Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations
Abstract
:1. Introduction
2. Observations and Data Sets
2.1. Detection of Fire Pixels by MODIS
2.2. CO Measurements from IASI
2.3. Aerosols Measurements from Ground
2.3.1. Sun-Photometer Data
2.3.2. IPEN LiDAR at Sao Paulo
2.3.3. The Picarro Instrument
2.4. FLEXPART Model
3. Results
3.1. Fire Records from MODIS
3.2. Carbon Monoxide and AOD Variations
4. Transatlantic Transport
4.1. Evidence from CO and Aerosol Distributions
CO from ground-based observations at Cape Point
4.2. Transport and FLEXPART Simulations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alves, N.D.O.; Vessoni, A.T.; Quinet, A.; Fortunato, R.S.; Kajitani, G.S.; Peixoto, M.S.; Hacon, S.D.S.; Artaxo, P.; Saldiva, P.; Menck, C.F.M.; et al. Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Artaxo, P.; Martins, J.V.; Yamasoe, M.A.; Procópio, A.S.; Pauliquevis, T.M.; Andreae, M.O.; Guyon, P.; Gatti, L.V.; Leal, A.M.C. Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J. Geophys. Res. Space Phys. 2002, 107, LBA 49-1. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Carmichael, G.R. Modeling the Influence of Fires on Atmospheric Chemistry, in Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires; John Wiley: New York, NY, USA, 1993; pp. 89–106. [Google Scholar]
- Thompson, A.M.; Balashov, N.V.; Witte, J.C.; Coetzee, J.G.R.; Thouret, V.; Posny, F. Tropospheric ozone increases over the southern Africa region: Bellwether for rapid growth in Southern Hemisphere pollution? Atmos. Chem. Phys. Discuss. 2014, 14, 9855–9869. [Google Scholar] [CrossRef] [Green Version]
- Bertschi, I.T.; Jaffe, D.A.; Jaegle, L.; Price, H.; Dennison, J.B. PHOBEA/ITCT 2002 airborne observations of transpacific transport of ozone, CO, volatile organic compounds, and aerosols to the northeast Pacific: Impacts of Asian anthropogenic and Siberian boreal fire emissions. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef]
- Clain, G.; Baray, J.L.; Delmas, R.; Diab, R.; Leclair de Bellevue, J.; Keckhut, P.; Posny, F.; Metzger, J.M.; Cammas, J.P. Tropospheric ozone climatology at two Southern Hemisphere tropical/subtropical sites, (Reunion Island and Irene, South Africa) from ozonesondes, LIDAR, and in situ aircraft measurements. Atmos. Chem. Phys. 2009, 9, 1723–1734. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.C.; Nicely, J.M.; Salawitch, R.J.; Canty, T.P.; Dickerson, R.R.; Hanisco, T.F.; Wolfe, G.M.; Apel, E.C.; Atlas, E.; Bannan, T.; et al. A pervasive role for biomass burning in tropical high ozone/low water structures. Nat. Commun. 2016, 7, 10267. [Google Scholar] [CrossRef] [Green Version]
- Duflot, V.; Dils, B.; Baray, J.-L.; De Mazière, M.; Attié, J.L.; Vanhaelewyn, G.; Senten, C.; Vigouroux, C.; Clain, G.; Delmas, R. Analysis of the origin of the distribution of CO in the subtropical southern Indian Ocean in 2007. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P.P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Bencherif, H.; Portafaix, T.; Baray, J.-L.; Morel, B.; Baldy, S.; Leveau, J.; Hauchecorne, A.; Keckhut, P.; Moorgawa, A.; Michaelis, M.; et al. LIDAR observations of lower stratospheric aerosols over South Africa linked to large scale transport across the southern subtropical barrier. J. Atmos. Sol. Terr. Phys. 2003, 65, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Anonymous Review of “Long-range isentropic transport of stratospheric aerosols over Southern Hemisphere following the Calbuco eruption in April 2015”. Atmos. Chem. Phys. 2017, 17, 15019–15036. [CrossRef]
- Bègue, N.; Shikwambana, L.; Bencherif, H.; Pallotta, J.; Sivakumar, V.; Wolfram, E.; Mbatha, N.; Orte, F.; Du Preez, D.J.; Ranaivombola, M.; et al. Statistical analysis of the long-range transport of the 2015 Calbuco volcanic plume from ground-based and space-borne observations. Ann. Geophys. 2020, 38, 395–420. [Google Scholar] [CrossRef] [Green Version]
- Duflot, V.; Royer, P.; Chazette, P.; Baray, J.-L.; Courcoux, Y.; Delmas, R. Marine and biomass burning aerosols in the southern Indian Ocean: Retrieval of aerosol optical properties from shipborne lidar and Sun photometer measurements. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, C. Méthodologie de détection des feux de forêt à partir d’images satellitaires NOAA. Master’s Thesis, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada, 2001. [Google Scholar]
- Kaufman, Y.J.; Justice, C.O.; Flynn, L.P.; Jendall, J.D.; Prins, E.M.; Giglio, L.; Ward, D.E.; Menzel, W.P.; Setzer, A.W. Monitoring global fire monitoring from EOS-MODIS. J. Geophys. Res. 1998, 103, 315–338. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote. Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.; Turquety, S.; et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 2009, 9, 6041–6054. [Google Scholar] [CrossRef] [Green Version]
- George, M.; Clerbaux, C.; Hurtmans, D.; Turquety, S.; Coheur, P.-F.; Pommier, M.; Hadji-Lazaro, J.; Edwards, D.P.; Worden, H.; Luo, M.; et al. Carbon monoxide distributions from the IASI/METOP mission: Evaluation with other space-borne remote sensors. Atmos. Chem. Phys. 2009, 9, 8317–8330. [Google Scholar] [CrossRef] [Green Version]
- Turquety, S.; Hurtmans, J.D.; Hadji-Lazaro, P.-F.; Coheur, C.; Clerbaux, D.; Josset, C.T. Tracking the emission and transport of pollution from wildfires using the IASI CO retrievals: Analysis of the summer 2007 Greek fires. Atmos. Chem. Phys. 2009, 9, 4897–4913. [Google Scholar] [CrossRef] [Green Version]
- Nechita-Banda, N.; Krol, M.; Van Der Werf, G.R.; Kaiser, J.W.; Pandey, S.; Huijnen, V.; Clerbaux, C.; Coheur, P.; Deeter, M.N.; Röckmann, T. Monitoring emissions from the 2015 Indonesian fires using CO satellite data. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170307. [Google Scholar] [CrossRef] [Green Version]
- Turquety, S.; Menut, L.; Siour, G.; Mailler, S.; Hadji-Lazaro, J.; George, M.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F. APIFLAME v2.0 biomass burning emissions model: Impact of refined input parameters on atmospheric concentration in Portugal in summer 2016. Geosci. Model Dev. 2020, 13, 2981–3009. [Google Scholar] [CrossRef]
- Holben, B.; Eck, T.; Slutsker, I.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.; Kaufman, Y.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote. Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, Y. Accuracy assessment of aerosol optical properties retrieval from AERONET sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 9791–9806. [Google Scholar] [CrossRef] [Green Version]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, I.; Slutsker, N.T.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; O’Neill, N.T.; Schafer, J.S.; Dubovik, O.; Smirnov, A.; Yamasoe, M.A.; Artaxo, P. High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Hauchecorne, A.; Chanin, M.L. Density and temperature profiles obtained by lidar between 35 and 70km. Geophys. Res. Lett. 1980, 7, 565–568. [Google Scholar] [CrossRef]
- Lopes, F.; Silva, J.J.; Marrero, J.C.A.; Taha, G.; Landulfo, E. Synergetic Aerosol Layer Observation After the 2015 Calbuco Volcanic Eruption Event. Remote. Sens. 2019, 11, 195. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Rascado, J.L.; Landulfo, E.; Antuña, J.C.; Barbosa, H.D.M.J.; Barja, B.; Bastidas, Á.E.; Bedoya, A.E.; Da Costa, R.F.; Estevan, R.; Forno, R.; et al. Latin American Lidar Network (LALINET) for aerosol research: Diagnosis on network instrumentation. J. Atmos. Sol. Terr. Phys. 2016, 138, 112–120. [Google Scholar] [CrossRef]
- Labuschagne, C.; Kuyper, B.; Brunke, E.-G.; Mokolo, T.; van der Spuy, D.; Martin, L.; Parker, B.; Khan, M.A.H.; Joubert, W.; Coleman, M.T.D.; et al. A review of four decades of atmospheric trace gas measurements at Cape Point, South Africa. Transact. R. Soc. S. Afr. 2018. [Google Scholar] [CrossRef]
- Brunke, E.-G.; Labuschagne, C.; Parker, B.; Scheel, H.; Whittlestone, S. Baseline air mass selection at Cape Point, South Africa: Application of 222Rn and other filter criteria to CO2. Atmos. Environ. 2004, 38, 5693–5702. [Google Scholar] [CrossRef]
- Whittlestone, S.; Kowalczyk, E.; Brunke, E.G.; Labuschagne, C. Source regions for CO2 at Cape Point assessed by modelling, 222Rn and meteorological data; South African Weather Service: Pretoria, South Africa, 2009; ISBN 978-0-9584463-9-6. [Google Scholar]
- Chen, H.; Karion, A.; Rella, C.W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P.P. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique. Atmos. Meas. Tech. 2013, 6, 1031–1040. [Google Scholar] [CrossRef] [Green Version]
- Pisso, I.; Sollum, E.; Grythe, H.; Kristiansen, N.I.; Cassiani, M.; Eckhardt, S.; Arnold, D.; Morton, D.; Thompson, R.L.; Zwaaftink, C.D.G.; et al. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev. 2019, 12, 4955–4997. [Google Scholar] [CrossRef] [Green Version]
- Thakur, J.; Thever, P.; Gharai, B.; Sai, M.S.; Pamaraju, V. Enhancement of carbon monoxide concentration in atmosphere due to large scale forest fire of Uttarakhand. PeerJ 2019, 7, e6507. [Google Scholar] [CrossRef] [PubMed]
- Lutsch, E.; Dammers, E.; Conway, S.; Strong, K. Long-range transport of NH3, CO, HCN, and C2H6 from the 2014 Canadian Wildfires. Geophys. Res. Lett. 2016, 43, 8286–8297. [Google Scholar] [CrossRef]
- Paris, J.-D.; Stohl, A.; Nédélec, P.; Arshinov, M.Y.; Panchenko, M.V.; Shmargunov, V.P.; Law, K.S.; Belan, B.D.; Ciais, P. Wildfire smoke in the Siberian Arctic in summer: Source characterization and plume evolution from airborne measurements. Atmos. Chem. Phys. 2009, 9, 9315–9327. [Google Scholar] [CrossRef] [Green Version]
- Damoah, R.; Spichtinger, N.; Forster, C.; James, P.; Mattis, I.; Wandinger, U.; Beirle, S.; Wagner, T.; Stohl, A. Around the world in 17 days—Hemispheric-scale transport of forest fire smoke from Russia in May 2003. Atmos. Chem. Phys. 2004, 4, 1311–1321. [Google Scholar] [CrossRef] [Green Version]
- Landulfo, E.; Larroza, E.G.; Lopes, F.; Hoareau, C. A preliminary classification of cirrus clouds over Sao Paulo city by systematic lidar observations and comparison with CALIPSO and AERONET data. SPIE Eur. Remote Sens. 2009, 7475, 747506. [Google Scholar] [CrossRef]
- Toihir, A.; Venkataraman, S.; Mbatha, N.; Sangeetha, S.; Bencherif, H.; Brunke, E.-G.; Labuschagne, C.; Sivakumar, V. Studies on CO variation and trends over South Africa and the Indian Ocean using TES satellite data. South Afr. J. Sci. 2015, 111. [Google Scholar] [CrossRef] [Green Version]
- Du Preez, D.J.; Bencherif, H.; Bègue, N.; Clarisse, L.; Hoffman, R.F.; Wright, C.Y. Investigating the Large-Scale Transport of a Volcanic Plume and the Impact on a Secondary Site. Atmosphere 2020, 11, 548. [Google Scholar] [CrossRef]
- Edwards, D.P.; Pétron, G.; Novelli, P.C.; Emmons, L.K.; Gille, J.C.; Drummond, J.R. Southern Hemisphere carbon monoxide interannual variability observed by Terra/(MOPITT). J. Geophys. Res. 2006, 111, D16303. [Google Scholar] [CrossRef] [Green Version]
- Leovy, C.; Sun, C.-R.; Hitchman, M.; Remsberg, E.E.; Russell, J.; Gordley, L.; Gille, J.; Lyjak, L. Transport of Ozone in the Middle Stratosphere: Evidence for Planetary Wave Breaking. J. Atmos. Sci. 1985, 42, 230–244. [Google Scholar] [CrossRef]
- Homeyer, C.R.; Bowman, K.P. Rossby Wave Breaking and Transport between the Tropics and Extratropics above the Subtropical Jet. J. Atmos. Sci. 2013, 70, 607–626. [Google Scholar] [CrossRef]
- Bencherif, H.; El Amraoui, L.; Semane, N.; Massart, S.; Charyulu, D.V.; Hauchecorne, A.; Peuch, V.-H. Examination of the 2002 major warming in the southern hemisphere using ground-based and Odin/SMR assimilated data: Stratospheric ozone distributions and tropic/mid-latitude exchange. Can. J. Phys. 2007, 85, 1287–1300. [Google Scholar] [CrossRef]
- Semane, N.; Bencherif, H.; Morel, B.; Hauchecorne, A.; Diab, R.D. An unusual stratospheric ozone decrease in the Southern Hemisphere subtropics linked to isentropic air-mass transport as observed over Irene (25.5°S, 28.1°E) in mid-May 2002. Atmos. Chem. Phys. 2006, 6, 1927–1936. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, V.; Morel, B.; Bencherif, H.; Baray, J.L.; Baldy, S.; Hauchecorne, A.; Rao, P.B. Rayleigh lidar observation of a warm stratopause over a tropical site, Gadanki (13.5°N; 79.2°E). Atmos. Chem. Phys. 2004, 4, 1989–1996. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, Y.; Matthias, V.; Miyoshi, Y.; Stolle, C.; Siddiqui, T.; Kervalishvili, G.; Laštovička, J.; Kozubek, M.; Ward, W.; Themens, D.R.; et al. September 2019 Antarctic Sudden Stratospheric Warming: Quasi-6-Day Wave Burst and Ionospheric Effects. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bencherif, H.; Bègue, N.; Kirsch Pinheiro, D.; du Preez, D.J.; Cadet, J.-M.; da Silva Lopes, F.J.; Shikwambana, L.; Landulfo, E.; Vescovini, T.; Labuschagne, C.; et al. Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. Remote Sens. 2020, 12, 3846. https://doi.org/10.3390/rs12223846
Bencherif H, Bègue N, Kirsch Pinheiro D, du Preez DJ, Cadet J-M, da Silva Lopes FJ, Shikwambana L, Landulfo E, Vescovini T, Labuschagne C, et al. Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. Remote Sensing. 2020; 12(22):3846. https://doi.org/10.3390/rs12223846
Chicago/Turabian StyleBencherif, Hassan, Nelson Bègue, Damaris Kirsch Pinheiro, David Jean du Preez, Jean-Maurice Cadet, Fábio Juliano da Silva Lopes, Lerato Shikwambana, Eduardo Landulfo, Thomas Vescovini, Casper Labuschagne, and et al. 2020. "Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations" Remote Sensing 12, no. 22: 3846. https://doi.org/10.3390/rs12223846
APA StyleBencherif, H., Bègue, N., Kirsch Pinheiro, D., du Preez, D. J., Cadet, J. -M., da Silva Lopes, F. J., Shikwambana, L., Landulfo, E., Vescovini, T., Labuschagne, C., Silva, J. J., Anabor, V., Coheur, P. -F., Mbatha, N., Hadji-Lazaro, J., Sivakumar, V., & Clerbaux, C. (2020). Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. Remote Sensing, 12(22), 3846. https://doi.org/10.3390/rs12223846