Integration of InSAR Time-Series Data and GIS to Assess Land Subsidence along Subway Lines in the Seoul Metropolitan Area, South Korea
Abstract
:1. Introduction
2. Materials & Methods
2.1. Study Area
2.2. SAR Datasets
2.3. StaMPS Processing
2.4. Generation of Susceptibility Map
- The land subsidence inventory was generated by analyzing Sentinel-1 SAR datasets from 2017 to 2020 from descending tracks using the time-series InSAR technique based on StaMPS algorithms.
- In order to generate land susceptibility maps, the training and test datasets were prepared by randomly divided the persistent scatterers (PS) points of time series into 50% of training data and 50% of testing datasets to validate the land subsidence susceptibility map. Training data is used to train the machine learning to predict subsidence in our land subsidence susceptibility model. Besides, test data is used to measure the performance, of the algorithm that we used to make the land subsidence susceptibility model. This preparation method of training and testing datasets was used in several studies of land subsidence susceptibility which has optimal results [6,63,64].
- Preparation of land subsidence conditioning factors: Spatial correlation analysis was applied to assess each factor before the land-subsidence model was generated. In the spatial correlation analysis, the spatial relationship between historical subsidence events, and each factor was examined [65]. Spatial correlation analysis was also used to investigate the weight of each factor class to assess the strength of the relationship between each factor class and subsidence occurrence. Frequency ratios were calculated to reflect spatial correlations by calculating the proportion of cells in which subsidence occurred in each class; then, factors were reclassified. Frequency ratios have been commonly used to determine spatial correlations [40,42,66]. Here, each frequency ratio represents the quantitative relationship between subsidence in a selected class and all subsidence in the area for all classes as a percentage of the entire map [67]. If the ratio is greater than one, the relationship between subsidence and the factor class is considered strong. By contrast, if the ratio is less than one, the spatial relationship is weak [40].
- Generating land subsidence susceptibility map: in this step, we constructed a land subsidence susceptibility map using Bagging, LogitBoost, and Multiclass Classifier algorithms. The land subsidence conditioning factors that consist of frequency ratio values.
- After the land subsidence susceptibility map was generated, all susceptibility maps were evaluated using ROC analysis.
2.4.1. Bagging
2.4.2. LogitBoost
2.4.3. Multiclass Classifier
2.5. Factors Related to Land Subsidence
3. Results
3.1. Land Subsidence Inventory Map
3.2. Land Subsidence Susceptibility Map
3.3. Model Validation
4. Discussion
4.1. Land Subsidence Inventory Map
4.2. Land Subsidence Susceptibility Maps
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Machowski, R.; Rzetala, M.A.; Rzetala, M.; Solarski, M. Geomorphological and Hydrological Effects of Subsidence and Land use Change in Industrial and Urban Areas. Land Degrad. Dev. 2016, 27, 1740–1752. [Google Scholar] [CrossRef]
- Jo, Y.-S.; Cho, S.-H.; Jang, Y.-S. Field investigation and analysis of ground sinking development in a metropolitan city, Seoul, Korea. Environ. Earth Sci. 2016, 75, 1353. [Google Scholar] [CrossRef]
- Lee, H.; Oh, J. Establishing an ANN-based risk model for ground subsidence along railways. Appl. Sci. 2018, 8, 1936. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Wang, X.; Wang, N.; Zhao, Q. Study on the Effect of Tunnel Excavation on Surface Subsidence Based on GIS Data Management. Procedia Environ. Sci. 2012, 12, 1387–1392. [Google Scholar] [CrossRef] [Green Version]
- Roccheggiani, M.; Piacentini, D.; Tirincanti, E.; Perissin, D.; Menichetti, M. Detection and monitoring of tunneling induced ground movements using Sentinel-1 SAR interferometry. Remote Sens. 2019, 11, 639. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.J.; Lee, S. Assessment of ground subsidence using GIS and the weights-of-evidence model. Eng. Geol. 2010, 115, 36–48. [Google Scholar] [CrossRef]
- Cigna, F.; Osmanoǧlu, B.; Cabral-Cano, E.; Dixon, T.H.; Ávila-Olivera, J.A.; Garduño-Monroy, V.H.; DeMets, C.; Wdowinski, S. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sens. Environ. 2012, 117, 146–161. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Chen, Y.; Li, X.; Zhou, C.; Lei, K.; Zhu, L.; Duan, L.; Zhao, X. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Sci. Total Environ. 2020, 735, 139111. [Google Scholar] [CrossRef]
- Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483–486. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, X. Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China. Nat. Hazards 2010, 54, 839–850. [Google Scholar] [CrossRef]
- Osmanoǧlu, B.; Dixon, T.H.; Wdowinski, S.; Cabral-Cano, E.; Jiang, Y. Mexico City subsidence observed with persistent scatterer InSAR. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 1–12. [Google Scholar] [CrossRef]
- Xu, Y.S.; Ma, L.; Shen, S.L.; Sun, W.J. Evaluation de la subsidence en considérant les structures constituant les aquifères de Shanghai, Chine. Hydrogeol. J. 2012, 20, 1623–1634. [Google Scholar] [CrossRef]
- Ng, A.H.M.; Ge, L.; Li, X.; Abidin, H.Z.; Andreas, H.; Zhang, K. Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 232–242. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Djaja, R.; Darmawan, D.; Hadi, S.; Akbar, A.; Rajiyowiryono, H.; Sudibyo, Y.; Meilano, I.; Kasuma, M.A.; Kahar, J.; et al. Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Nat. Hazards 2001, 23, 365–387. [Google Scholar] [CrossRef]
- OECD. Health at a Glance 2013: OECD Indicators; OECD Publishing: Paris, France, 2013. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Kwon, K.D.; Raza, M. Current water uses, related risks, and management options for Seoul megacity, Korea. Environ. Earth Sci. 2018, 77. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic: New York, NY, USA, 2010; ISBN 9789048156962. [Google Scholar]
- Kang, Y.; Zhao, C.; Zhang, Q.; Lu, Z.; Li, B. Application of InSAR Techniques to an Analysis of the Guanling Landslide. Remote Sens. 2017, 9, 1046. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Bai, S.; Tofani, V.; Casagli, N. Landslides detection through optimized hot spot analysis on persistent scatterers and distributed scatterers. ISPRS J. Photogramm. Remote Sens. 2019, 156, 147–159. [Google Scholar] [CrossRef]
- Perissin, D.; Ferretti, A. Urban-target recognition by means of repeated spaceborne SAR images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4043–4058. [Google Scholar] [CrossRef]
- Motagh, M.; Shamshiri, R.; Haghshenas Haghighi, M.; Wetzel, H.U.; Akbari, B.; Nahavandchi, H.; Roessner, S.; Arabi, S. Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Eng. Geol. 2017, 218, 134–151. [Google Scholar] [CrossRef]
- Aly, M.H.; Klein, A.G.; Zebker, H.A.; Giardino, J.R. Land subsidence in the Nile Delta of Egypt observed by persistent scatterer interferometry. Remote Sens. Lett. 2012, 3, 621–630. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Riddick, S.N.; Schmidt, D.A.; Deligne, N.I. An analysis of terrain properties and the location of surface scatterers from persistent scatterer interferometry. ISPRS J. Photogramm. Remote Sens. 2012, 73, 50–57. [Google Scholar] [CrossRef]
- Khorrami, M.; Abrishami, S.; Maghsoudi, Y.; Alizadeh, B.; Perissin, D. Extreme subsidence in a populated city (Mashhad) detected by PSInSAR considering groundwater withdrawal and geotechnical properties. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yazici, B.V.; Tunc Gormus, E. Investigating persistent scatterer InSAR (PSInSAR) technique efficiency for landslides mapping: A case study in Artvin dam area, in Turkey. Geocarto Int. 2020, 1–19. [Google Scholar] [CrossRef]
- Jiaxuan, H.; Mowen, X.; Atkinson, P.M. Dynamic susceptibility mapping of slow-moving landslides using PSInSAR. Int. J. Remote Sens. 2020, 41, 7509–7529. [Google Scholar] [CrossRef]
- Tessitore, S.; Fernández-Merodo, J.A.; Herrera, G.; Tomás, R.; Ramondini, M.; Sanabria, M.; Duro, J.; Mulas, J.; Calcaterra, D. Comparison of water-level, extensometric, DInSAR and simulation data for quantification of subsidence in Murcia City (SE Spain). Hydrogeol. J. 2016, 24, 727–747. [Google Scholar] [CrossRef]
- Wang, H.; Feng, G.; Xu, B.; Yu, Y.; Li, Z.; Du, Y.; Zhu, J. Deriving spatio-temporal development of ground subsidence due to subway construction and operation in Delta regions with PS-InSAR data: A case study in Guangzhou, China. Remote Sens. 2017, 9, 1004. [Google Scholar] [CrossRef] [Green Version]
- Khakim, M.Y.N.; Tsuji, T.; Matsuoka, T. Lithology-controlled subsidence and seasonal aquifer response in the Bandung basin, Indonesia, observed by synthetic aperture radar interferometry. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Gong, H.; Chen, B.; Gao, M.; Cao, Q.; Cao, J.; Duan, L.; Zuo, J.; Shi, M. Land Subsidence Response to Different Land Use Types and Water Resource Utilization in Beijing-Tianjin-Hebei, China. Remote Sens. 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Han, J.; Hao, T.; Li, R.; Qiao, G. Seasonal Deformation of Permafrost in Wudaoliang Basin in Qinghai-Tibet Plateau Revealed by StaMPS-InSAR. Mar. Geod. 2020, 43, 248–268. [Google Scholar] [CrossRef]
- Jennifer, J.J.; Saravanan, S.; Pradhan, B. Persistent Scatterer Interferometry in the post-event monitoring of the Idukki Landslides. Geocarto Int. 2020. [Google Scholar] [CrossRef]
- Tzampoglou, P.; Loupasakis, C. Mining geohazards susceptibility and risk mapping: The case of the Amyntaio open-pit coal mine, West Macedonia, Greece. Environ. Earth Sci. 2017, 76. [Google Scholar] [CrossRef]
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. Remote Sens. 2013, 5, 1045–1065. [Google Scholar] [CrossRef] [Green Version]
- Bianchini, S.; Solari, L.; Del Soldato, M.; Raspini, F.; Montalti, R.; Ciampalini, A.; Casagli, N. Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic. Remote Sens. 2019, 11, 2015. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.H.M.; Wang, H.; Dai, Y.; Pagli, C.; Chen, W.; Ge, L.; Du, Z.; Zhang, K. InSAR reveals land deformation at Guangzhou and Foshan, China between 2011 and 2017 with COSMO-SkyMed data. Remote Sens. 2018, 10, 813. [Google Scholar] [CrossRef] [Green Version]
- Lan, H.X.; Zhou, C.H.; Wang, L.J.; Zhang, H.Y.; Li, R.H. Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng. Geol. 2004, 76, 109–128. [Google Scholar] [CrossRef]
- Pradhan, B.; Abokharima, M.H.; Jebur, M.N.; Tehrany, M.S. Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat. Hazards 2014, 73, 1019–1042. [Google Scholar] [CrossRef]
- Regmi, A.D.; Yoshida, K.; Nagata, H.; Pradhan, A.M.S.; Pradhan, B.; Pourghasemi, H.R. The relationship between geology and rock weathering on the rock instability along Mugling-Narayanghat road corridor, Central Nepal Himalaya. Nat. Hazards 2013, 66, 501–532. [Google Scholar] [CrossRef]
- Lee, S.; Park, I.; Choi, J.K. Spatial prediction of ground subsidence susceptibility using an artificial neural network. Environ. Manag. 2012, 49, 347–358. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Roy, J.; Tiefenbacher, J.P.; Cerda, A.; Biggs, T.; Pradhan, B.; Thi Ngo, P.T.; Collins, A.L. A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility. Sci. Total Environ. 2020, 726, 138595. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365. [Google Scholar] [CrossRef]
- Wu, W.; Zucca, C.; Karam, F.; Liu, G. Enhancing the performance of regional land cover mapping. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 422–432. [Google Scholar] [CrossRef]
- Tien Bui, D.; Ho, T.C.; Revhaug, I.; Pradhan, B.; Nguyen, D.B. Landslide Susceptibility Mapping Along the National Road 32 of Vietnam Using GIS-Based J48 Decision Tree Classifier and Its Ensembles. In Cartography from Pole to Pole; Springer: Berlin/Heidelberg, Germany, 2014; pp. 303–317. [Google Scholar]
- Kadavi, P.R.; Lee, C.W.; Lee, S. Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens. 2018, 10, 1252. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Liu, J.; Zhu, A.X. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci. Total Environ. 2020, 718, 137231. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, S.; Pourghasemi, H.R.; Ghanbarian, G.A.; Safaeian, R. Prioritization of effective factors in the occurrence of land subsidence and its susceptibility mapping using an SVM model and their different kernel functions. Bull. Eng. Geol. Environ. 2019, 78, 4017–4034. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Lee, K.K.; Sung, I.H. Urbanization and the groundwater budget, metropolitan Seoul area, Korea. Hydrogeol. J. 2001, 9, 401–412. [Google Scholar] [CrossRef]
- Korea, S. Complete Enumeration Results of the 2010 Population and Housing Census; Statistics Korea: Daejeon, Korea, 2011. [Google Scholar]
- Choi, B.Y.; Yun, S.T.; Yu, S.Y.; Lee, P.K.; Park, S.S.; Chae, G.T.; Mayer, B. Hydrochemistry of urban groundwater in Seoul, South Korea: Effects of land-use and pollutant recharge. Environ. Geol. 2005, 48, 979–990. [Google Scholar] [CrossRef]
- Chae, G.T.; Yun, S.T.; Kim, D.S.; Kim, K.H.; Joo, Y. Time-series analysis of three years of groundwater level data (Seoul, South Korea) to characterize urban groundwater recharge. Q. J. Eng. Geol. Hydrogeol. 2010, 43, 117–127. [Google Scholar] [CrossRef]
- Korea, R. KORAIL Sustainability Report 2015; Korea Railroad Corporation: Daejeon, Korea, 2015. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.J. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.J.; Hooper, A.J.; Hanssen, R.F.; Bastos, L.C.; Ruiz, A.M. Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens. Environ. 2011, 115, 2652–2663. [Google Scholar] [CrossRef]
- Pepe, A.; Bonano, M.; Zhao, Q.; Yang, T.; Wang, H. The Use of C-/X-Band Time-Gapped SAR Data and Geotechnical Models for the Study of Shanghai’s Ocean-Reclaimed Lands through the SBAS-DInSAR Technique. Remote Sens. 2016, 8, 911. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Feng, X. Calculating vertical deformation using a single InSAR pair based on singular value decomposition in mining areas. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102115. [Google Scholar] [CrossRef]
- Yastika, P.; Shimizu, N.; Abidin, H.Z. Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data. Adv. Space Res. 2019, 63, 1719–1736. [Google Scholar] [CrossRef]
- Lee, S.; Park, I. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines. J. Environ. Manag. 2013, 127, 166–176. [Google Scholar] [CrossRef]
- Korjus, K.; Hebart, M.N.; Vicente, R. An Efficient Data Partitioning to Improve Classification Performance While Keeping Parameters Interpretable. PLoS ONE 2016, 11, e0161788. [Google Scholar] [CrossRef] [Green Version]
- Jaafari, A.; Zenner, E.K.; Panahi, M.; Shahabi, H. Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric. For. Meteorol. 2019, 266–267, 198–207. [Google Scholar] [CrossRef]
- Kim, K.D.; Lee, S.; Oh, H.J.; Choi, J.K.; Won, J.S. Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS. Environ. Geol. 2006, 50, 1183–1191. [Google Scholar] [CrossRef]
- Silalahi, F.E.S.; Arifianti, Y.; Hidayat, F. Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geosci. Lett. 2019, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Sedano, J.; Gonzalez, S.; Herrero, A.; Baruque, B.; Corchado, E. Mutating network scans for the assessment of supervised classifier ensembles. Log. J. IGPL 2013, 21, 630–647. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting. Ann. Stat. 2000, 28, 337–407. [Google Scholar] [CrossRef]
- Pourghasemi, H.; Gayen, A.; Park, S.; Lee, C.-W.; Lee, S. Assessment of Landslide-Prone Areas and Their Zonation Using Logistic Regression, LogitBoost, and NaïveBayes Machine-Learning Algorithms. Sustainability 2018, 10, 3697. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.D.; Feng, K.Y.; Lu, W.C.; Chou, K.C. Using LogitBoost classifier to predict protein structural classes. J. Theor. Biol. 2006, 238, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Kowsari, K.; Brown, D.E.; Heidarysafa, M.; Meimandi, K.J.; Gerber, M.S.; Barnes, L.E. HDLTex: Hierarchical Deep Learning for Text Classification. In Proceedings of the 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, Cancun, Mexico, 18–21 December 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 364–371. [Google Scholar]
- Gambolati, G.; Teatini, P. Geomechanics of subsurface water withdrawal and injection. Water Resour. Res. 2015, 51, 3922–3955. [Google Scholar] [CrossRef]
- Erban, L.E.; Gorelick, S.M.; Zebker, H.A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 2014, 9, 084010. [Google Scholar] [CrossRef]
- Suh, J.; Choi, Y.; Park, H.D. GIS-based evaluation of mining-induced subsidence susceptibility considering 3D multiple mine drifts and estimated mined panels. Environ. Earth Sci. 2016, 75, 1–19. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.; Kwak, T.Y.; Chung, C.K. Logistic regression model for sinkhole susceptibility due to damaged sewer pipes. Nat. Hazards 2018, 93, 765–785. [Google Scholar] [CrossRef]
- Del Giudice, G.; Padulano, R.; Siciliano, D. Multivariate probability distribution for sewer system vulnerability assessment under data-limited conditions. Water Sci. Technol. 2016, 73, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Yesilnacar, E.; Topal, T. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 2005, 79, 251–266. [Google Scholar] [CrossRef]
- Andaryani, S.; Nourani, V.; Trolle, D.; Dehgani, M.; Asl, A.M. Assessment of land use and climate change effects on land subsidence using a hydrological model and radar technique. J. Hydrol. 2019, 578, 124070. [Google Scholar] [CrossRef]
- Minderhoud, P.S.J.; Coumou, L.; Erban, L.E.; Middelkoop, H.; Stouthamer, E.; Addink, E.A. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ. 2018, 634, 715–726. [Google Scholar] [CrossRef]
- Yoo, C. Ground settlement during tunneling in groundwater drawdown environment—Influencing factors. Undergr. Space 2016, 1, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Lee, S.; Tiefenbacher, J.P.; Ngo, P.T.T. Novel Ensemble of MCDM-Artificial Intelligence Techniques for Groundwater-Potential Mapping in Arid and Semi-Arid Regions (Iran). Remote Sens. 2020, 12, 490. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.W.; Amelung, F.; Ferretti, A.; Bianchi, M.; Novali, F. Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y. Lessons from three groundwater disputes in Korea: Lack of comprehensive and integrated investigation. Int. J. Water 2017, 11, 59–72. [Google Scholar] [CrossRef]
- Notti, D.; Mateos, R.M.; Monserrat, O.; Devanthéry, N.; Peinado, T.; Roldán, F.J.; Fernández-Chacón, F.; Galve, J.P.; Lamas, F.; Azañón, J.M. Lithological control of land subsidence induced by groundwater withdrawal in new urban AREAS (Granada Basin, SE Spain). Multiband DInSAR monitoring. Hydrol. Process. 2016, 30, 2317–2331. [Google Scholar] [CrossRef]
- Chen, W.F.; Gong, H.L.; Chen, B.B.; Liu, K.S.; Gao, M.; Zhou, C.F. Spatiotemporal evolution of land subsidence around a subway using InSAR time-series and the entropy method. GISci. Remote Sens. 2017, 54, 78–94. [Google Scholar] [CrossRef]
- Reeves, J.A.; Knight, R.; Zebker, H.A.; Kitanidis, P.K.; Schreüder, W.A. Estimating temporal changes in hydraulic head using InSAR data in the San Luis Valley, Colorado. Water Resour. Res. 2014, 50, 4459–4473. [Google Scholar] [CrossRef]
- Motagh, M.; Walter, T.R.; Sharifi, M.A.; Fielding, E.; Schenk, A.; Anderssohn, J.; Zschau, J. Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Casagli, N.; Catani, F.; Tofani, V. Persistent scatterers interferometry hotspot and cluster analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int. J. Remote Sens. 2012, 33, 466–489. [Google Scholar] [CrossRef]
- Seong, J.-H. The Contiguity Ground and Structures Sinkage Analysis of in City Excavation; Korean Geotechnical Society: Seoul, Korea, 2009. [Google Scholar]
- Rahmati, O.; Golkarian, A.; Biggs, T.; Keesstra, S.; Mohammadi, F.; Daliakopoulos, I.N. Land subsidence hazard modeling: Machine learning to identify predictors and the role of human activities. J. Environ. Manag. 2019, 236, 466–480. [Google Scholar] [CrossRef]
No. | Acquisition Date (yyyymmdd) | Days | No. | Acquisition Date (yyyymmdd) | Days | No. | Acquisition Date (yyyymmdd) | Days | |||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 20170302 | −588 | 78 | 32 | 20180414 | −180 | 102 | 63 | 20190421 | 192 | 125 |
2 | 20170314 | −576 | 128 | 33 | 20180426 | −168 | 67 | 64 | 20190503 | 204 | 187 |
3 | 20170326 | −564 | 128 | 34 | 20180508 | −156 | 39 | 65 | 20190515 | 216 | 97 |
4 | 20170407 | −552 | 91 | 35 | 20180520 | −144 | 17 | 66 | 20190527 | 228 | 91 |
5 | 20170419 | −540 | 61 | 36 | 20180601 | −132 | −2 | 67 | 20190620 | 252 | 82 |
6 | 20170501 | −528 | 83 | 37 | 20180613 | −120 | 117 | 68 | 20190702 | 264 | 160 |
7 | 20170513 | −516 | 117 | 38 | 20180625 | −108 | 87 | 69 | 20190714 | 276 | 117 |
8 | 20170525 | −504 | 82 | 39 | 20180707 | −96 | 65 | 70 | 20190807 | 300 | 41 |
9 | 20170606 | −492 | 121 | 40 | 20180719 | −84 | 93 | 71 | 20190819 | 312 | 100 |
10 | 20170618 | −480 | 49 | 41 | 20180731 | −72 | 24 | 72 | 20190831 | 324 | 87 |
11 | 20170630 | −468 | 14 | 42 | 20180812 | −60 | 67 | 73 | 20190912 | 336 | 99 |
12 | 20170712 | −456 | 91 | 43 | 20180824 | −48 | 69 | 74 | 20190924 | 348 | 112 |
13 | 20170805 | −444 | 129 | 44 | 20180905 | −36 | 77 | 75 | 20191006 | 360 | 55 |
14 | 20170817 | −420 | 12 | 45 | 20180917 | −24 | 62 | 76 | 20191018 | 372 | 103 |
15 | 20170910 | −408 | 78 | 46 | 20180929 | −12 | 74 | 77 | 20191030 | 384 | 64 |
16 | 20170922 | −384 | 134 | 47 | 20181011 | 0 | 0 | 78 | 20191111 | 396 | 132 |
17 | 20171004 | −372 | 105 | 48 | 20181023 | 12 | 163 | 79 | 20191123 | 408 | 126 |
18 | 20171016 | −360 | 96 | 49 | 20181104 | 24 | 109 | 80 | 20191205 | 420 | 66 |
19 | 20171028 | −348 | 96 | 50 | 20181116 | 36 | 106 | 81 | 20191217 | 432 | 110 |
20 | 20171109 | −336 | 71 | 51 | 20181128 | 48 | 70 | 82 | 20191229 | 444 | 163 |
21 | 20171121 | −324 | 126 | 52 | 20181210 | 60 | 122 | 83 | 20200110 | 456 | 176 |
22 | 20171203 | −312 | 150 | 53 | 20181222 | 72 | 190 | 84 | 20200203 | 480 | 101 |
23 | 20171215 | −300 | 148 | 54 | 20190103 | 84 | 119 | 85 | 20200215 | 492 | 61 |
24 | 20171227 | −288 | 103 | 55 | 20190115 | 96 | 58 | 86 | 20200227 | 504 | 70 |
25 | 20180108 | −276 | 102 | 56 | 20190127 | 108 | 96 | 87 | 20200310 | 516 | 158 |
26 | 20180201 | −264 | 159 | 57 | 20190208 | 120 | 141 | 88 | 20200322 | 528 | 141 |
27 | 20180213 | −240 | 166 | 58 | 20190220 | 132 | 174 | 89 | 20200403 | 540 | 80 |
28 | 20180225 | −228 | 44 | 59 | 20190304 | 144 | 157 | 90 | 20200415 | 552 | 46 |
29 | 20180309 | −216 | −7 | 60 | 20190316 | 156 | 31 | 91 | 20200427 | 564 | 63 |
30 | 20180321 | −204 | −35 | 61 | 20190328 | 168 | 29 | 92 | 20200509 | 576 | 72 |
31 | 20180402 | −192 | 126 | 62 | 20190409 | 180 | 68 | 93 | 20200521 | 588 | 56 |
Parameter | Value |
---|---|
DEM | SRTM 1 arc second |
Maximum DEM error | 20 m |
Band-pass phase filter grid size | 50 |
Band-pass phase filter low-pass cutoff | 800 |
Band-pass phase filter low-pass α | 1 |
Band-pass phase filter low-pass β | 0.3 |
Unwrapping algorithm | 3D unwrapping |
Unwrapping grid cell size | 100 |
Unwrapping Gaussian width | 8σ |
Conditioning Factor | Class/Category | Ratio each Class | Ratio of Occurrence | FR |
---|---|---|---|---|
Elevation | 0–13 | 0.205 | 0.292 | 1.424 |
13–30 | 0.206 | 0.355 | 1.722 | |
30–59 | 0.198 | 0.228 | 1.147 | |
59–136 | 0.197 | 0.100 | 0.510 | |
136–813 | 0.194 | 0.025 | 0.130 | |
Aspect | Flat | 0.066 | 0.071 | 1.071 |
North | 0.113 | 0.117 | 1.029 | |
Northeast | 0.127 | 0.122 | 0.958 | |
East | 0.125 | 0.132 | 1.059 | |
Southeast | 0.128 | 0.135 | 1.053 | |
South | 0.125 | 0.122 | 0.972 | |
Southwest | 0.135 | 0.125 | 0.925 | |
West | 0.124 | 0.121 | 0.976 | |
Northwest | 0.056 | 0.056 | 0.999 | |
Profile | concave | 0.085 | 0.041 | 0.480 |
flat | 0.821 | 0.900 | 1.096 | |
convex | 0.094 | 0.059 | 0.629 | |
Slope | 0–1.8 | 0.132 | 0.193 | 1.460 |
1.8–3.86 | 0.218 | 0.350 | 1.601 | |
3.86–7.97 | 0.216 | 0.275 | 1.273 | |
7.97–14.67 | 0.216 | 0.142 | 0.656 | |
> 14.67 | 0.217 | 0.040 | 0.185 | |
Topographic Wetness Index | 2.52–5.62 | 0.207 | 0.072 | 0.347 |
5.62–6.54 | 0.224 | 0.184 | 0.823 | |
6.54–7.80 | 0.228 | 0.264 | 1.157 | |
7.80–10.73 | 0.216 | 0.321 | 1.484 | |
10.73–23.88 | 0.125 | 0.159 | 1.270 | |
Land use | Drying Area | 0.318 | 0.658 | 2.069 |
Agriculture Area | 0.078 | 0.073 | 0.929 | |
Forest Area | 0.316 | 0.049 | 0.157 | |
Grassland | 0.125 | 0.148 | 1.183 | |
Marsh | 0.023 | 0.007 | 0.308 | |
Other | 0.058 | 0.053 | 0.900 | |
Water Body | 0.081 | 0.012 | 0.145 | |
Distance to River (m) | 0–1953 | 0.214 | 0.294 | 1.372 |
1953–4711 | 0.218 | 0.261 | 1.195 | |
4711–8044 | 0.218 | 0.172 | 0.786 | |
8044–12,576 | 0.215 | 0.166 | 0.773 | |
> 12,576 | 0.135 | 0.108 | 0.801 | |
Groundwater Extraction (m3/day) | 0–60 | 0.108 | 0.161 | 1.497 |
60–180.15 | 0.314 | 0.339 | 1.081 | |
180.15–240.21 | 0.027 | 0.021 | 0.782 | |
241.21–330.28 | 0.272 | 0.192 | 0.706 | |
> 330.28 | 0.280 | 0.287 | 1.024 | |
Distance to Fault (m) | 0–946 | 0.212 | 0.252 | 1.188 |
946–1972 | 0.207 | 0.213 | 1.031 | |
1972–3307 | 0.203 | 0.188 | 0.929 | |
3307–4339 | 0.199 | 0.191 | 0.960 | |
> 4339 | 0.180 | 0.156 | 0.868 | |
Lithology | Qa | 0.304 | 0.422 | 1.385 |
PCEbgn | 0.054 | 0.024 | 0.442 | |
PCEbngn | 0.307 | 0.223 | 0.725 | |
PCEggn | 0.011 | 0.007 | 0.609 | |
PCElbgn | 0.003 | 0.000 | 0.000 | |
pgr | 0.005 | 0.004 | 0.809 | |
Jsgr | 0.045 | 0.068 | 1.518 | |
Jbgr | 0.054 | 0.061 | 1.136 | |
PCEms | 0.043 | 0.049 | 1.151 | |
PCEls | 0.006 | 0.001 | 0.166 | |
Kkt | 0.003 | 0.002 | 0.749 | |
rc | 0.054 | 0.088 | 1.615 | |
PCEagn | 0.010 | 0.002 | 0.199 | |
qz | 0.001 | 0.000 | 0.228 | |
Qd | 0.014 | 0.019 | 1.390 | |
Krh | 0.004 | 0.004 | 0.992 | |
Qc | 0.001 | 0.002 | 1.327 | |
mgn | 0.003 | 0.000 | 0.000 | |
PCEpgn | 0.009 | 0.002 | 0.215 | |
Jdgr | 0.021 | 0.006 | 0.275 | |
PCEfgn | 0.009 | 0.002 | 0.243 | |
PCEbs | 0.005 | 0.002 | 0.423 | |
PCElgn | 0.007 | 0.002 | 0.267 | |
Kct | 0.006 | 0.004 | 0.686 | |
PCEqfgn | 0.003 | 0.000 | 0.171 | |
PCEqf | 0.003 | 0.000 | 0.000 | |
PCEsch | 0.006 | 0.002 | 0.319 | |
PCEqgn | 0.004 | 0.000 | 0.000 | |
Qr | 0.004 | 0.004 | 0.873 |
Lithology ID | Description | Group |
---|---|---|
PCEagn | Granular gneiss | Gneiss |
PCEfgn | Fine granitic gneiss | |
mgn | Hybrid gneiss | |
PCElgn | White matter gneiss | |
PCElbgn | Lower arcuate gneiss | |
PCEqfgn | Quartz feldspar gneiss | |
PCEqf | Filigree gneiss | |
PCEqgn | Quartz feldspar | |
Jbgr | Biotite granite | Granite |
pgr | Geojeong Pyeonsang Granite | |
Jsgr | Selenite granite | |
PCEbgn | Arctic black mica gneiss | Biotite Gneiss |
PCEbngn | Biotite Granite | |
PCEggn | Granitic gneiss | Granite Gneiss |
Krh | Rhyolite | Rhyolite |
Kkt | Lapiri tuff (mostly fused tuff) | Tuff |
PCEls | Limestone | Limestone |
Qa | Alluvium | Alluvium |
PCEms | Mica schist | Mica schist |
PCEsch | Gneiss schist | Schist |
PCEbs | Garnet black mica schist, ocular gneiss | |
rc | Red Sandstone, Conglomerate, Dark Red Conglomerate, Conglomerate. | Sedimentary Rock |
Qd | Sand and clay | Sand and Clay |
Qc | Rock pieces, sand and clay | |
qz | Quartzite | quartz |
Qr | Reclaimed land | Reclaimed land |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fadhillah, M.F.; Achmad, A.R.; Lee, C.-W. Integration of InSAR Time-Series Data and GIS to Assess Land Subsidence along Subway Lines in the Seoul Metropolitan Area, South Korea. Remote Sens. 2020, 12, 3505. https://doi.org/10.3390/rs12213505
Fadhillah MF, Achmad AR, Lee C-W. Integration of InSAR Time-Series Data and GIS to Assess Land Subsidence along Subway Lines in the Seoul Metropolitan Area, South Korea. Remote Sensing. 2020; 12(21):3505. https://doi.org/10.3390/rs12213505
Chicago/Turabian StyleFadhillah, Muhammad Fulki, Arief Rizqiyanto Achmad, and Chang-Wook Lee. 2020. "Integration of InSAR Time-Series Data and GIS to Assess Land Subsidence along Subway Lines in the Seoul Metropolitan Area, South Korea" Remote Sensing 12, no. 21: 3505. https://doi.org/10.3390/rs12213505
APA StyleFadhillah, M. F., Achmad, A. R., & Lee, C. -W. (2020). Integration of InSAR Time-Series Data and GIS to Assess Land Subsidence along Subway Lines in the Seoul Metropolitan Area, South Korea. Remote Sensing, 12(21), 3505. https://doi.org/10.3390/rs12213505