. J. Archaeol. 2015, 3, 57. [Google Scholar] [CrossRef] [Green Version]
- Moropoulou, A.; Labropoulos, K.C.; Delegou, E.T.; Karoglou, M.; Bakolas, A. Non-destructive techniques as a tool for the protection of built cultural heritage. Constr. Build. Mater. 2013, 48, 1222–1239. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; Caselles, J.; Clapés, J.; Martinez, G.; Osorio, R. Non-destructive analysis in cultural heritage buildings: Evaluating the Mallorca cathedral supporting structures. NDT E Int. 2013, 59, 40–47. [Google Scholar] [CrossRef]
- Masini, N.; Persico, R.; Rizzo, E. Some examples of GPR prospecting for monitoring of the monumental heritage. J. Geophys. Eng. 2010, 7, 190–199. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; García, F.; Pujades, L.G.; González-Drigo, R.; Di Capua, D. GPR survey to study the restoration of a Roman monument. J. Cult. Herit. 2008, 9, 89–96. [Google Scholar] [CrossRef]
- Cataldo, R.; De Donno, A.; De Nunzio, G.; Leucci, G.; Nuzzo, L.; Siviero, S. Integrated methods for analysis of deterioration of cultural heritage: The Crypt of “Cattedrale di Otranto.”. J. Cult. Herit. 2005, 6, 29–38. [Google Scholar] [CrossRef]
- Garrido, I.; Solla, M.; Lagüela, S.; Fernández, N. IRT and GPR Techniques for Moisture Detection and Characterisation in Buildings. Remote Sens. 2020, 20, 6421. [Google Scholar] [CrossRef]
- Solla, M.; Lagüela, S.; Fernández, N.; Garrido, I. Assessing Rebar Corrosion through the Combination of Nondestructive GPR and IRT Methodologies. Remote Sens. 2019, 11, 1705. [Google Scholar] [CrossRef] [Green Version]
- Matera, L.; Persico, R.; Geraldi, E.; Sileo, M.; Piro, S. GPR and IRT tests in two historical buildings in Gravina in Puglia. Geosci. Instrum. Methods 2016, 5, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Solla, M.; Asorey-Cacheda, R.; Núñez-Nieto, X.; Conde, B. Evaluation of historical bridges through recreation of GPR models with the FDTD algorithm. NDT E Int. 2016, 77, 19–27. [Google Scholar] [CrossRef]
- Sfarra, S.; Bendada, A.; Ibarra-Castanedo, C.; Ambrosini, D.; Paoletti, D.; Maldague, X. Santa Maria di Collemaggio Church (L’Aquila, Italy): Historical Reconstruction by Non-Destructive Testing Techniques. Int. J. Arch. Herit. 2015, 9, 367–390. [Google Scholar] [CrossRef]
- Carlomagno, G.M.; Di Maio, R.; Fedi, M.; Meola, C. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys. J. Geophys. Eng. 2011, 8, S93–S105. [Google Scholar] [CrossRef]
- Rizo-Maestre, C.; González-Avilés, Á.; Galiano-Garrigós, A.; Andújar-Montoya, M.D.; Puchol-García, J.A. UAV BIM: Incorporation of Photogrammetric Techniques in Architectural Projects with Building Information Modeling Versus Classical Work Processes. Remote Sens. 2020, 12, 2329. [Google Scholar] [CrossRef]
- Mahmood, B.; Han, S.; Lee, D. BIM-based Registration and Localization of 3D Point Clouds of Indoor Scenes Using Geometric Features for Augmented Reality. Remote Sens. 2020, 12, 2302. [Google Scholar] [CrossRef]
- Bassier, M.; Vergauwen, M.; Poux, F. Point Cloud vs. Mesh Features for Building Interior Classification. Remote Sens. 2020, 12, 2224. [Google Scholar] [CrossRef]
- Bassier, M.; Vergauwen, M. Topology Reconstruction of BIM Wall Objects from Point Cloud Data. Remote Sens. 2020, 12, 1800. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Lee, D. 3D Point Cloud and BIM-Based Reconstruction for Evaluation of Project by As-Planned and As-Built. Remote Sens. 2020, 12, 1457. [Google Scholar] [CrossRef]
- Andriasyan, M.; Moyano, J.; Nieto-Julián, J.E.; Antón, D. From Point Cloud Data to Building Information Modelling: An Automatic Parametric Workflow for Heritage. Remote Sens. 2020, 12, 1094. [Google Scholar] [CrossRef] [Green Version]
- Pierdicca, R.; Paolanti, M.; Matrone, F.; Martini, M.; Morbidoni, C.; Malinverni, E.S.; Frontoni, E.; Lingua, A.M. Point Cloud Semantic Segmentation Using a Deep Learning Framework for Cultural Heritage. Remote Sens. 2020, 12, 1005. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.; Khoshelham, K. Procedural Reconstruction of 3D Indoor Models from Lidar Data Using Reversible Jump Markov Chain Monte Carlo. Remote Sens. 2020, 12, 838. [Google Scholar] [CrossRef] [Green Version]
- Frías, E.; Díaz-Vilariño, L.; Balado, J.; Lorenzo, H. From BIM to Scan Planning and Optimization for Construction Control. Remote Sens. 2019, 11, 1963. [Google Scholar] [CrossRef] [Green Version]
- Bassier, M.; Vergauwen, M. Clustering of Wall Geometry from Unstructured Point Clouds Using Conditional Random Fields. Remote Sens. 2019, 11, 1586. [Google Scholar] [CrossRef] [Green Version]
- Tsilimantou, E.; Delegou, E.T.; Nikitakos, I.A.; Ioannidis, C.; Moropoulou, A. GIS and BIM as Integrated Digital Environments for Modeling and Monitoring of Historic Buildings. Appl. Sci. 2020, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Alhaidary, H.; Al-Tamimi, A.K.; Al-Wakil, H. The combined use of BIM, IR thermography and HFS for energy modelling of existing buildings and minimising heat gain through the building envelope: A case-study from a UAE building. Adv. Build. Energy Res. 2019, 1–24. [Google Scholar] [CrossRef]
- Coli, M.; Ciuffreda, A.L.; Micheloni, M. An Informative Content 3d Model for the Hall Holding the Resurrection of Christ by Piero Della Francesca Mural Painting at Sansepolcro, Italy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 2, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Bruno, S.; Fatiguso, F. Building conditions assessment of built heritage in historic building information modeling. Int. J. Sustain. Dev. Plan. 2018, 13, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Reina Ortiz, M.; Gutland, M.; Morris, M.; Napolitano, R.; Santana-Quintero, M.; Erochko, J.; Kawan, S. Digital Recording and Non Destructive Investigation of Nyatapola Temple after Gorkha Earthquake 2015. In Proceedings of the 19th ICOMOS General Assembly & Scientific Symposium 2017, New Delhi, India, 11–15 December 2017. [Google Scholar]
- Barazzetti, L.; Banfi, F.; Brumana, R.; Previtali, M.; Roncoroni, F. BIM from Laser Scans… Not Just for Buildings: Nurbs-Based Parametric Modeling of a Medieval Bridge. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 51–56. [Google Scholar] [CrossRef]
- Lagüela, S.; Díaz-Vilariño, L.; Armesto, J.; Arias, P. Non-destructive approach for the generation and thermal characterization of an as-built BIM. Constr. Build. Mater. 2014, 51, 55–61. [Google Scholar] [CrossRef]
- Gomes, S.A. The Monastery of Our Lady of Victory in the 15th Century (in Portuguese: O Mosteiro de Santa Maria da Vitória no Século XV). Master’s Thesis, Faculty of Humanities of University of Coimbra, Institute of Art History, Coimbra, Portugal, 1990. [Google Scholar]
- Soares, C. The Restoration of Monastery of Batalha: Historic Quarries, Building Site and Master Masons (in Portuguese: O Restauro do Mosteiro da Batalha: Pedreiras Históricas, Estaleiro de Obras e Mestres Canteiros); Magno Edições: Leiria, Portugal, 2001. [Google Scholar]
- Aires-Barros, L.A.; Baptista Neto, M.J.; Soares, C. The Monastery of Batalha (Portugal): Restoration Works and Historic Quarries, a Preliminary Study. In IV Congreso Internacional de Rehabilitación del Patrimonio Arquitectónico y Edificación; CICOP: La Habana, Cuba, 1998; pp. 384–386. [Google Scholar]
- Trimble. eCognition Developer: User Guide; Trimble: Munich, Germany, 2019. [Google Scholar]
- Sandmeier, K.J. ReflexW Manual. Available online: https://www.sandmeier-geo.de (accessed on 30 July 2020).
- Solla, M.; González-Jorge, H.; Álvarez, M.X.; Arias, P. Application of non-destructive geomatic techniques and FDTD modeling to metrical analysis of stone blocks in a masonry wall. Constr. Build. Mater. 2012, 36, 14–19. [Google Scholar] [CrossRef]
- Lagüela, S.; Solla, M.; Puente, I.; Prego, F.J. Joint use of GPR, IRT and TLS techniques for the integral damage detection in paving. Constr. Build. Mater. 2018, 174, 749–760. [Google Scholar] [CrossRef]
- Avdelidis, N.; Moropoulou, A. Applications of infrared thermography for the investigation of historic structures. J. Cult. Herit. 2004, 5, 119–127. [Google Scholar] [CrossRef]
- Khoshelham, K.; Díaz-Vilariño, L. 3D Modelling of Interior Spaces: Learning the Language of Indoor Architecture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Puente, I.; Solla, M.; González-Jorge, H.; Arias, P. NDT Documentation and Evaluation of the Roman Bridge of Lugo Using GPR and Mobile and Static LiDAR. J. Perform. Constr. Facil. 2015, 29. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, J.; Puente, I. A Novel Baseline-Based Method to Detect Local Structural Changes in Masonry Walls Using Dense Terrestrial Laser Scanning Point Clouds. IEEE Sens. J. 2020, 20, 6504–6515. [Google Scholar] [CrossRef]
- Puente, I.; Lindenbergh, R.; Van Natijne, A.; Esposito, R.; Schipper, R. Monitoring of Progressive Damage in Buildings Using Laser Scan Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 923–929. [Google Scholar] [CrossRef] [Green Version]
- Laser Scanner Faro Focus 3D X330—User’s Manual. Faro Technologies, Inc. Available online: http://www2.faro.com/ (accessed on 24 July 2020).
- Gomes, S.A. Parochial News and Memories of the Eighteenth Century–3: Batalha (in Portuguese: Notícias e Memórias Paroquiais Setecentistas–3: Batalha); Palimage and Centro de História da Sociedade e da Cultura: Coimbra, Portugal, 2005; Volume 3. [Google Scholar]
Frequency | 2300 MHz | 800 MHz | 500 MHz |
---|---|---|---|
Trace-interval (m) | 0.01 | 0.01 | 0.02 |
Time window (ns) | 15 | 35 | 75 |
Samples/trace | 520 | 512 | 512 |
Filtering | 2300 MHz | 800 MHz | 500 MHz |
---|---|---|---|
Time-zero correction | -- | -- | -- |
Dewow | 0.44 ns | 1.25 ns | 2 ns |
Gain function | Linear: 10 Exponential: 10 | Linear: 2 Exponential: 2 | Linear: 2 Exponential: 2 |
Background removal | -- | -- | -- |
Band-pass (Butterworth) | Low cut: 1600 MHzHigh cut: 4600 MHz | Not applied | Not applied |
Migration (Kirchhoff) | Velocity: 12.4 cm/ns (summation width: 10) |
Pt1 | Pt2 | BCr1 | BCr2 | NP | Ua | |
---|---|---|---|---|---|---|
Pt1 | 38 | 24 | 2 | 0 | 0 | 59% |
Pt2 | 5 | 44 | 0 | 5 | 5 | 75% |
BCr1 | 0 | 1 | 47 | 3 | 0 | 92% |
BCr2 | 0 | 2 | 7 | 52 | 1 | 84% |
NP | 0 | 3 | 1 | 9 | 40 | 75% |
Pa | 88% | 59% | 82% | 75% | 87% | |
Oa = 76.5%; k = 0.71 |
Pathologies | Manual Classification | Automatic Classification | ||
---|---|---|---|---|
m2 | % | m2 | % | |
Pt1 | 278.05 | 21.65 | 74.94 | 5.85 |
Pt2 | 354.52 | 27.67 | ||
BCr1 | 658.66 | 51.29 | 421.17 | 32.87 |
BCr2 | 239.34 | 18.68 | ||
NP | 264.08 | 20.56 | 191.34 | 14.93 |
Sd | 39.16 | 3.05 | - | - |
Av | 4.71 | 0.37 | - | - |
BCo | 36.83 | 2.87 | - | - |
Ms | 2.64 | 0.21 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solla, M.; Gonçalves, L.M.S.; Gonçalves, G.; Francisco, C.; Puente, I.; Providência, P.; Gaspar, F.; Rodrigues, H. A Building Information Modeling Approach to Integrate Geomatic Data for the Documentation and Preservation of Cultural Heritage. Remote Sens. 2020, 12, 4028. https://doi.org/10.3390/rs12244028
Solla M, Gonçalves LMS, Gonçalves G, Francisco C, Puente I, Providência P, Gaspar F, Rodrigues H. A Building Information Modeling Approach to Integrate Geomatic Data for the Documentation and Preservation of Cultural Heritage. Remote Sensing. 2020; 12(24):4028. https://doi.org/10.3390/rs12244028
Chicago/Turabian StyleSolla, Mercedes, Luisa M. S. Gonçalves, Gil Gonçalves, Carina Francisco, Iván Puente, Paulo Providência, Florindo Gaspar, and Hugo Rodrigues. 2020. "A Building Information Modeling Approach to Integrate Geomatic Data for the Documentation and Preservation of Cultural Heritage" Remote Sensing 12, no. 24: 4028. https://doi.org/10.3390/rs12244028
APA StyleSolla, M., Gonçalves, L. M. S., Gonçalves, G., Francisco, C., Puente, I., Providência, P., Gaspar, F., & Rodrigues, H. (2020). A Building Information Modeling Approach to Integrate Geomatic Data for the Documentation and Preservation of Cultural Heritage. Remote Sensing, 12(24), 4028. https://doi.org/10.3390/rs12244028