Identification of Mung Bean in a Smallholder Farming Setting of Coastal South Asia Using Manned Aircraft Photography and Sentinel-2 Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analysis Framework
2.3. Satellite Image Preprocessing
2.4. Segmentation of Multi-Temporal Images
2.5. In Situ Data
2.5.1. Aerial Photos
2.5.2. Ground Data Collection
2.5.3. Visual Interpretation of Sentinel-2 Imagery
2.5.4. Google Earth and World Imagery
2.6. Quality Control of Crop Type Training Data
2.7. Identification of Cropland and Mung Bean
2.8. Classification Accuracy Assessment
2.9. Classification Scenarios
3. Results
3.1. Generation of the In Situ Data Set
3.2. Segmentation Results and Feature Scores
3.3. Classification Results
3.4. Comparison with District Level Crop Area Statistics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- GA UN. Transforming Our World: The 2030 Agenda for Sustainable Development; Division for Sustainable Development Goals: New York, NY, USA, 2015. [Google Scholar]
- Kubitza, C.; Krishna, V.V.; Schulthess, U.; Jain, M. Estimating adoption and impacts of agricultural management practices in developing countries using satellite data. A scoping review. Agron. Sustain. Dev. 2020, 40, 1–21. [Google Scholar] [CrossRef]
- See, L.; Fritz, S.; You, L.; Ramankutty, N.; Herrero, M.; Justice, C.; Becker-Reshef, I.; Thornton, P.; Erb, K.; Gong, P. Improved global cropland data as an essential ingredient for food security. Glob. Food Secur. 2015, 4, 37–45. [Google Scholar] [CrossRef]
- Saha, U.R.; Chattapadhayay, A.; Richardus, J.H. Trends, prevalence and determinants of childhood chronic undernutrition in regional divisions of Bangladesh: Evidence from demographic health surveys, 2011 and 2014. PLoS ONE 2019, 14, e0220062. [Google Scholar] [CrossRef] [Green Version]
- Miah, M.M.; Alam, Q.; Sarker, A.; Aktar, M. Socio-economic Impact of Pulse Research in Some Selected Areas of Bangladesh. Asia Pac. J. Rural Dev. 2009, 19, 115–142. [Google Scholar] [CrossRef]
- Shanmugasundaram, S.; Keatinge, J.; Hughes, J.d.A. The mungbean transformation: Diversifying crops, defeating malnutrition. Proven Successes Agric. Dev. 2009, 381–405. [Google Scholar]
- Bilal, A.; Rakha, A.; Butt, M.S.; Shahid, M. Nutritional and physicochemical attributes of cowpea and mungbean based weaning foods. Pak. J. Agric. Sci. 2017, 54, 653–662. [Google Scholar]
- Islam, Q.S.; Rahman, M.; Hossain, M.; Hossain, M. Economic analysis of mungbean (vigna radiata) cultivation in some coastal areas of Bangladesh. Bangladesh J. Agric. Res. 2011, 36, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M. Country report: Bangladesh. In Proceedings of the ADBI-APO Workshop on Climate Change and its Impact on Agric, Seoul, Korea, 13–16 December 2011; pp. 1–18. [Google Scholar]
- BBS. Statistical Year Book of Bangladesh; Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2019.
- Rahman, S.; Rahman, M. Impact of land fragmentation and resource ownership on productivity and efficiency: The case of rice producers in Bangladesh. Land Use Policy 2009, 26, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Ahmed, Z.U.; Schulthess, U.C.; Kamal, M.; Rai, R. Detecting functional field units from satellite images in smallholder farming systems using a deep learning based computer vision approach: A case study from Bangladesh. Remote Sens. Appl. Soc. Environ. 2020, 20, 100413. [Google Scholar] [CrossRef]
- Aravindakshan, S.; Krupnik, T.J.; Groot, J.C.; Speelman, E.N.; Amjath-Babu, T.; Tittonell, P. Multi-level socioecological drivers of agrarian change: Longitudinal evidence from mixed rice-livestock-aquaculture farming systems of Bangladesh. Agric. Syst. 2020, 177, 102695. [Google Scholar] [CrossRef]
- Haque, S. Salinity problems and crop production in coastal regions of Bangladesh. Pak. J. Bot. 2006, 38, 1359–1365. [Google Scholar]
- Krupnik, T.J.; Schulthess, U.; Ahmed, Z.U.; McDonald, A.J. Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential. Land Use Policy 2017, 60, 206–222. [Google Scholar] [CrossRef] [Green Version]
- Mottaleb, K.A.; Krupnik, T.J.; Erenstein, O. Factors associated with small-scale agricultural machinery adoption in Bangladesh: Census findings. J. Rural Stud. 2016, 46, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sens. Environ. 2019, 221, 551–568. [Google Scholar] [CrossRef]
- SNAP. ESA Sentinel Application Platform v7.0. Available online: http://step.esa.int (accessed on 15 January 2020).
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Nitze, I.; Schulthess, U.; Asche, H. Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification. In Proceedings of the 4th Geobia, Rio de Janeiro, Brazil, 7–9 May 2012; pp. 35–40. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef] [Green Version]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Poulton, P.; Dalgliesh, N. Evaluating use of remote sensing for identifying management strategies: Example for small plot farmers during the dry season in southern Bangladesh. In Proceedings of the 14th Agronomy Conference, Adelaide, Australia, 21–25 September 2008; pp. 21–25. Available online: http://www.agronomyaustraliaproceedings.org/images/sampledata/2008/concurrent/agronomy-abroad/5754_poultonpl.pdf (accessed on 4 November 2020).
- Schulthess, U.; Krupnik, T.; Ahmed, Z.; McDonald, A. Technology targeting for sustainable intensification of crop production in the delta region of bangladesh. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015. [Google Scholar] [CrossRef] [Green Version]
- Schulthess, U.; Timsina, J.; Herrera, J.; McDonald, A. Mapping field-scale yield gaps for maize: An example from Bangladesh. Field Crop Res. 2013, 143, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Gumma, M.K.; Thenkabail, P.S.; Maunahan, A.; Islam, S.; Nelson, A. Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500 m data for the year 2010. ISPRS J. Photogramm. Remote Sens. 2014, 91, 98–113. [Google Scholar] [CrossRef]
- Shew, A.M.; Ghosh, A. Identifying Dry-Season Rice-Planting Patterns in Bangladesh Using the Landsat Archive. Remote Sens. 2019, 11, 1235. [Google Scholar] [CrossRef] [Green Version]
- Singha, M.; Dong, J.; Sarmah, S.; You, N.; Zhou, Y.; Zhang, G.; Doughty, R.; Xiao, X. Identifying floods and flood-affected paddy rice fields in Bangladesh based on Sentinel-1 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 166, 278–293. [Google Scholar] [CrossRef]
- Bhagia, N.; Bairagi, G.; Pandagre, S.; Patel, G.; Vyas, S.; Kumar, G.N.; Ramteke, I.; Mesharam, P. National Inventory of Rabi Pulses in India Using Remotely Sensed Data. J. Indian Soc. Remote Sens. 2017, 45, 285–295. [Google Scholar] [CrossRef]
- Schulthess, U.; Ahmed, Z.U.; Aravindakshan, S.; Rokon, G.M.; Kurishi, A.A.; Krupnik, T.J. Farming on the fringe: Shallow groundwater dynamics and irrigation scheduling for maize and wheat in Bangladesh’s coastal delta. Field Crop Res. 2019, 239, 135–148. [Google Scholar] [CrossRef]
- Islam, M.R. Crop Diversification in Cyclone Sidr Affected Southern Bangladesh; Food and Agriculture Organization of The United Nations: Dhaka, Bangladesh, 2012. [Google Scholar]
- Anon. Google Earth Engine Guides. Available online: https://developers.google.com/earth-engine/tutorials/tutorial_api_05 (accessed on 4 November 2020).
- Muller-Wilm, U.; Louis, J.; Richter, R.; Gascon, F.; Niezette, M. Sentinel-2 level 2A prototype processor: Architecture, algorithms and first results. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013; pp. 9–13. [Google Scholar]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Escadafal, R. Remote sensing of arid soil surface color with Landsat thematic mapper. Adv. Space Res. 1989, 9, 159–163. [Google Scholar] [CrossRef]
- Pouget, M.; Madeira, J.; Le Floch, E.; Kamal, S. Caracteristiques spectrales des surfaces sableuses de la region cotiere nord-ouest de l’Egypte: Application aux donnees satellitaires SPOT. In Journee de Teledetection Caractérisation et Suivi des Milieux Terrestres en Régions Arides et Tropicales; ORSTOM: Paris, France, 1990; Volume 12, pp. 27–39. [Google Scholar]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung XII: Beiträge Zum AGIT-Symposium Salzburg; Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23. [Google Scholar]
- JeffreyCoker, F.; Basinger, M.; Modi, V. Open Data Kit: Implications for the Use of Smartphone Software Technology for Questionnaire Studies in International Development. Available online: https://qsel.columbia.edu/assets/uploads/blog/2013/06/Open-Data-Kit-Review-Article.pdf (accessed on 4 November 2020).
- OpenCV. Random Tree. Available online: https://docs.opencv.org/2.4/modules/ml/doc/random_trees.html?highlight=rtrees (accessed on 4 November 2020).
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Fritz, S.; Fonte, C.C.; See, L. The role of citizen science in earth observation. Remote Sens. 2017, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; See, L.; Perger, C.; McCallum, I.; Schill, C.; Schepaschenko, D.; Duerauer, M.; Karner, M.; Dresel, C.; Laso-Bayas, J. A global dataset of crowdsourced land cover and land use reference data. Sci. Data 2017, 4, 170075. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Neogi, M.G.; Mollah, M.F.H.; Salahuddin, A.K.M.; Amin, M.R.; Hamid, A. Socio-Economic and Biophysical Constraints of Dry Season Cropping in Tidal Floodplain of Bangladesh. J. Appl. Agric. Econ. Policy Anal. 2019, 2, 40–46. [Google Scholar]
- Waldner, F.; Defourny, P. Where can pixel counting area estimates meet user-defined accuracy requirements? Int. J. Appl. Earth Obs. Geoinf. 2017, 60, 1–10. [Google Scholar] [CrossRef]
- Brammer, H. The Physical Geography of Bangladesh; The University Press Limited (UPL): Dhaka, Bangladesh, 2012. [Google Scholar]
Indices | Name | Formula/Function | Type | Source |
---|---|---|---|---|
NDVI | Normalized Difference Vegetation Index | (B8 − B4)/(B8 + B4) | Vegetation | [37] |
EVI | Enhanced Vegetation index | 2.5 × (B8 − B4)/(1 + B8 + 6 × B4 − 7.5 × B2 + 10,000) | Vegetation | [38] |
GNDVI | Green Normalized Difference Vegetation Index | (B8 − B3)/(B8 + B3) | Vegetation | [39] |
SAVI | Soil Adjusted Vegetation Index | (1 + L) × (B8 − B4)/(B8 + B4 + L) | Vegetation | [40] |
BI | Brightness Index | sqrt(((B4 × B4) + (B3 × B3))/2) | Soil | [41] |
BI2 | The second Brightness Index | sqrt(((B4 × B4) + (B3 × B3) + (B8 × B8))/3) | Soil | [41] |
CI | Color Index | (B4 − B3)/(B4 + B3) | Soil | [42] |
NDWI | Normalized Difference Water Index | (B8 − B12)/(B8 + B12) | Water | [43] |
NDWI2 | The second Normalized Difference Water Index | (B3 − B8)/(B3 + B8) | Water | [44] |
Class | ODK + Aerial | ODK + Satellite Image | Aerial + Satellite Image | Satellite Image + Google Earth + Experience | Total Samples | Training | Test (without ODK Data) |
---|---|---|---|---|---|---|---|
Non-crop | 0 | 0 | 204 | 1830 | 2034 | 1356 | 678 |
Fallow | 34 | 9 | 678 | 179 | 900 | 600 | 300 |
Mung bean | 135 | 41 | 724 | 0 | 900 | 600 | 300 |
Other crop | 0 | 0 | 31 | 41 | 72 | 48 | 24 |
Rice | 11 | 16 | 234 | 180 | 441 | 294 | 147 |
Total | 180 | 66 | 1871 | 2230 | 4392 | 2898 | 1449 |
Class | Non-Crop | Crop | Total | User’s Accuracy |
---|---|---|---|---|
Non-crop | 662 | 7 | 669 | 0.99 |
Crop | 16 | 779 | 795 | 0.98 |
Total | 678 | 786 | 1464 | |
Producer’s accuracy | 0.98 | 0.99 |
Class | Other Crop | Mung Bean | Rice | Fallow | Total | User’s Accuracy |
---|---|---|---|---|---|---|
Other crop | 20 | 0 | 0 | 2 | 22 | 0.91 |
Mung bean | 0 | 297 | 0 | 6 | 303 | 0.98 |
Rice | 0 | 0 | 143 | 0 | 143 | 1.00 |
Fallow | 2 | 3 | 0 | 289 | 294 | 0.98 |
Total | 22 | 300 | 143 | 297 | 762 | |
Producer’s accuracy | 0.91 | 0.99 | 1.00 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, M.; Schulthess, U.; Krupnik, T.J. Identification of Mung Bean in a Smallholder Farming Setting of Coastal South Asia Using Manned Aircraft Photography and Sentinel-2 Images. Remote Sens. 2020, 12, 3688. https://doi.org/10.3390/rs12223688
Kamal M, Schulthess U, Krupnik TJ. Identification of Mung Bean in a Smallholder Farming Setting of Coastal South Asia Using Manned Aircraft Photography and Sentinel-2 Images. Remote Sensing. 2020; 12(22):3688. https://doi.org/10.3390/rs12223688
Chicago/Turabian StyleKamal, Mustafa, Urs Schulthess, and Timothy J. Krupnik. 2020. "Identification of Mung Bean in a Smallholder Farming Setting of Coastal South Asia Using Manned Aircraft Photography and Sentinel-2 Images" Remote Sensing 12, no. 22: 3688. https://doi.org/10.3390/rs12223688
APA StyleKamal, M., Schulthess, U., & Krupnik, T. J. (2020). Identification of Mung Bean in a Smallholder Farming Setting of Coastal South Asia Using Manned Aircraft Photography and Sentinel-2 Images. Remote Sensing, 12(22), 3688. https://doi.org/10.3390/rs12223688