Using SPOT Data and FRAGSTAS to Analyze the Relationship between Plant Diversity and Green Space Landscape Patterns in the Tropical Coastal City of Zhanjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Floristic Field Survey
2.3. Species Richness and Phylogenetic Diversity Calculation
2.4. Landscape Analysis
2.5. Socioeconomic Variables in Each Urban Functional Unit (UFU)
2.6. Data Analysis
3. Results
3.1. Plant Species Richness and Phylogenetic Diversity
3.2. Landscape Pattern and UFU Characteristics
4. Discussion
4.1. The Effect of Green Space Landscape Metrics on Cultivated and Spontaneous Plant Diversity
4.2. The Relationship between Social Factors and Green Space Landscape Metrics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Fischer, L.K.; Rodorff, V.; von der Lippe, M.; Kowarik, I. Drivers of biodiversity patterns in parks of a growing South American megacity. Urban Ecosyst. 2016, 19, 1231–1249. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Torras, O.; Gil-Tena, A.; Saura, S. How does forest landscape structure explain tree species richness in a Mediterranean context? Biodivers. Conserv. 2007, 17, 1227–1240. [Google Scholar] [CrossRef]
- Wiens, J.A. Spatial Scaling in Ecology. Funct. Ecol. 1989, 3, 385. [Google Scholar] [CrossRef]
- Dauber, J.; Hirsch, M.; Simmering, D.; Waldhardt, R.; Otte, A.; Wolters, V. Landscape structure as an indicator of biodiversity: Matrix effects on species richness. Agric. Ecosyst. Environ. 2003, 98, 321–329. [Google Scholar] [CrossRef]
- Amici, V.; Rocchini, D.; Filibeck, G.; Bacaro, G.; Santi, E.; Geri, F.; Landi, S.; Scoppola, A.; Chiarucci, A. Landscape structure effects on forest plant diversity at local scale: Exploring the role of spatial extent. Ecol. Complex. 2015, 21, 44–52. [Google Scholar] [CrossRef]
- López-Martínez, J.O.; Hernández-Stefanoni, J.L.; Dupuy, J.M.; Meave, J.A. Partitioning the variation of woody plant β-diversity in a landscape of secondary tropical dry forests across spatial scales. J. Veg. Sci. 2012, 24, 33–45. [Google Scholar] [CrossRef]
- Walz, U. Landscape Structure, Landscape Metrics and Biodiversity. Living Rev. Landsc. Res. 2011, 5, 1–35. [Google Scholar] [CrossRef]
- Cheng, X.-L.; Yuan, L.-X.; Nizamani, M.M.; Zhu, Z.-X.; Friedman, C.R.; Wang, H.-F. Taxonomic and phylogenetic diversity of vascular plants at Ma’anling volcano urban park in tropical Haikou, China: Reponses to soil properties. PLoS ONE 2018, 6, e0198517. [Google Scholar] [CrossRef]
- Wang, H.-F.; Cheng, X.-L.; Nizamani, M.M.; Balfour, K.; Da, L.-J.; Zhu, Z.X.; Qureshi, S. An Integrated approach to study spatial patterns and drivers of land cover within urban functional units: A multi-city comparative study in China. Remote Sens. 2020, 7, 2201. [Google Scholar] [CrossRef]
- Sven, T.; Verhofstad, M.J.J.M.; Bakker, E.S. Managing Successional Stage Heterogeneity to Maximize Landscape-Wide Biodiversity of Aquatic Vegetation in Ditch Networks. Front. Plant Sci. 2018, 9, 1013. [Google Scholar] [CrossRef]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Aronson, M.F.; Lepczyk, C.A.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S.; Nilon, C.H.; Vargo, T. Biodiversity in the city: Key challenges for urban green space management. Front. Ecol. Environ. 2017, 15, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Cilliers, S.; Cilliers, J.; Lubbe, R.; Siebert, S. Ecosystem services of urban green spaces in African countries—perspectives and challenges. Urban Ecosyst. 2012, 16, 681–702. [Google Scholar] [CrossRef]
- Tian, Y.; Jim, C.Y.; Wang, H. Assessing the landscape and ecological quality of urban green spaces in a compact city. Landsc. Urban Plan. 2014, 121, 97–108. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Schnell, I. The impact of an urban park on air pollution and noise levels in the Mediterranean city of Tel-Aviv, Israel. Environ. Pollut. 2014, 195, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Chiquet, C.; Dover, J.W.; Mitchell, P. Birds and the urban environment: The value of green walls. Urban Ecosyst. 2012, 16, 453–462. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Aronson, M.F.J.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation. BioScience 2017, 67, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Kruize, H.; van der Vliet, N.; Staatsen, B.; Bell, R.; Chiabai, A.; Muiños, G.; Higgins, S.; Quiroga, S.; Martinez-Juarez, P.; Yngwe, M.A.; et al. Urban Green Space: Creating a Triple Win for Environmental Sustainability, Health, and Health Equity through Behavior Change. IJERPH 2019, 16, 4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tempesta, T. Benefits and costs of urban parks: A review. Aestimum 2015, 127, 127–143. [Google Scholar]
- Cubino, J.P.; Cavender-Bares, J.; Hobbie, S.E.; Pataki, D.E.; Avolio, M.L.; Darling, L.E.; Larson, K.L.; Hall, S.J.; Groffman, P.M.; Trammell, T.L.E.; et al. Drivers of plant species richness and phylogenetic composition in urban yards at the continental scale. Landsc. Ecol. 2018, 34, 63–77. [Google Scholar] [CrossRef]
- Iuliana, P.P.; Adelina, D.; Valentin, S.; Doina, C.; Gergel, M. Ecological and aesthetic role of spontaneous flora in urban sustainable landscapes development. J. Plant Dev. 2011, 18, 169–177. [Google Scholar]
- Maffi, L. Biocultural Diversity Conservation; Routledge: London, UK, 2012. [Google Scholar]
- Zhu, Z.-X.; Pei, H.-Q.; Schamp, B.S.; Qiu, J.-X.; Cai, G.-Y.; Cheng, X.-L.; Wang, H.-F. Land cover and plant diversity in tropical coastal urban Haikou, China. Urban Urban Green. 2019, 44, 126395. [Google Scholar] [CrossRef]
- Zhou, N.Q.; Zhao, S. Urbanization process and induced environmental geological hazards in China. Nat. Hazards 2013, 67, 797–810. [Google Scholar] [CrossRef]
- Yu, J.; Chen, B.G.; Huang, Z.R.; Chen, Z.Z. Changes in the coastline of three typical bays in Guangdong during recent 10 years revealed by satellite image. Trans. Oceanol. Limnol. 2014, 3, 91–96. [Google Scholar]
- Chinese Academy of Sciences Editorial Committee of Flora Reipublicae Popularis Sinicae. Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1959–2004. [Google Scholar]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Tucker, C.M.; Cadotte, M.W.; Carvalho, S.B.; Davies, T.J.; Ferrier, S.; Fritz, S.A.; Grenyer, R.; Helmus, M.R.; Jin, L.S.; Mooers, A.O.; et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 2016, 92, 698–715. [Google Scholar] [CrossRef]
- Qian, H.; Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. JPECOL 2015, 9, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Pavoine, S.; Bonsall, M.B. Measuring biodiversity to explain community assembly: A unified approach. Biol. Rev. 2010, 86, 792–812. [Google Scholar] [CrossRef]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, C.O.; Ackerly, D.D.; Kembel, S.W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 2008, 24, 2098–2100. [Google Scholar] [CrossRef] [Green Version]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 29 April 2020).
- Zhang, Z.Y. Families with Children and Household Financial Assets Allocation in Urban: Empirical Research; Xiangtan University: Xiangtan, China, 2016. [Google Scholar]
- Kong, F.; Yin, H.; Nakagoshi, N. Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City, China. Landsc. Urban Plan. 2007, 79, 240–252. [Google Scholar] [CrossRef]
- Zhang, N. Landscape Ecology; Science Press: Beijing, China, 2017. [Google Scholar]
- Prevedello, J.A.; Vieira, M.V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 2009, 19, 1205–1223. [Google Scholar] [CrossRef]
- Loram, A.; Warren, P.H.; Gaston, K.J. Urban Domestic Gardens (XIV): The Characteristics of Gardens in Five Cities. Environ. Manag. 2008, 42, 361–376. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Huston, M.A. Local Processes and Regional Patterns: Appropriate Scales for Understanding Variation in the Diversity of Plants and Animals. Oikos 1999, 86, 393. [Google Scholar] [CrossRef]
- Wintle, B.A.; Kujala, H.; Whitehead, A.; Cameron, A.; Veloz, S.; Kukkala, A.; Moilanen, A.; Gordon, A.; Lentini, P.E.; Cadenhead, N.C.R.; et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. USA 2018, 116, 909–914. [Google Scholar] [CrossRef] [Green Version]
- Padullés, C.J.; Cavender-Bares, J.; Hobbie, S.E.; Hall, S.J.; Trammell, T.L.E.; Neill, C.; Avolio, M.L.; Darling, L.E.; Groffman, P.M. Contribution of non-native plants to the phylogenetic homogenization of U.S. yard floras. Ecosphere 2019, 10, e02638. [Google Scholar] [CrossRef] [Green Version]
- Macivor, J.S.; Cadotte, M.W.; Livingstone, S.W.; Lundholm, J.T.; Yasui, S.L.E. Phylogenetic ecology and the greening of cities. J. Appl. Ecol. 2016, 53, 1470–1476. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Fang, N.; Liu, L.; Yang, W.; Zhang, L.; Wang, Y. Effects of land use, topography, climate and socioeconomic factors on geographical variation pattern of inland surface water quality in China. PLoS ONE 2019, 14, e0217840. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, C.; Pauleit, S.; Kindler, A.; Banzhaf, E. Spatial patterns of urban green infrastructure for equity: A novel exploration. J. Clean. Prod. 2019, 238, 117858. [Google Scholar] [CrossRef]
- Santamaría, S.; Sánchez, A.M.; López-Angulo, J.; Ornosa, C.; Mola, I.; Escudero, A. Landscape effects on pollination networks in Mediterranean gypsum islands. Plant Biol. J. 2017, 20, 184–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damschen, E.I.; Baker, D.V.; Bohrer, G.; Nathan, R.; Orrock, J.L.; Turner, J.R.; Brudvig, L.A.; Haddad, N.M.; Levey, D.J.; Tewksbury, J.J. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proc. Natl. Acad. Sci. USA 2014, 111, 3484–3489. [Google Scholar] [CrossRef] [Green Version]
- Luzuriaga, A.L.; Sánchez, A.M.; López-Angulo, J.; Escudero, A. Habitat fragmentation determines diversity of annual plant communities at landscape and fine spatial scales. Basic Appl. Ecol. 2018, 29, 12–19. [Google Scholar] [CrossRef]
- Rudd, H.; Vala, J.; Schaefer, V. Importance of Backyard Habitat in a Comprehensive Biodiversity Conservation Strategy: A Connectivity Analysis of Urban Green Spaces. Restor. Ecol. 2002, 10, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Haag, T.; Santos, A.S.; Sana, D.A.; Morato, R.G.; Cullen, L., Jr.; Crawshaw, P.G., Jr.; De Angelo, C.; Di Bitetti, M.S.; Salzano, F.M.; Eizirik, E. The effect of habitat fragmentation on the genetic structure of a top predator: Loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca). Mol. Ecol. 2010, 19, 4906–4921. [Google Scholar] [CrossRef]
- Song, H.; Xu, Y.; Hao, J.; Zhao, B.; Guo, D.; Shao, H. Investigating distribution pattern of species in a warm-temperate conifer-broadleaved-mixed forest in China for sustainably utilizing forest and soils. Sci. Total Environ. 2017, 578, 81–89. [Google Scholar] [CrossRef]
- Alberti, M.; Marzluff, J.M.; Shulenberger, E.; Bradley, G.; Ryan, C.; Zumbrunnen, C. Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. Urban Ecol. 2008, 53, 143–158. [Google Scholar]
- Silvis, H. The Economics of Ecosystems and Biodiversity in National and International Policymaking. Eur. Rev. Agric. 2011, 39, 186–188. [Google Scholar] [CrossRef]
- Yoshida, H.; Omae, M. An approach for analysis of urban morphology: Methods to derive morphological properties of city blocks by using an urban landscape model and their interpretations. Comput. Environ. Urban Syst. 2005, 29, 223–247. [Google Scholar] [CrossRef]
- Richards, D.R.; Passy, P.; Oh, R.R.Y. Impacts of Population Density and Wealth on the Quantity and Structure of Urban Green Space in Tropical Southeast Asia. Landsc. Urban Plan. 2017, 157, 553–560. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, K.; Bi, Q.; Cui, W.; Li, G. Landscape Patterns and Building Functions for Urban Land-Use Classification from Remote Sensing Images at the Block Level: A Case Study of Wuchang District, Wuhan, China. Remote Sens. 2020, 12, 1831. [Google Scholar] [CrossRef]
- Jaeger, J.A.G. Landscape Division, Splitting Index, and Effective Mesh Size: New Measures of Landscape Fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Fuller, R.A.; Gaston, K.J. The scaling of green space coverage in European cities. Biol. Lett. 2009, 5, 352–355. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Li, Z.; Zhou, W.; Chen, Y. Quantifying Spatial Pattern of Urban Greenspace from a Gradient Perspective of Built-up Age. Phys. Chem. Earth 2019, 111, 78–85. [Google Scholar] [CrossRef]
Spon Ntaxa | Spon PD.ses | Spon MPD.ses | Spon MNTD.ses | Cul Ntaxa | Cul PD.ses | Cul MPD.ses | Cul MNTD.ses | |
---|---|---|---|---|---|---|---|---|
Spon ntaxa | 1 | −0.62 | −0.3 | −0.41 | 0.097 | 0.0072 | −0.61 × 10−6 | 0.029 |
Spon PD.ses | 1 | 0.73 | 0.93 | 0.17 | 0.17 | 0.021 | 0.08 | |
Spon MPD.ses | 1 | 0.7 | 0.2 | 0.21 | −0.0071 | 0.024 | ||
Spon MNTD.ses | 1 | 0.28 | 0.19 | −0.0055 | 0.87 | |||
Cul ntaxa | 1 | −0.058 | −0.51 | −0.091 | ||||
Cul PD.ses | 1 | 0.68 | 0.66 | |||||
Cul MPD.ses | 1 | 0.84 | ||||||
Cul MNTD.ses | 1 |
Index | Ecological Meaning [37] |
---|---|
Shannon’s evenness index (SHEI) | The uniformity of the distribution of different landscapes in a region |
Patch number (NP) | Number of patches |
Patch density (DP) | Number of patches per unit area |
Splitting index (SPLIT) | An index to compare the fragmentation of regions with different total size |
Connectance | The functional linkages or connectedness of patches |
Patch cohesion index (COHESION) | Structural and functional connectedness of patches, to reflect the connectedness of habitats |
Patch richness (PR) | The total number of all patch types in the landscape |
NP | DP | Connectance | COHESION | SPLIT | PR | SHEI | |
---|---|---|---|---|---|---|---|
NP | 1 | −0.13 | −0.42 | 0.11 | 0.05 | 0.32 | −0.17 |
DP | 1 | 0.08 | 0.005 | 0.48 | 0.26 | 0.48 | |
Connectance | 1 | −0.11 | −0.37 | −0.6 | 0.08 | ||
COHESION | 1 | −0.05 | 0.57 | 0.17 | |||
SPLIT | 1 | 0.31 | 0.42 | ||||
PR | 1 | −0.03 | |||||
SHEI | 1 |
UFU Types | Number of UFUs Per Type | Percentage of UFU Types | The Category of UFU Types | Number of UFUs Per Category | Percentage of Category |
---|---|---|---|---|---|
Commercial (C) | 14 | 8.09 | Enterprise | 3 | 1.73 |
Shop | 6 | 3.47 | |||
Hotel | 5 | 2.89 | |||
Institutional (I) | 24 | 13.87 | Primary and middle schools | 18 | 10.4 |
Research institution | 2 | 1.16 | |||
University | 4 | 2.31 | |||
Multi-family residential (M) | 18 | 10.4 | High density residential area | 18 | 10.4 |
Residential (R) | 23 | 13.29 | Urban village | 23 | 13.29 |
Transportation (T) | 49 | 28.32 | Bypath | 27 | 15.61 |
Main road | 13 | 7.51 | |||
Traffic safety island | 3 | 1.73 | |||
Parking lot | 3 | 1.73 | |||
Airport | 1 | 0.58 | |||
Bus station | 2 | 1.16 | |||
Utility (U) | 21 | 12.14 | Government organ | 14 | 8.09 |
Hospital | 7 | 4.05 | |||
Factory (F) | 10 | 5.78 | Factory | 10 | 5.78 |
Park (P) | 14 | 8.09 | Park | 14 | 8.09 |
total | 173 | 100 | 173 | 100 |
Variable | Variable Type | Unit | Transformation | Mean ± SD |
---|---|---|---|---|
(a) Response for plant diversity analysis | ||||
Species richness (spon.) | Discrete | number of species | 15.17 ± 8.9 | |
PD.ses (spon.) | Continuous | unitless | −0.74 ± 0.93 | |
MPD.ses (spon.) | Continuous | unitless | −0.68 ± 0.74 | |
Species richness (cul.) | Discrete | number of species | 16.06 ± 11.97 | |
PD.ses (cul.) | Continuous | unitless | −0.48 ± 0.83 | |
MPD.ses (cul.) | Continuous | unitless | 0.03 ± 0.87 | |
(b) Predictor for plant diversity analysis (same as “response for landscape metrics”) | ||||
(c) Response for landscape metrics analysis | ||||
Patch number (NP) | Discrete | number of patches | log(x) | 5.26 ± 1.71 |
Patch density (DP) | Continuous | density of patches | log(x) | 8.37 ± 0.72 |
Connectance | Continuous | % | log(x) | 3.29 ± 1.04 |
Patch cohesion index (COHESION) | Continuous | % | log(x) | 4.6 ± 0.53 |
Splitting index (SPLIT) | Continuous | % | log(x) | 2.03 ± 0.47 |
Patch richness (PR) | Discrete | unitless | log(x) | 1.61 ± 0.15 |
Shannon’s evenness index (SHEI) | Continuous | unitless | log(x) | 0.61 ± 0.09 |
(d) Predictor for landscape analysis | ||||
Construction age | Discrete | year | log(x) | 2.84 ± 0.98 |
Population density | Continuous | person/km2 | log(x) | 3.39 ± 1.36 |
House price | Discrete | RMB (yuan) | log(x) | 8.71 ± 0.9 |
Longitude | Continuous | degree | log(x) | 4.71 ± 0.0002 |
Latitude | Continuous | degree | log(x) | 3.1 ± 0.002 |
Urban functional unit (UFU) type | Categorical (C, F, I, M, P, R, T, U) * | unitless | log(x) | 1.74 ± 0.44 |
Diversity Index | NP | DP | PR | SHEI | SPLIT | Connectance | Species Richness (cul.) | Species Richness (spon.) |
---|---|---|---|---|---|---|---|---|
R2 | 0.27 | 0.15 | 0.27 | 0.07 | 0.27 | 0.13 | 0.25 | 0.28 |
Intercept | −0.99 | 0.52 | −2.05 * | 2.64 ** | −0.12 | 0.10. | 50.19 | 58.44 *** |
Construction age | 2.36 * | 2.05 * | 2.26 * | 0.04 * | ||||
Longitude | 1.484 | |||||||
Population density | 2.81 ** | 4.03 *** | 3.28 ** | |||||
UFU type | −2.90 ** | −2.84 ** | −3.20 ** | −1.86 | −2.86 ** | 0.13 | ||
House price | 0.12 | |||||||
Connectance | 2.65 ** | |||||||
NP | 2.86 ** | 3.63 *** | ||||||
PR | −1.95. | |||||||
SHEI | −1.55 | |||||||
SPLIT | 2.47 | −1.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.-L.; Nizamani, M.M.; Jim, C.Y.; Balfour, K.; Da, L.-J.; Qureshi, S.; Zhu, Z.-X.; Wang, H.-F. Using SPOT Data and FRAGSTAS to Analyze the Relationship between Plant Diversity and Green Space Landscape Patterns in the Tropical Coastal City of Zhanjiang, China. Remote Sens. 2020, 12, 3477. https://doi.org/10.3390/rs12213477
Cheng X-L, Nizamani MM, Jim CY, Balfour K, Da L-J, Qureshi S, Zhu Z-X, Wang H-F. Using SPOT Data and FRAGSTAS to Analyze the Relationship between Plant Diversity and Green Space Landscape Patterns in the Tropical Coastal City of Zhanjiang, China. Remote Sensing. 2020; 12(21):3477. https://doi.org/10.3390/rs12213477
Chicago/Turabian StyleCheng, Xia-Lan, Mir Muhammad Nizamani, C.Y. Jim, Kelly Balfour, Liang-Jun Da, Salman Qureshi, Zhi-Xin Zhu, and Hua-Feng Wang. 2020. "Using SPOT Data and FRAGSTAS to Analyze the Relationship between Plant Diversity and Green Space Landscape Patterns in the Tropical Coastal City of Zhanjiang, China" Remote Sensing 12, no. 21: 3477. https://doi.org/10.3390/rs12213477
APA StyleCheng, X. -L., Nizamani, M. M., Jim, C. Y., Balfour, K., Da, L. -J., Qureshi, S., Zhu, Z. -X., & Wang, H. -F. (2020). Using SPOT Data and FRAGSTAS to Analyze the Relationship between Plant Diversity and Green Space Landscape Patterns in the Tropical Coastal City of Zhanjiang, China. Remote Sensing, 12(21), 3477. https://doi.org/10.3390/rs12213477