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Abstract: Mung bean (Vigna radiata) plays an important role providing protein in the rice-based diet
of the people in Bangladesh. In the coastal division of Barisal, our study area, the average farm size is
less than 0.5 ha and individual fields measure about 0.10 ha. The availability of free Sentinel-2 optical
satellite data acquired at a 10 m ground sampling distance (GSD) may offer an opportunity to generate
crop area estimates in smallholder farming settings in South Asia. We combined different sources
of in situ data, such as aerial photographs taken from a low flying manned aircraft, data collected
on the ground, and data derived from satellite images to create a data set for a segment based
classification of mung bean. User’s accuracy for mung bean was 0.98 and producer’s accuracy was
0.99. Hence, the accuracy metrics indicate that the random tree classifier was able to identify mung
bean based on 10 m GSD data, despite the small size of individual fields. We estimated the mung
bean area for 2019 at 109,416 ha, which is about 40% lower than the Department of Agricultural
Extension estimates (183,480 ha), but more than four times higher than the 2019 data reported by the
Bangladesh Bureau of Statistics (26,612 ha). Further analysis revealed that crop production tends to be
clustered in the landscape by crop type. After merging adjacent segments by crop type, the following
average cluster sizes resulted: 1.62 ha for mung bean, 0.74 ha for rice (Oryza sativa), 0.68 ha for weedy
fallow and 0.40 ha for a category of other crops. This explains why 10 m GSD satellite data can be
used for the identification of predominant crops grown in specific regions of South Asia.

Keywords: smallholder farming; crop classification; field size; object based image analysis (OBIA);
random trees (RT); satellite image time series analysis

1. Introduction

Remote sensing can play an important role in monitoring indicators of agricultural production,
poverty, and malnutrition in consideration of the Sustainable Development Goals (SDG) 2030 agenda [1].
Geographic knowledge of where and how much of a crop is grown is crucial for productivity that
is prerequisite to food security, in terms of diversity of food supply and potential production in the
face of disasters. It can also provide a base line to measure the impact of development initiatives
and investments over time as farmers grow successive crops [2]. Cropped area estimates are also key
for national agricultural monitoring and statistical reporting, in addition to technology targeting in
development programs [3].

Barisal division of Bangladesh, located in the coastal Ganges-Brahmaputra delta, is home to more
than eight million people and measures 1,364,500 ha. Close to 40% of the region’s children are affected by
malnutrition and stunting [4]. Mung bean (Vigna radiata) is grown during the dry winter months within
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this region, both as a market oriented cash crop and for home consumption. Mung bean helps diversify
and add protein to the predominantly rice based diet of smallholder farmers in the coastal region [5–7].
It is usually grown as a broadcast ‘opportunity’ crop without intensive management or inputs other
than seed. As a species, it is however somewhat salinity and drought tolerant—traits of key interest in
the climate extreme prone coastal area [8,9]. Although growing in acreage, specific production estimates
for cropped mung bean area vary greatly. According to the 2019 data published by the Bangladesh
Bureau of Statistics (BBS) [10], total mung bean area was just 26,612 ha. However, according to data
obtained from Bangladesh’s Department of Agricultural Extension, cropped mung bean area was nearly
seven times greater, at about 183,480 ha in 2019. These discrepancies are important, and represent
differences in data collection methodologies, which can affect agricultural policy planner decisions and
investments in rural development initiatives.

The agricultural landscape in Barisal Division is similar to other regions in South Asia that rotate
winter season crops with monsoon season paddy rice production. They are densely populated and
farmers cultivate every square meter of land. Due to the tradition of splitting up the land among
the male children of the farm family, average farm size is about 0.3 ha and individual parcel sizes
measure 0.08 ha for small and 0.16 ha for medium farms [11]. In a study on field boundary delineation
conducted in Barisal division, [12] reported an average parcel size of 0.10 ha. Fields are separated
by bunds, usually about 0.25 m wide. Many fields can also generally only be accessed by foot.
Coastal Bangladesh is mostly flat and less than 3 m above sea level. The southern half of the division
is protected by polders, which are coastal embankments meant to protect villages and agricultural
fields against oceanic water intrusion and salinization [13]. Most of the land is however tidally flooded
during the monsoon season, as polder walls are in widespread disrepair. Flooding depth and duration
limit crop choices that can be grown during the winter months, as farmers have to wait for rice harvest
after the end of the monsoon rains until the fields are sufficiently drained to establish a subsequent
winter season crop. Premonsoon rainstorms that may begin as early as March determine the end of the
period during which non-rice crops can be cultivated in the winter. Estimates are that about 14% of the
cropland of Barisal Division remains fallow during the winter months, mostly due to salinity in the
coastal zone [14,15].

Road infrastructure in this region is also poor [16], with many roads being too narrow for regular
vehicles. As such, most smallholders’ parcels can be accessed only by foot. This makes ‘windshield’
surveys challenging; in addition, in situ data collection is time consuming. Considering these
issues, BBS uses two approaches to assess the extent of agricultural land under different crops [10].
The first is based on direct observation of crops in the field, though this approach is applied
only to major crops, such as rice, wheat, potato and jute. For minor crops, such as mung bean,
lentils (Lens culinaris) or grass pea (Lathyrus sativus L.) BBS conversely relies on household surveys.
In each union, the smallest administrative district, which typically measures 3200 ha, enumerators
interview five farmers. Resulting data are then aggregated to the next higher administrative unit,
using data from the previous or a normal year and their local expertise. Data are then reported at the
district level.

Satellite-based remote sensing has been proposed as a viable alternative for agricultural land use
and crop monitoring [17]. The availability of free satellite data and automated image preprocessing
toolboxes for atmospheric correction and cloud detection, such as SNAP [18], has opened new
opportunities for using time series of images for crop classification. The advantages of using time series
of optical imagery for land cover classification were described in a review by [19]. In an example from
the Canadian Prairies, [20] showed how classification accuracy increases with the number of images
used over a cropping season, when classifying crops at the field level. They also compared various
machine learning algorithms, such as random forest (RF) [21], artificial neural networks (ANN) [22,23]
and support vector machine (SVM) analyses [24] to the maximum likelihood algorithm. All machine
learning algorithms performed better than the maximum likelihood algorithm, and differences in
overall accuracies obtained with the machine learning algorithms became negligible with an increasing
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number of images used for the classification. Speed and ease of use are additional factors to be
considered when choosing a classifier. In a review of the RF classifier, [25] concluded that it requires
the setting of fewer parameters and also performs faster than other classifiers.

In Bangladesh, and especially in the coastal region, few remote sensing studies on crop identification
have been carried out. They mainly focused on fallow land identification or the distinction between
crop and pasture land [26]. In order to identify cropland categories including (i) fallow land, (ii) low
management intensity crops (primarily consisting of pulse crops) and (iii) and high management
intensity crops (such as wheat, boro rice, maize and mustard), [15,27] analyzed Landsat 5, 7 and 8
satellite images to train a RF classifier. Classification was based on an object-based image analysis
(OBIA) segmentation and used four input layers including the (i) mean of the digital numbers of
bands, (ii) texture (all direction), (iii) NDVI and (iv) the ratio of the NIR and visible bands. In another
study, OBIA segmentation of a RapidEye satellite image with a ground sampling distance (GSD) of
5 m was used to train an RF algorithm to identify maize fields for a yield gap analysis in Northern
Bangladesh [28]. However, most crop identification studies in Bangladesh have focused on rice. While
the size of individual rice paddies are small, it is grown in large contiguous areas and can therefore be
identified with MODIS [29], Landsat [30] or microwave [31]. In neighboring India, multi-date AWiFS
data were used to identify pulse crops [32]. In areas with contiguous acreage devoted to legumes,
they reached an accuracy of more than 95%, whereas in regions with scattered pulse fields, which are
analogous to the smallholder farming conditions of Southern Bangladesh, accuracies dropped to
50–81%. As to our knowledge, no previous research has been conducted on identifying mung bean or
any other minor crop using satellite data for coastal Bangladesh.

Our analysis focuses on the use of images collected with the Sentinel-2A and -2B satellites that are
freely available and have a GSD of 10 m. Since March of 2017, these satellites have covered the globe
at an interval of five days, thus opening up the opportunity to test the applicability of a time-series
approach based on Sentinel-2 data for crop classification in smallholder farmer settings, where fields
are smaller than in most other parts of the world. There is uncertainty regarding the accuracy of official
mung bean area estimates and remote sensing might provide a cost effective tool to improve crop
area estimates in Bangladesh, especially for the pulse crops that are grown during the rather cloud
free winter months. This paper responds to this opportunity and aims to (a) demonstrate a method
that integrates multi-source in situ data for crop identification in a region where access to fields is
challenging and time consuming and (b) to test the suitability of a multi-temporal, segmentation based
classification algorithm to identify mung bean with remotely sensed data.

2. Materials and Methods

2.1. Study Area

This study focuses on Barisal, one of eight administrative divisions of Bangladesh, which measures
1,364,500 ha, with a cropland area of 543,000 ha [15]. The division is divided into six districts named
Barguna, Barisal, Bhola, Jhalokati, Patuakhali and Pirojpur (Figure 1). During the rainy season from
June to November, most of the land is flooded and used for rice production. After rice harvest in
November and December, farmers grow grass pea (Lathyrus sativus), which is typically seeded into
the rice crop before harvest, lentil (Lens culinaris) and mung bean. In some areas, farmers may also
grow winter boro rice starting in February, but on limited land areas [15]. Grass pea reaches maturity
in February; after harvest, land is left fallow and the weeds take over. These fields are then typically
used for opportunistic grazing until they become inundated by monsoon rains starting in late April.
For this analysis, we did not distinguish between the land that is left fallow during the entire winter
rabi season or after grass pea harvest. For mung bean identification, we are focusing on the period from
February to April. We therefore consider all land not cultivated during this period as weedy fallow.

Mung bean is typically sown in early February and grown without irrigation. To preserve soil
moisture for germination, farmers till the soil and plant on the same day. However, early growth may
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be aided by occasional rains. Once established, mung bean mostly draws from the shallow (1–2 m
depth) water table for evapotranspiration during its growth period [33]. Harvest starts in late March
and continues through early May. Mung bean is an indeterminate crop and farmers will pick pods
2–3 times until senescence [34].

Figure 1. Map of Barisal division in costal Bangladesh with its six districts (a). The footprint of the two
Sentinel-2 tiles T45QZE and T45QZF, which limit the extent of our study area, is also shown (b).

2.2. Analysis Framework

We combined four sources of data in order to prepare the training and test data (Figure 2),
including (i) aerial photographs taken from a low flying aircraft, (ii) data collected on the ground,
based on selected photos from the aerial campaign, (iii) data derived from visual inspection of
Google Earth (Google, Mountain View, San Francisco, CA, United States) and ArcGIS (Version 10.7.1,
Environmental Systems Research Institute (ESRI), Redlands, CA, United States) World Imagery and
(iv) Sentinel-2 imagery. The data points with information on land use and crop type were linked to
the attribute table of Sentinel-2 derived segments. The resulting data set was split into two groups
including 66.6% of each class for training and the remainder for testing.

2.3. Satellite Image Preprocessing

All available Sentinel-2 images with less than 10% cloud cover acquired between February 6
and April 17 of 2019 were downloaded from the European Space Agency’s (ESA) Sentinel Scientific
Data Hub. We used the Sen2Cor atmospheric correction processor version 2.5.5 [35] of the Sentinel
Application Platform SNAP v7.0 distributed under the GNU general public license to calculate
bottom-of-atmosphere (BOA) reflectance. Given the small field sizes, we used only the four 10 m
bands B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) of Sentinel-2 for all subsequent analyses,
including the segmentation. Barisal division is almost fully covered by these two Sentinel tiles: T45QZE
and T45QZF. The 90◦ east meridian runs across our study area. The Sentinel-2 images in the UTM
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WGS84, zone 45 N projection provided a better coverage than those in zone 46. We therefore used
the former as a base for all analyses. In order to cover the entire mung bean growing season from
February to the end of April, images from February 6, March 8 and March 28 were selected (Figure 3).
Visual inspection, and the meta-data, revealed that they were cloud free. However, all April images
had some cloud cover. We used the images acquired on April 7, 17 and 22 to create a composite image,
applying a median filter to generate cloud free pixels [36]. We subsequently did a visual check of
the composite image and masked an area of 4397 ha area as cloudy. The image in early February
covered the sowing period. Mung bean reached canopy closure in late March and harvest starts in
April. Most mung bean varieties grown in Bangladesh are indeterminate, thus farmers can pick mung
bean 2–3 times until early May, depending on the pest, rainfall and waterlogging conditions.

Figure 2. Workflow of object-based machine learning approach for mung bean classification in Barisal
division in coastal Bangladesh.

Figure 3. Availability of Sentinel-2 images acquired during the mung bean growing season from
February 6 through April 22 of 2019 over the study area. Images marked with a black bold circle were
used for the analyses.

We used the Sentinel Application Platform (SNAP) to calculate the nine indices shown in Table 1.
The resulting data layers were mosaicked and clipped to the boundaries of Barisal division using ArcGIS.
The indices were developed to identify different water, soil and vegetation conditions. We needed
to separate water bodies from the cropland and the paddy rice from the other crops. We relied on
the normalized difference water index (NDWI) and the second normalized difference water index
(NDWI2) for this task. Farmers generally till the soil before sowing mung bean in order to control
the weeds and to prepare a seed bed. This results in bright and bare soil conditions, which can be
captured with the brightness index (BI) and the second brightness index (BI2), and the color index
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(Cl). We relied on four types of vegetation indices in order to characterize the canopies of the crops:
the normalized difference vegetation (NDVI), enhanced vegetation index (EVI), green normalized
difference vegetation index (GNDVI) and the soil adjusted vegetation index (SAVI).

Table 1. Vegetation, soil and water indices derived from Sentinel-2 images. The resulting information
layers were used for segmentation and classification images during the mung bean growing season
from February 6 through April 17 of 2019 in Barisal division of coastal Bangladesh.

Indices Name Formula/Function Type Source

NDVI Normalized Difference
Vegetation Index (B8 − B4)/(B8 + B4) Vegetation [37]

EVI Enhanced Vegetation index 2.5 × (B8 − B4)/(1 + B8 + 6 × B4
− 7.5 × B2 + 10,000) Vegetation [38]

GNDVI Green Normalized Difference
Vegetation Index (B8 − B3)/(B8 + B3) Vegetation [39]

SAVI Soil Adjusted Vegetation Index (1 + L) × (B8 − B4)/(B8 + B4 + L) Vegetation [40]
BI Brightness Index sqrt(((B4 × B4) + (B3 × B3))/2) Soil [41]

BI2 The second Brightness Index sqrt(((B4 × B4) + (B3 × B3) + (B8
× B8))/3) Soil [41]

CI Color Index (B4 − B3)/(B4 + B3) Soil [42]

NDWI Normalized Difference Water
Index (B8 − B12)/(B8 + B12) Water [43]

NDWI2 The second Normalized
Difference Water Index (B3 − B8)/(B3 + B8) Water [44]

2.4. Segmentation of Multi-Temporal Images

Initial analyses showed that the major challenge was to distinguish weedy fallow land from mung
bean. These two species dominate the cropland area. Weedy fallow often succeeds grass pea and is
grazed frequently. In order to create segments that separate the two types, we used a total of five
layers including the time series of NDVI layers of the four images and EVI from the cloud free April
mosaic. EVI has previously been used to successfully separate low input crops from fallow land in
this region [15,27]. We used eCognition Developer (V9.5.1, Trimble Geospatial, Sunnyvale, CA, USA)
to create the segments with the multi-resolution segmentation algorithm [45]. This region growing
algorithm starts from the pixel level and iteratively aggregates pixels successively into objects until
a condition of homogeneity set by the user is met. Based on visual inspection, a scale parameter of
0.5 created segments that best represented mung bean fields. Size and homogeneity were set to zero.
Changing these two parameters had little effect on the shape of the segments, presumably because we
used the data layers in float format and the segments were rather small. The weight for each of the
four NDVI and the EVI layers was set to 1.

2.5. In Situ Data

2.5.1. Aerial Photos

Given the challenges of collecting representative in situ data in the Barisal division due to the
poor road network, we made use of a manned, low-elevation aircraft to survey Barisal division for
mung bean production. In order to cover the entire study area, we predefined a flight route of 410 km
to be covered with a S2-AEC sea plane (Figure 4). Starting from Dhaka airport at 9:38 am on 25 March
2019, the flight took 2.25 h to complete at altitudes of 150–300 m above ground. The operator did not
have the permission from the Bangladesh Civil Aviation Authority to mount a camera outside the
aircraft. Hence, six passengers acquired photos with 2 Sony Nex-7, a Nikon DSLR, and a Canon 600D
camera. We also used an iPhone and a Huawei Honor 8 smart phone. All images were acquired at
the respective maximum resolutions: 6000 pixels × 4000 pixels for the Sony Nex-7 and Nikon DSLR,
5184 pixels × 3456 pixels for the Canon 600D, 4032 × 3024 for the iPhone 7 plus and 3968 × 2976 for the
Xiaomi phone. Camera focus was set to infinity.
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Figure 4. (a) The flight path of the S2-AEC sea plane used for crop field surveillance at 150–300 m
height on 25 March 2019. A mung bean field is shown in (b). Panels (c), mostly mung bean, and (d),
with lush green rice fields, are photos taken from the aircraft. Locations are indicated on (a).

The flight track was recorded with a Bad Elf GNSS Surveyor GPS. In total, 3123 photos were
taken, out of which 1917 were tagged to Sentinel-2 images. The footprints of the photos were manually
digitized using the Sentinel-2 images and World Imagery in ArcGIS as a backdrop.

2.5.2. Ground Data Collection

In order to gather sufficient insights to interpret the aerial photos and determine the correct crop
type that is visible in corresponding satellite images, we selected seven sampling areas along a transect.
Two experienced field technicians spent a combined total of 20 days identifying the major crop types
visible in preselected aerially acquired images. At each sampling point, located in the center of a crop
field, they took one photo in each of the cardinal directions and a close-up photo of the crop with
photo meta-data entered into tablets loaded with Open Data Kit (ODK) [46]. Data were retrieved from
537 sampling points, out of which 246 were used after conducting a plausibility check using Sentinel-2
data and Google Earth and World Imagery in ArcGIS. Photos from extremely small fields, which we
could not discern from Sentinel-2 images, or that had GPS errors, or were located close to settlement
areas with obscuring tree cover, were discarded. These GPS errors resulted from the proximity of trees
and poor connections to cell phone tower networks. In a last step, the 246 data points were linked to
the respective segments that encompassed them.
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2.5.3. Visual Interpretation of Sentinel-2 Imagery

The 246 data points enabled the visual identification of additional points along the flight transect,
using RGB and false color satellite images, and vegetation indices derived from Sentinel-2 images.
False color satellite images, using the NIR, red and green bands were especially useful for the visual
identification of mung bean, which had a distinct, dark pink color. For each patch or group of crop
fields that were grown with the same crop types, we visually determined the center of the area and
then assigned the crop to the segment encompassing it (Figure 5).

Figure 5. Training sample preparation workflow: We started with an aerial image (a), which we then
related to the Google Earth background imagery (b). Subsequently, a field technician identified the
crops shown on the aerial image in the field with the Open Data Kit (ODK); (c). In a last step, we linked
the ODK data points with crop type information to segments based on Sentinel-2 images (d).

2.5.4. Google Earth and World Imagery

Barisal division is covered by Google Earth and ArcGIS World Imagery with high resolution
images. However, most available images were not from the 2019 winter season and could not be used
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to identify crops. They could however be used to identify non-cropland, consisting of permanent
features such as water bodies, roads, settlements and brick fields. In addition, we relied on Google
Earth, Sentinel-2 images and local expert knowledge to identify rice fields on Bhola island, as it could
not be included in our flight trajectory. We were able to identify paddy rice fields with the aid of Google
Earth and false color Sentinel-2 images. When tagging the segments, we included all predominant
non-land uses, such as roads, houses, trees and surface water bodies.

The above-mentioned sources of information were used to create training and validation data
to distinguish cropland from non-cropland and in a subsequent step, to identity the crops grown on
cropland. We used the following crop classes: (i) mung bean, (ii) weedy fallow, (iii) rice and (iv) other
crops, consisting of wheat, maize, jute, lentil, soybean and vegetables. We did not identify grass pea,
another crop widely grown in the study area during the winter months, as it had reached maturity in
late February to mid-March and hence was outside of our aerial image acquisition period. In total,
we tagged 2034 non-crop and 2358 segments with crop type information (Table 2). Mung bean and
fallow land were represented by 900 segments each, whereas rice was represented by 441 and other
crops by 72.

Table 2. Number of training and test samples for each class investigated. In-situ data that were collected
in the field with the Open Data Kit (ODK) contain the term ODK in their label.

Class ODK +
Aerial

ODK +
Satellite
Image

Aerial +
Satellite
Image

Satellite Image
+ Google Earth
+ Experience

Total
Samples Training

Test
(without

ODK Data)

Non-crop 0 0 204 1830 2034 1356 678
Fallow 34 9 678 179 900 600 300
Mung
bean 135 41 724 0 900 600 300

Other crop 0 0 31 41 72 48 24
Rice 11 16 234 180 441 294 147
Total 180 66 1871 2230 4392 2898 1449

2.6. Quality Control of Crop Type Training Data

In order to check the consistency of the tagged crop type segments, we plotted their NDVI
development over time (Figure 6). Among the four crop types, mung bean, typically sown in early
February, had the lowest NDVI values on February 6 and on March 8. Its initial development,
especially in comparison to the transplanted paddy rice, and to the weedy fallow, was relatively slow.
In March, its canopy growth accelerated and kept developing at least until mid-April. Rice, in contrast,
peaked in late March and started to senesce in early April. The other crops class consisted of lentil,
wheat, maize, soybean and jute. The first four were planted before the end of the calendar year,
after the completion of the monsoon season rice harvest and reached maturity in March and April.
Jute, however, was sown in March only. On average, the NDVI values of these crops remained almost
steady over time, but were always greater than those of weedy fallow, which was grazed during
the winter months. The slight increase of the NDVI observed with weedy fallow in March can be
attributed to weed growth following the onset of early rainfall during that month. The separation in
NDVI between the weedy fallow and mung bean segments of the March 8 image indicates that our in
situ data clearly distinguished between the two crops.

2.7. Identification of Cropland and Mung Bean

For the cropland and non-cropland and the subsequent mung bean identification, the respective
data categories were split into training and test groups at a ratio of 2:1. We conducted the mung
bean classification in two steps. We first identified cropland and subsequently the crop types within
cropland. For the non-cropland vs. cropland identification, we used 1356 non-crop and another
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1542 segments with crop type information, i.e., all training segments that were subsequently used for
the identification of the crops grown on cropland.

Figure 6. Time course of mean normalized difference vegetation (NDVI) development of the four major
crop types during the mung bean growing season from February 6 through April 27 of 2019 in Barisal
division of coastal Bangladesh. Data were derived from the segments of the in situ data set created for
the crop classification. Bars represent one standard deviation.

We used the random tree (RT) classifier [47], which is built into eCognition for the classification.
RT is a RF classifier. eCognition uses the former abbreviation and term, and for this reason we made
use of the name RT in this paper. We maintained the same settings for the cropland vs. non-cropland
and the subsequent crop identification. The depth of the random tree classifier was set to six and
minimum sample count to five. The maximum number of categories was set to 16, and the maximum
tree number to 50, with a forest accuracy of 0.01. All nine indices listed in Table 1 were used from each
of the four image acquisition dates, resulting in 36 input layers.

There was a small region in the south of the study area, which had cloud cover even after applying
a median filter to all three April images. For this 4397 ha area, we conducted a separate analysis,
using the February 8 and the March 8 and 28 images. Results from these classifications were however
not further discussed since the area located at the southern tip of Barisal division was negligible in
size and nearly no mung bean was grown there due to excessively high soil salinity. The results were
however applied to the completion of the crop type map and the area estimates.

2.8. Classification Accuracy Assessment

Classification accuracy was evaluated in terms of overall accuracy, user’s and producer’s
accuracy [48], in addition to the Kappa Index of Agreement [49]. All accuracy related results
are based on the test data, i.e., on the randomly selected one-third of the data that had been set aside
before we started algorithm training. We also compared the resulting mung bean area estimates at
the district level to statistics published by BBS [10] and data we had received from the DAE offices.
DAE data were not published and used for internal purposes only.
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2.9. Classification Scenarios

In order to answer questions as to how early and accurately mung bean cropland can be identified,
we ran the following four scenarios, using different sequences of images: (1) February 6 image,
(2) February 6 and March 8 images, (3) February 6, March 8 and 28 images and (4) all four images
between February 6 and mid-April. Scenario 1 would be equivalent to an estimation of the area planted,
whereas scenario 4 would represent an area harvested estimation. However, there was a caveat for the
area planted estimation: we collected our in situ data in late March and early April only. A proper
assessment of the feasibility to estimate area planted would require in situ data collection in February,
which might have its own challenges. For all scenarios, the same training and test data sets as shown
in Table 2 were used.

3. Results

3.1. Generation of the In Situ Data Set

We used different sources of data to prepare the dataset for training and validation of the
classification algorithm. Collecting photos with an aircraft was fast, as the flight could be completed
within two hours. Collecting complementary information on the ground in order to ensure an accurate
interpretation of the aerial photos was more time consuming. First, a photo needed to be matched
to Google Earth and satellite images and its footprint delineated. On average, this took about 5 min
for each photo. Next, photos were selected for corroboration on the ground. The field technicians
had to travel to the area covered by the aerial image to gather the crop type information in ODK.
On average, they spent about 17 min to identify a batch of crop fields depicted in an aerial image on the
ground. After the collection in the field, we checked the ODK data for GPS errors, as the smartphones
sometimes recorded erroneous coordinates. If an ODK data point passed the quality control, we then
assigned it to the respective encompassing segment.

Based on the ODK data points, the aerial images, Sentinel-2 and Google Earth images, we also
created additional data points to train and test the RT classifier. This took about 10 min per resulting
segment with the crop type information. Towards the end of sampling, we were able to process the
photos in about half the time it took at the beginning. The resulting data set with crop type information
consisted of 241 segments that were tagged based on the in situ data collection and 1301 that were
tagged based on a visual interpretation of the aerial and satellite images. In total, the creation of one
data point with crop type information took approximately 20 min. The creation of in situ data for
non-cropland was much faster, as we could use the high resolution images from Google Earth for
that purpose.

3.2. Segmentation Results and Feature Scores

As the average field size in the area measures about 0.08–0.10 ha [11,12], which is roughly
10 Sentinel-2 pixels, we had to choose parameters in eCognition that resulted in small segments.
The multi-resolution segmentation resulted in 5,957,042 segments, out of which 2,776,318 covered
cropland. Total cropland area was 463,741 ha, and average segment size was 0.20 ha. Figure 7 shows
an example of the segments on top of false colored satellite images acquired between February 6
and mid-April.

The feature scores revealed the relevance of the different information layers and the date of their
acquisition based on scenario 4, which made use of all four images. We had calculated nine indices
for each of the four image acquisition dates, resulting in 36 data layers. Figure 8 shows the feature
importance score for the 20 most relevant indices and acquisition date combinations. EVI acquired
in mid-April was the most important layer. CI acquired on March 26, mid-April and March 8 was
ranked three times among the top 6 indices. The February 6 image, covering the sowing period for
mung bean, was listed only one time in the top 20, with the BI2 index. This might have been due to
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the highly variable conditions, which occurred during the sowing period. For the crop vs. non-crop
classification, NDWI2, CI and BI2 were found to be the most important predictors (data not shown).

Figure 7. Segments overlaid on a sequence of four false color Sentinel-2 images acquired during the
mung bean growing season from February 6 through 17 April 2019. Average size of a segment is 0.02 ha.
On the February and March images, bare soil or soil with little vegetation is shown in light turquoise
colors. These areas were sown with mung bean in early February and appear in dark pink color in the
March 28 and mid-April images.

Figure 8. Relative importance scores of the top 20 index by image acquisition date combinations used
for the identification of the crops by mid-April with a random tree algorithm. Imagery acquired on
4 dates between February 6 and mid-April, 2019 was used to calculate 9 indices, resulting in 36 data
layers. Layers labeled with an acquisition date of April 17 are based on the median of cloud-free pixels
acquired on April 7, 17 and 22.
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3.3. Classification Results

The RT algorithm successfully separated cropland from non-cropland (Table 3). Overall accuracy
was 0.98. The area of cropland for Barisal division was estimated at 463,741 ha, or 47% of the total land
area of 983,795 ha.

Table 3. Results of the segment based cropland vs. non-cropland classification for Barisal division in
the spring of 2019.

Class Non-Crop Crop Total User’s Accuracy

Non-crop 662 7 669 0.99
Crop 16 779 795 0.98
Total 678 786 1464

Producer’s accuracy 0.98 0.99

Kappa Index of Agreement: 0.97; Overall Accuracy: 0.98.

We tested four different scenarios, covering 1–4 image acquisition dates between early February
and mid-April in order to determine how the classification accuracy of mung bean changes over time.
With just one image, acquired on February 6, a producer’s accuracy of 0.93 and user’s accuracy of
0.96 resulted. This image corresponds to the sowing period. Making use of sequences of images,
i.e., 2, 3 or 4 image dates, gradually improved the classification accuracy (Figure 9). Thus, the highest
accuracies were obtained for scenario 4, which used images from all four acquisition dates. For that
scenario, the detailed results for mung bean, rice, other crops and weedy fallow are shown in Table 4.
A perfect result for rice was achieved. As rice is grown in large irrigated blocks of contiguous fields,
there was no confusion with other crops. The poorest accuracies resulted for the category of other
crops. This category was heterogeneous, with wheat and maize sown in December, whereas jute is
sown in March. The size of this class was small, because we could find only a few samples (n = 72)
and fields with these crops tended to be isolated. As such, we kept only those that we could visually
distinguish from the surrounding fields in the satellite images. Mung bean fields and weedy fallow
generally dominated the landscape, except for areas with winter boro rice production. For mung bean
and weedy fallow, user’s and producer’s accuracies were above 0.97. Confusions occurred mainly
within three mung bean segments that were classified as weedy fallow, and six weedy fallow segments
identified as mung bean. Given that we had set aside 300 segments for these classes for testing,
our misclassifications rate was small, indicating that the RT algorithm was able to distinguish the two
crops with an overall Kappa Index of Agreement at 0.96 and overall accuracy of 0.97.

Figure 9. Change of user’s and producer’s accuracies over time for four crop types grown in the Barisal
division of Bangladesh in 2019. The accuracies are based on different sequences of images, starting with
one image acquired on February 6 and ending with 4 image acquisition dates by mid-April.
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Table 4. Results of the segment based identification of the major crop types grown in the Barisal
division in the period between February and April 2019.

Class Other Crop Mung Bean Rice Fallow Total User’s Accuracy

Other crop 20 0 0 2 22 0.91
Mung bean 0 297 0 6 303 0.98

Rice 0 0 143 0 143 1.00
Fallow 2 3 0 289 294 0.98
Total 22 300 143 297 762

Producer’s accuracy 0.91 0.99 1.00 0.97

Kappa Index of Agreement: 0.96; Overall Accuracy: 0.97.

In order to determine the average and distribution of the area of the segments planted with the
same crop type, we merged the segments with common borders. This resulted in patches of different
sizes encompassing several parcels (Figure 10). The largest average patch sizes resulted for mung bean
(1.62 ha), followed by rice (0.74 ha), weedy fallow (0.67 ha) and other-crops (0.40 ha). However, for each
crop type, a very wide range of contiguous areas resulted. The largest maximum patch size was
calculated for weedy fallow (3692 ha), followed by rice (687 ha), mung bean (317 ha) and other crops
(171 ha).

Figure 10. Histograms and box and whisker plots of the areas of contiguous patches grown with the
same crop type identified during the mung bean growing season from February 6 through April 17,
2019 in Barisal division of Coastal Bangladesh. The patches were created by merging segments with
common borders labeled with the same crop type.

Our analysis indicates that mung bean production was mainly concentrated in the Barguna,
Patuakhali and Jhalokati districts (Figure 11). Bhola Island had the highest diversity in crops and least
land fallowed, although not much mung bean. Land left under weedy fallows was found to be mostly
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concentrated in Pirojpur, in the coastal zone of Pirojpur and Patuakhali and northern Barguna and
Jhalokati. The areas for the different crops were 109,416 ha of mung bean, 213,832 ha of weedy fallows,
94,874 ha of rice and 45,619 ha of other crops.

Figure 11. (a) Classified spatial distribution of the four major crop types cultivated in the Barisal division
of coastal Bangladesh during the mung bean growing season from February 6 through 17 April 2019.
The locations of panels (b,c) are marked with a black rectangle on (a).
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3.4. Comparison with District Level Crop Area Statistics

We compared the data published in the 2018–2019 Agriculture Statistical Yearbook [10] with the
data we had obtained from the DAE and the remote sensing based estimates generated in this study
at the district level (Figure 12). The BBS data were much lower than then the DAE or the remote
sensing based estimates. The remote sensing based estimates followed the trends of the DAE data in
all districts, but on average, were about 40% lower than the DAE data.

Figure 12. Area estimates for mung bean production by district in Barisal division in coastal Bangladesh
during the mung bean growing season from February 6 through 17 April 2019. Data were either
obtained from Bangladesh Bureau of Statistics (BBS) and the Department of Agricultural Extension
(DAE) or generated with remote sensing (RS) as described in the methodology section.

4. Discussion

Our study area encompassed a portion of coastal South Asia that is dominated by smallholder
farming. Average farm size is less than 0.5 ha and average fields size is around 0.1 ha [11,12]. As road
infrastructure is poorly developed and most fields can be accessed by foot only, this poses challenges
for the collection of in situ data to assess the extent of particular crops and cropland. In order to identify
the area of mung bean production in Barisal division, we relied on photos acquired from a manned,
low elevation (150–300 m) flying aircraft, ground data collection and visual photo and satellite image
interpretation, to create a dataset containing 2358 segments tagged with crop type and another 2034
segments with non-cropland information. To our knowledge, this is the first combination of these
methodologies for crop identification in South Asia and Bangladesh [50,51].

Our cropland area estimate of 463,741 ha for the Barisal division is about 79,000 ha lower than the
543,000 ha reported by [15]. As Sentinel data were not available at the time of that study, [15] relied on
Landsat 5, 7 and 8 images, with a 30 m GSD, and examined three years of winter rabi season data from
2011 to 2014, while the current study focused on the 2019 winter season. The landscape in this study
area was highly fragmented, with tree lined villages, homesteads, rivers and canals. This results in
numerous mixed pixels, which in addition to the differences in study years, may have contributed to the
difference in the cropland area estimates. Fallow land estimates also differed: we identified 213,832 ha
of weedy fallows, whereas [15] study identified only 74,000 ha, located primarily the southern most
regions of Barguna and Patuakhali. This difference however was likely due to contrasting definitions of
fallowed land. The later study considered only land that was uncropped throughout the entire winter
rabi season from December 21 through April 10th as fallow, whereas the current study included land
that was fallow from February 6th to April 17th, coinciding with the primary mung bean cultivation
period. The large transect of fallow land across Southern Pirojpur, Jhalokati and Barisal district was
presumably cropped with grass pea, the fields of which are generally not tilled after harvesting and
thereby develop into weedy fallows.
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The temporal analysis, represented by four different scenarios, revealed that it would be possible to
identify the area planted in early February with a high accuracy (user’s accuracy = 0.96 and producer’s
accuracy = 0.93). There was little room for improvement by adding additional images; nevertheless,
the highest accuracies were obtained by using images from all four acquisition dates. Estimation of
the area planted would be challenging, since the preparation of the in-situ data for training and
validation based on an early February satellite image alone would be difficult. Bare soil, i.e., the freshly
sown mung bean fields, would be difficult to separate from the weedy fallow fields in false color
satellite images. However, estimates and maps of area planted could provide relevant information for
food security and disaster monitoring, as high rainfall can cause great damage to mung bean in this
region [52].

Our remote sensing based mung bean area estimate of 109,416 ha was about 40% lower than
the DAE estimates, but more than four times higher than the 2019 data reported by BBS. Neither of
the latter two approaches were able to apply comprehensive systematic sampling, and necessarily
make use of expert judgment and estimates in crop reporting. The approach described in the current
paper could be a viable alternative, although pixel counting could also be biased unless combined with
thorough ground truthing [53], as exemplified in the current study.

While individual crop fields in our study area measured only about 0.08–0.1 ha on average [11,12],
the merging of adjacent segments of the same crop types resulted in much larger continuously cropped
areas, measuring 1.62 ha on average for mung bean. It is important to note here that the objectives of the
current study were to assess total mung bean cropped land; while assessment of the sizes of individual
fields cropped to mung bean is an important research priority, it requires further investigation with
appropriate methods to develop reliable remotely sensed estimates. Mung bean is grown several
months following the recession of the monsoon season and established in February when temperature
increases to assure germination. Differences in land elevation, and thus monsoon season flooding depth
and duration, greatly affect waterlogging and post-monsoon season soil moisture that limit trafficability
of fields, crop species choice and the timing of planting for farmers in coastal Bangladesh [15,54].
The recession of floodwaters after the monsoon and opening of tracts of land that could be cropped in
coastal Bangladesh limits the degree of possible crop diversity while also forcing farmers to establish
their crops in adjacent fields—which are usually grown with the same crop—that have similar soil
moisture levels and trafficability characteristics [15]. Contiguous fields result in patches grown with
the same crop type that are much larger than individual fields. This makes it possible to identify crops
on fields that on average, measure only 10 pixels with satellite images at a GSD of 10 m. In the case
of mung bean, an average patch covered 160 Sentinel-2 pixels. Thus, fragmentation is much lower
than what one would expect when considering individual fields. This makes it possible to monitor the
area of predominant crops in a smallholder farming setting of coastal South Asia with optical 10 m
GSD data.

However, the general applicability of Sentinel-2 data in small holder farming settings in South
Asia would have to be further tested, especially in regions where farmers have more options and
therefore, crops are more diverse. In the coastal region of Bangladesh, crop choice for the dry winter
months is constrained by topography and a lack of proper drainage and irrigation systems, which
in turn control where and when the fields can be grown with crops that, unlike rice, do not tolerate
flooding. This study demonstrated a method to generate multi-source in situ data and tests the
suitability of 10 m GSD Sentinel-2 images for mung bean identification in a smallholder farming setting
of South Asia. This effort however did not come without transactions costs—approximately 800 h
or 100 work days were required to create the training and test data for mung bean identification.
Conversely, future efforts should consider employing alternative methods including crowd-sourcing,
perhaps with the aid of a Geo-Wiki platform [46,50,51], or by engaging DAE extension officers in the
regular collection of geotagged in situ data of fields cropped to particular species. Such efforts may well
be worth the effort to improve estimates of cropped area, and strong multi-institutional collaborations
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in the assessment and monitoring of cropland in South Asia and could serve as an important example
for other regions dominated by a smallholder farming system.

5. Conclusions

By combining imagery obtained by low-elevation (150–300 m) manned aircraft derived
photographs, ground truth data and visual interpretation of these data sources together with satellite
remotely sensed information, this study generated a representative data set consisting of 2358 tagged
mung bean and agricultural land use type segments for the entirety of a 1,364,500 ha region in Barisal
division of coastal Bangladesh. Object based classification with the RT algorithm resulted in overall
accuracy and Kappa Index of Agreement greater than 0.96. This indicates that Sentinel-2 data with a
GSD of 10 m were suitable for the identification of mung bean in the smallholder farming context of
South Asia, despite of the predominance of very small field sizes measuring only between 0.08 and
0.10 ha. When merging adjacent segments by crop type, an average patch size for mung bean of 1.6 ha
resulted. Thus, in the smallholder farming setting of the coastal zone of Bangladesh, the low crop type
fragmentation resulted in patches that on average were about 15 times larger than the individual fields
and could be detected with 10 m GSD Sentinel-2 data.
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