ST-CORAbico: A Spatiotemporal Object-Based Bias Correction Method for Storm Prediction Detected by Satellite
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area and Period
2.2. Satellite-based Precipitation Data
2.3. In-Situ Ground-Based Rainfall Observations
3. Methodology
3.1. Storm Analysis
3.1.1. Storm Segmentation Using the Spatiotemporal Object-Based Rainfall Analysis with Multivariate Kernel Density Segmentation
3.1.2. Matching Process
3.1.3. Storm Classification
3.2. Bias Correction
Displacement Correction
Volume Correction
3.3. Evaluation of ST-CORAbico
4. Results
4.1. Storm Analysis
4.2. Results for Bias Correction
4.3. Model Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bui, Y.T.; Orange, D.; Visser, S.; Hoanh, C.T.; Laissus, M.; Poortinga, A.; Tran, D.T.; Stroosnijder, L. Lumped surface and sub-surface runoff for erosion modeling within a small hilly watershed in northern Vietnam. Hydrol. Process. 2014, 28, 2961–2974. [Google Scholar] [CrossRef]
- Markert, K.N.; Schmidt, C.M.; Griffin, R.E.; Flores, A.I.; Poortinga, A.; Saah, D.S.; Muench, R.E.; Clinton, N.E.; Chishtie, F.; Kityuttachai, K.; et al. Historical and operational monitoring of surface sediments in the lower mekong basin using Landsat and Google Earth Engine cloud computing. Remote Sens. 2018, 10, 909. [Google Scholar] [CrossRef] [Green Version]
- Poortinga, A.; Bastiaanssen, W.; Simons, G.; Saah, D.; Senay, G.; Fenn, M.; Bean, B.; Kadyszewski, J. A self-calibrating runoff and streamflow remote sensing model for ungauged basins using open-access earth observation data. Remote Sens. 2017, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Price, K.; Purucker, S.T.; Kraemer, S.R.; Babendreier, J.E.; Knightes, C.D. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales. Hydrol. Process. 2014, 28, 3505–3520. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Nakhjiri, N. A near real-time satellite-based global drought climate data record. Environ. Res. Lett. 2012, 7, 044037. [Google Scholar] [CrossRef] [Green Version]
- Azarderakhsh, M.; Rossow, W.B.; Papa, F.; Norouzi, H.; Khanbilvardi, R. Diagnosing water variations within the Amazon basin using satellite data. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Li, H.; Wood, E. Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Tesfagiorgis, K.; Mahani, S.; Krakauer, N.; Khanbilvardi, R. Bias correction of satellite rainfall estimates using a radar-gauge product—A case study in Oklahoma (USA). Hydrol. Earth Syst. Sci. 2011, 2011 15, 2631–2647. [Google Scholar] [CrossRef] [Green Version]
- Griffith, C.G.; Woodley, W.L.; Grube, P.G.; Martin, D.W.; Stout, J.; Sikdar, D.N. Rain estimation from geosynchronous satellite imagery—Visible and infrared studies. Mon. Weather Rev. 1978, 106, 1153–1171. [Google Scholar] [CrossRef] [Green Version]
- Vicente, G.A.; Scofield, R.A.; Menzel, W.P. The operational GOES infrared rainfall estimation technique. Bull. Am. Meteorol. Soc. 1998, 79, 1883–1898. [Google Scholar] [CrossRef]
- Marzano, F.S.; Palmacci, M.; Cimini, D.; Giuliani, G.; Turk, F.J. Multivariate statistical integration of satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1018–1032. [Google Scholar] [CrossRef]
- Tapiador, F. A physically based satellite rainfall estimation method using fluid dynamics modelling. Int. J. Remote Sens. 2008, 29, 5851–5862. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM multi-satellite precipitation analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–22. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 2015, 612, 2019. [Google Scholar]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of satellite-based precipitation products over sparsely gauged African river basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.S.; Xue, X.; Zhang, X. Inter-comparison of high-resolution satellite precipitation products over Central Asia. Remote Sens. 2015, 7, 7181–7211. [Google Scholar] [CrossRef] [Green Version]
- Kimani, M.W.; Hoedjes, J.C.B.; Su, Z. An Assessment of satellite-derived rainfall products relative to ground observations over East Africa. Remote Sens. 2017, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Vila, D.A.; De Goncalves, L.G.G.; Toll, D.L.; Rozante, J.R. Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. J. Hydrometeorol. 2009, 10, 533–543. [Google Scholar] [CrossRef]
- Habib, E.; Haile, A.T.; Sazib, N.; Zhang, Y.; Rientjes, T. Effect of bias correction of satellite-rainfall estimates on runoff simulations at the source of the Upper Blue Nile. Remote Sens. 2014, 6, 6688–6708. [Google Scholar] [CrossRef] [Green Version]
- Ebert, E.; McBride, J. Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol. 2000, 239, 179–202. [Google Scholar] [CrossRef]
- Davis, C.A.; Brown, B.G.; Bullock, R.; Halley-Gotway, J. The method for object-based diagnostic evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program. Weather Forecast. 2009, 24, 1252–1267. [Google Scholar] [CrossRef] [Green Version]
- Wernli, H.; Paulat, M.; Hagen, M.; Frei, C. SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Mon. Weather Rev. 2008, 136, 4470–4487. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N. An investigation of the ability of a storm scale configuration of the Met Office NWP model to predict floodproducing rainfall. UK Met Off. Tech. Rep. 2005, 455, 80. [Google Scholar]
- Marsigli, C.; Montani, A.; Paccagnella, T. Verification of the COSMOLEPS new suite in terms of precipitation distribution. COSMO Newsl. 2006, 6, 134–141. [Google Scholar]
- Casati, B.; Ross, G.; Stephenson, D. A new intensity-scale approach for the verification of spatial precipitation forecasts. Meteorol. Appl. A J. Forecast. Pract. Appl. Train. Tech. Model. 2004, 11, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Casati, B. New developments of the intensity-scale technique within the Spatial Verification Methods Intercomparison Project. Weather Forecast. 2010, 25, 113–143. [Google Scholar] [CrossRef]
- Mittermaier, M.P. Using an intensity-scale technique to assess the added benefit of high-resolution model precipitation forecasts. Atmos. Sci. Lett. 2006, 7, 36–42. [Google Scholar] [CrossRef]
- Keil, C.; Craig, G.C. A displacement-based error measure applied in a regional ensemble forecasting system. Mon. Weather Rev. 2007, 135, 3248–3259. [Google Scholar] [CrossRef] [Green Version]
- Keil, C.; Craig, G.C. A displacement and amplitude score employing an optical flow technique. Weather Forecast. 2009, 24, 1297–1308. [Google Scholar] [CrossRef] [Green Version]
- Skok, G.; Tribbia, J.; Rakovec, J.; Brown, B. Object-based analysis of satellite-derived precipitation systems over the low-and midlatitude Pacific Ocean. Mon. Weather Rev. 2009, 137, 3196–3218. [Google Scholar] [CrossRef]
- Li, J.; Hsu, K.; AghaKouchak, A.; Sorooshian, S. An object-based approach for verification of precipitation estimation. Int. J. Remote Sens. 2015, 36, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Hsu, K.L.; AghaKouchak, A.; Sorooshian, S. Object-based assessment of satellite precipitation products. Remote Sens. 2016, 8, 547. [Google Scholar] [CrossRef] [Green Version]
- Demaria, E.; Rodriguez, D.; Ebert, E.; Salio, P.; Su, F.; Valdes, J.B. Evaluation of mesoscale convective systems in South America using multiple satellite products and an object-based approach. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Le Coz, C.; Heemink, A.; Verlaan, M.; Veldhuis, M.C.; van de Giesen, N. Correcting position error in precipitation data using image morphing. Remote Sens. 2019, 11, 2557. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.J.; Kain, J.S.; Marsh, P.T.; Correia, J., Jr.; Xue, M.; Kong, F. Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Weather Forecast. 2012, 27, 1090–1113. [Google Scholar] [CrossRef]
- Clark, A.J.; Bullock, R.G.; Jensen, T.L.; Xue, M.; Kong, F. Application of object-based time-domain diagnostics for tracking precipitation systems in convection-allowing models. Weather Forecast. 2014, 29, 517–542. [Google Scholar] [CrossRef] [Green Version]
- Development and implementation of MODE time domain object-based verification. In In Proceedings of the 24th Conference Weather and Forecasting, Seattle, WA, USA, 24–27 January 2011.
- Laverde-Barajas, M.; Corzo Perez, G.; Chishtie, F.; Poortinga, A.; Uijlenhoet, R.; Solomatine, D. Decomposing satellite-based rainfall errors in flood estimation: Hydrological responses using a spatiotemporal object-based verification method. J. Hydrol. 2020, 125554. [Google Scholar] [CrossRef]
- Laverde-Barajas, M.; Corzo, G.; Bhattacharya, B.; Uijlenhoet, R.; Solomatine, D.P. Spatiotemporal Analysis of Extreme Rainfall Events Using an Object-Based Approach. In Spatiotemporal Analysis of Extreme Hydrological Events; Corzo, G., Varouchakis, E.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 95–112. [Google Scholar] [CrossRef]
- Delgado, J.; Merz, B.; Apel, H. A climate-flood link for the lower Mekong River. Hydrol. Earth Syst. Sci. 2012, 16, 1533–1541. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Zhang, W.K.; Gui, S.; Tao, Y.; Cao, J. Rainy season precipitation variation in the Mekong River basin and its relationship to the Indian and East Asian summer monsoons. Clim. Dyn. 2019, 52, 5691–5708. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Fuchs, T.; Meyer-Christoffer, A.; Rudolf, B. Global Precipitation Analysis Products of the GPCC; Global Precipitation Climatology Centre (GPCC), DWD, Internet Publication; Deutscher Wetterdienst: Offenbach, Germany, 2008; Volume 112. [Google Scholar]
- Golden Software, I. Surfer 12 Users’ Guide: Powerful Contouring, Gridding, and Surface Mapping, 12th ed.; Golden Software, Inc.: Golden, CO, USA, 2014. [Google Scholar]
- Ly, S.; Sohier, C.; Charles, C.; Degré, A. Effect of raingage density, position and interpolation on rainfall-discharge modelling. In EGU2012 Geophysical Research Abstracts; European Geophysical Society: Katlenburg-Lindau, Germany, 2012; p. 2592. [Google Scholar]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Chen, Y.C.; Wei, C.; Yeh, H.C. Rainfall network design using kriging and entropy. Hydrol. Process. Int. J. 2008, 22, 340–346. [Google Scholar] [CrossRef]
- Guttman, A. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, Association for Computing Machinery, New York, NY, USA, 18–21 June 1984; pp. 47–57. Available online: http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf (accessed on 30 September 2020).
- Ebert, E.E.; Gallus, W.A., Jr. Toward better understanding of the contiguous rain area (CRA) method for spatial forecast verification. Weather Forecast. 2009, 24, 1401–1415. [Google Scholar] [CrossRef] [Green Version]
- Bethel, E.W.; Childs, H.; Hansen, C. High Performance Visualization: Enabling Extreme-Scale Scientific Insight; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Chen, T.B.; Lu, H.H.S.; Lee, Y.S.; Lan, H.J. Segmentation of cDNA microarray images by kernel density estimation. J. Biomed. Inf. 2008, 41, 1021–1027. [Google Scholar] [CrossRef] [Green Version]
- Pereira, O.; Torres, E.; Garcé, Y.; Rodríguez, R. Edge detection based on kernel density estimation. In Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV), The Steering Committee of The World Congress in Computer Science, Computer, Engineering and Applied Computing WorldComp, Las Vegas, NV, USA, 17–20 July 2017; pp. 123–128. [Google Scholar]
- Wang, L.; Lu, J.; Li, X.; Huan, Z.; Liang, J.; Chen, S. Learning arbitrary-shape object detector from bounding-box annotation by searching region-graph. Pattern Recognit. Lett. 2017, 87, 171–176. [Google Scholar] [CrossRef]
- Zivkovic, Z.; Van Der Heijden, F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit. Lett. 2006, 27, 773–780. [Google Scholar] [CrossRef]
- Berjón, D.; Cuevas, C.; Morán, F.; García, N. Real-time nonparametric background subtraction with tracking-based foreground update. Pattern Recognit. 2018, 74, 156–170. [Google Scholar] [CrossRef]
- Hyndman, R.L.; Zhang, X.; King, M.L. Bandwidth selection for multivariate kernel density estimation using MCMC. In Econometric Society 2004 Australasian Meetings; Econometric Society: Melbourne, Australia, 9 July 2004. [Google Scholar]
- Zhang, X.; King, M.L.; Hyndman, R.J. A Bayesian approach to bandwidth selection for multivariate kernel density estimation. Comput. Stat. Data Anal. 2006, 50, 3009–3031. [Google Scholar] [CrossRef] [Green Version]
- Henderson, D.J.; Parmeter, C.F. Normal reference bandwidths for the general order, multivariate kernel density derivative estimator. Stat. Probab. Lett. 2012, 82, 2198–2205. [Google Scholar] [CrossRef]
- Grams, J.S.; Gallus, W.A., Jr.; Koch, S.E.; Wharton, L.S.; Loughe, A.; Ebert, E.E. The use of a modified Ebert–McBride technique to evaluate mesoscale model QPF as a function of convective system morphology during IHOP 2002. Weather Forecast. 2006, 21, 288–306. [Google Scholar] [CrossRef] [Green Version]
- Steiner, M.; Houze, R.A., Jr.; Yuter, S.E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol. 1995, 34, 1978–2007. [Google Scholar] [CrossRef]
- Molini, L.; Parodi, A.; Siccardi, F. Dealing with uncertainty: An analysis of the severe weather events over Italy in 2006. Nat. Hazards Earth Syst. Sci 2009, 9, 1775–1786. [Google Scholar] [CrossRef]
- Molini, L.; Parodi, A.; Rebora, N.; Craig, G. Classifying severe rainfall events over Italy by hydrometeorological and dynamical criteria. Q. J. R. Meteorol. Soc. 2011, 137, 148–154. [Google Scholar] [CrossRef]
- Johnson, A.E.; Hebert, M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 433–449. [Google Scholar] [CrossRef] [Green Version]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Brown, B.G.; Bullock, Y.R.; Davis, C.A.; Gotway, J.H.; Chapman, M.B.; Takacs, A.; Gillel, E.; Manning, K.; Mahoney, J.L. New verification approaches for convective weather forecasts. In Proceedings of the 11th Conference on Aviation, Range, and Aerospace, Hyannis, MA, USA, 4–8 October 2004; pp. 3–8. [Google Scholar]
- Piani, C.; Haerter, J.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.; Maggioni, V.; Vila, D.; Morales, C. Characteristics and diurnal cycle of GPM rainfall estimates over the central Amazon region. Remote Sens. 2016, 8, 544. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
Storm Type | Statistics | Duration (h) | Spatial Extent (km) | Maximum Intensity (mm/h) | Total Volume (km) |
---|---|---|---|---|---|
mean | 9 | 15,097 | 33.0 | 0.04 | |
Short-lived storm | min | 3 | 1900 | 3.6 | 0.01 |
max | 17 | 42,300 | 82.0 | 0.15 | |
mean | 18 | 54,400 | 71.4 | 0.27 | |
long-lived storm | min | 10 | 24,300 | 31.6 | 0.07 |
max | 31 | 110,600 | 100.0 | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laverde-Barajas, M.; Corzo, G.A.; Poortinga, A.; Chishtie, F.; Meechaiya, C.; Jayasinghe, S.; Towashiraporn, P.; Markert, A.; Saah, D.; Son, L.H.; et al. ST-CORAbico: A Spatiotemporal Object-Based Bias Correction Method for Storm Prediction Detected by Satellite. Remote Sens. 2020, 12, 3538. https://doi.org/10.3390/rs12213538
Laverde-Barajas M, Corzo GA, Poortinga A, Chishtie F, Meechaiya C, Jayasinghe S, Towashiraporn P, Markert A, Saah D, Son LH, et al. ST-CORAbico: A Spatiotemporal Object-Based Bias Correction Method for Storm Prediction Detected by Satellite. Remote Sensing. 2020; 12(21):3538. https://doi.org/10.3390/rs12213538
Chicago/Turabian StyleLaverde-Barajas, Miguel, Gerald A. Corzo, Ate Poortinga, Farrukh Chishtie, Chinaporn Meechaiya, Susantha Jayasinghe, Peeranan Towashiraporn, Amanda Markert, David Saah, Lam Hung Son, and et al. 2020. "ST-CORAbico: A Spatiotemporal Object-Based Bias Correction Method for Storm Prediction Detected by Satellite" Remote Sensing 12, no. 21: 3538. https://doi.org/10.3390/rs12213538
APA StyleLaverde-Barajas, M., Corzo, G. A., Poortinga, A., Chishtie, F., Meechaiya, C., Jayasinghe, S., Towashiraporn, P., Markert, A., Saah, D., Son, L. H., Khem, S., Boonya-Aroonnet, S., Chaowiwat, W., Uijlenhoet, R., & Solomatine, D. P. (2020). ST-CORAbico: A Spatiotemporal Object-Based Bias Correction Method for Storm Prediction Detected by Satellite. Remote Sensing, 12(21), 3538. https://doi.org/10.3390/rs12213538