Using LANDSAT 8 and VENµS Data to Study the Effect of Geodiversity on Soil Moisture Dynamics in a Semiarid Shrubland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Processing
2.2.1. LANDSAT 8 Imagery
2.2.2. OPTRAM Model for Estimating SMC
- a.
- Transformed reflectance computation
- b.
- Calculation of NDVI
- c.
- Estimation of the minimal and maximal borders
- d.
- Calculation of OPTRAM
2.2.3. Field Measurements
2.2.4. VENµS Imagery and Vegetation Indices (VIs)
2.2.5. Statistical Analysis
2.2.6. Summary of the Main Method of the Work
3. Results
3.1. OPTRAM Images
3.2. VENµS Images
4. Discussion
5. Conclusions
- (1)
- Areas of high geodiversity retain greater SMC than areas of low geodiversity. These results are in agreement with previous evidence of an ameliorative effect of geodiversity at coarser spatiotemporal scales, using field measurements in limited locations.
- (2)
- Predictions of SMC dynamics using OPTRAM-based time series from LANDSAT 8 data showed that SMC is substantially greater in the high-geodiversity hillslopes during the wet season.
- (3)
- The high correlation between OPTRAM’s SMC predictions and field measurements shows that the use of this remote sensing methodology to monitor SMC using LANDSAT 8 in semiarid environments is reliable.
- (4)
- Our results reveal a high correlation between OPTRAM estimates of SMC and the CWCI computed from VENµS images, representing vegetation canopy water content. Therefore, the high spatiotemporal resolution of VENµS images can also be used to monitor moisture at the patch level in drylands together with the calibration with OPTRAM.
- (5)
- OPTRAM calculated from LANDSAT 8 images is a better way to estimate SMC by using remote sensing. However, in case that a finer spatial resolution is needed, CWCI from VENµS can be used to estimate SMC
- (6)
- The biocrust index applied to VENµS images has shown that the areas of high geodiversity have a more developed biocrust coverage during the summer, which may decrease the evaporation rate from the bare soil.
- (7)
- A better understanding of the effects of geodiversity due to the presence of stones and rock fractions on the durability of dryland ecosystems to prolonged droughts will enable the designing of new management practices, to better address the predicted climatic change scenarios.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Birch, J.C.; Newton, A.C.; Aquino, C.A.; Cantarello, E.; Echeverría, C.; Kitzberger, T.; Schiappacasse, I.; Garavito, N.T. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services. Proc. Natl. Acad. Sci. USA 2010, 107, 21925–21930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166. [Google Scholar] [CrossRef]
- Kafle, H.K.; Bruins, H.J. Climatic trends in Israel 1970–2002: Warmer and increasing aridity inland. Clim. Chang. 2009, 96, 63–77. [Google Scholar] [CrossRef]
- Carter, A.J.; O’Connor, T.G. A two-phase mosaic in a savanna grassland. J. Veg. Sci. 1991, 2, 231–236. [Google Scholar] [CrossRef]
- Deblauwe, V.; Barbier, N.; Couteron, P.; Lejeune, O.; Bogaert, J. The global biogeography of semi-arid periodic vegetation patterns. Glob. Ecol. Biogeogr. 2008, 17, 715–723. [Google Scholar] [CrossRef]
- Deblauwe, V.; Couteron, P.; Lejeune, O.; Bogaert, J.; Barbier, N. Environmental modulation of self-organized periodic vegetation patterns in Sudan. Ecography 2011, 34, 990–1001. [Google Scholar] [CrossRef]
- Meron, E. Nonlinear Physics of Ecosystems; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Noy-Meir, I. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. [Google Scholar] [CrossRef]
- Assouline, S.; Thompson, S.E.; Chen, L.; Svoray, T.; Sela, S.; Katul, G.G. The dual role of soil crusts in desertification. J. Geophys. Res. Biogeosci. 2015, 120, 2108–2119. [Google Scholar] [CrossRef] [Green Version]
- Kidron, G.J.; Yair, A. Rainfall–runoff relationship over encrusted dune surfaces, Nizzana, Western Negev, Israel. Earth Surf. Process. Landforms J. Br. Geomorphol. Group 1997, 22, 1169–1184. [Google Scholar] [CrossRef]
- Shachak, M. Ecological textures: Ecological systems in the northern Negev as a model. Ecol. Environ. 2011, 2, 18–29. [Google Scholar]
- Stavi, I.; Ungar, E.D.; Lavee, H.; Sarah, P. Surface microtopography and soil penetration resistance associated with shrub patches in a semiarid rangeland. Geomorphology 2008, 94, 69–78. [Google Scholar] [CrossRef]
- Stavi, I.; Ungar, E.D.; Lavee, H.; Sarah, P. Grazing-induced spatial variability of soil bulk density and content of moisture, organic carbon and calcium carbonate in a semi-arid rangeland. Catena 2008, 75, 288–296. [Google Scholar] [CrossRef]
- Preisler, Y.; Tatarinov, F.; Grünzweig, J.M.; Bert, D.; Ogée, J.; Wingate, L.; Rotenberg, E.; Rohatyn, S.; Her, N.; Moshe, I.; et al. Mortality versus survival in drought-affected Aleppo pine forest depends on the extent of rock cover and soil stoniness. Funct. Ecol. 2019, 33, 901–912. [Google Scholar] [CrossRef]
- Yizhaq, H.; Stavi, I.; Shachak, M.; Bel, G. Geodiversity increases ecosystem durability to prolonged droughts. Ecol. Complex. 2017, 31, 96–103. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity and geoconservation: What, why, and how? In The George Wright Forum; JSTOR: Hancock, WI, USA, 2005; Volume 22, pp. 4–12. [Google Scholar]
- Stavi, I.; Rachmilevitch, S.; Hjazin, A.; Yizhaq, H. Geodiversity decreases shrub mortality and increases ecosystem tolerance to droughts and climate change. Earth Surf. Process. Landf. 2018, 43, 2808–2817. [Google Scholar] [CrossRef]
- Crouvi, O.; Amit, R.; Enzel, Y.; Gillespie, A.R. Active sand seas and the formation of desert loess. Quat. Sci. Rev. 2010, 29, 2087–2098. [Google Scholar] [CrossRef]
- Svoray, T.; Gancharski, S.B.Y.; Henkin, Z.; Gutman, M. Assessment of herbaceous plant habitats in water-constrained environments: Predicting indirect effects with fuzzy logic. Ecol. Model. 2004, 180, 537–556. [Google Scholar] [CrossRef]
- Svoray, T.; Mazor, S.; Bar, P. How is shrub cover related to soil moisture and patch geometry in the fragmented landscape of the Northern Negev desert? Landsc. Ecol. 2007, 22, 105–116. [Google Scholar] [CrossRef]
- Nardini, A.; Petruzzellis, F.; Marusig, D.; Tomasella, M.; Natale, S.; Altobelli, A.; Calligaris, C.; Floriddia, G.; Cucchi, F.; Forte, E.; et al. Water ‘on the rocks’: A summer drink for thirsty trees? New Phytol. 2020. [Google Scholar] [CrossRef]
- Poesen, J.; Ingelmo-Sanchez, F.; Mucher, H. The hydrological response of soil surfaces to rainfall as affected by cover and position of rock fragments in the top layer. Earth Surf. Process. Landf. 1990, 15, 653–671. [Google Scholar] [CrossRef]
- Stavi, I.; Lal, R.; Jones, S.; Reeder, R.C. Implications of cover crops for soil quality and geodiversity in a humid-temperate region in the Midwestern USA. Land Degrad. Dev. 2012, 23, 322–330. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Wood, E.F. Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models. Surv. Geophys. 1991, 12, 179–204. [Google Scholar] [CrossRef]
- Band, L.E.; Patterson, P.; Nemani, R.; Running, S.W. Forest ecosystem processes at the watershed scale: Incorporating hillslope hydrology. Agric. For. Meteorol. 1993, 63, 93–126. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth Parts A/B/C 2015, 83, 36–56. [Google Scholar]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Hirschi, M.; Mueller, B.; Dorigo, W.; Seneviratne, S.I. Using remotely sensed soil moisture for land–atmosphere coupling diagnostics: The role of surface vs. root-zone soil moisture variability. Remote Sens. Environ. 2014, 154, 246–252. [Google Scholar]
- Sadeghi, M.; Jones, S.B.; Philpot, W.D. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sens. Environ. 2015, 164, 66–76. [Google Scholar]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Mallick, K.; Bhattacharya, B.K.; Patel, N.K. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agric. For. Meteorol. 2009, 149, 1327–1342. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Carlson, T. An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Huang, F.; Wang, P.; Ren, Y.; Liu, R. Estimating Soil Moisture Using the Optical Trapezoid Model (OPTRAM) in a Semi-Arid Area of SONGNEN Plain, China Based on Landsat-8 Data. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 7010–7013. [Google Scholar]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Njoku, E.G.; Kong, J. Theory for passive microwave remote sensing of near-surface soil moisture. J. Geophys. Res. 1977, 82, 3108–3118. [Google Scholar] [CrossRef]
- Arnon, A.I.; Ungar, E.D.; Svoray, T.; Shachak, M.; Blankman, J.; Perevolotsky, A. The application of remote sensing to study shrub—Herbaceous relations at a high spatial resolution. Isr. J. Plant Sci. 2007, 55, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Svoray, T.; Karnieli, A. Rainfall, topography and primary production relationships in a semiarid ecosystem. Ecohydrology 2011, 4, 56–66. [Google Scholar] [CrossRef]
- Karnieli, A. Development and implementation of spectral crust index over dune sands. Int. J. Remote Sens. 1997, 18, 1207–1220. [Google Scholar] [CrossRef]
- Chamizo, S.; Cantón, Y.; Lázaro, R.; Solé-Benet, A.; Domingo, F. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems 2012, 15, 148–161. [Google Scholar] [CrossRef]
- Zaady, E.; Katra, I.; Barkai, D.; Knoll, Y.; Sarig, S. The coupling effects of using coal fly-ash and bio-inoculant for rehabilitation of disturbed biocrusts in active sand dunes. Land Degrad. Dev. 2017, 28, 1228–1236. [Google Scholar] [CrossRef]
- Karnieli, A.; Kidron, G.J.; Glaesser, C.; Ben-Dor, E. Spectral characteristics of cyanobacteria soil crust in semiarid environments. Remote Sens. Environ. 1999, 69, 67–75. [Google Scholar] [CrossRef]
- Kidron, G.J.; Aloni, I. The contrasting effect of biocrusts on shallow-rooted perennial plants (hemicryptophytes): Increasing mortality (through evaporation) or survival (through runoff). Ecohydrology 2018, 11, e1912. [Google Scholar] [CrossRef]
- Sela, S.; Svoray, T.; Assouline, S. Soil water content variability at the hillslope scale: Impact of surface sealing. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Stavi, I.; Rachmilevitch, S.; Yizhaq, H. Geodiversity effects on soil quality and geo-ecosystem functioning in drylands. Catena 2019, 176, 372–380. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Nauss, T.; Meyer, H.; Appelhans, T.; Detsch, F.; Detsch, M.F. Package ‘Satellite’. 2019. Available online: https://mran.microsoft.com/snapshot/2016-05-22/web/packages/satellite/satellite.pdf (accessed on 10 September 2015).
- Core R Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://cran.univ-paris1.fr/web/packages/dplR/vignettes/intro-dplR.pdf (accessed on 3 November 2018).
- Koenker, R.; Portnoy, S.; Ng, P.T.; Zeileis, A.; Grosjean, P.; Ripley, B.D. Package ‘Quantreg’. 2012. Available online: https://www.vps.fmvz.usp.br/CRAN/web/packages/quantreg/quantreg.pdf (accessed on 2 October 2020).
- Cosh, M.H.; Jackson, T.J.; Bindlish, R.; Famiglietti, J.S.; Ryu, D. Calibration of an impedance probe for estimation of surface soil water content over large regions. J. Hydrol. 2005, 311, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Cosh, M.H.; Ochsner, T.E.; McKee, L.; Dong, J.; Basara, J.B.; Evett, S.R.; Hatch, C.E.; Small, E.E.; Steele-Dunne, S.C.; Zreda, M.; et al. The soil moisture active passive Marena, Oklahoma, in situ sensor testbed (smap-moisst): Testbed design and evaluation of in situ sensors. Vadose Zoon J. 2016, 15, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dick, A.; Gamet, P.; Marcq, S.; Dedieu, G.; Hagolle, O.; Crebassol, P.; Raynaud, J.L.; Hillairet, E.; Enache, S.J. Venµs commissioning phase: Specificities of radiometric calibration. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4320–4323. [Google Scholar]
- Lonjou, V.; Desjardins, C.; Hagolle, O.; Petrucci, B.; Tremas, T.; Dejus, M.; Makarau, A.; Auer, S. Maccs-atcor joint algorithm (maja). In Remote Sensing of Clouds and the Atmosphere XXI; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; Volome 10001, p. 1000107. [Google Scholar]
- Peñuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, E.; Escribano, P.; Olehowski, C.; Chamizo, S.; Hill, J.; Cantón, Y.; Weber, B. Transferability of multi- and hyperspectral optical biocrust indices. ISPRS J. Photogramm. Remote Sens. 2017, 126, 94–107. [Google Scholar] [CrossRef]
- Fuller, W.A. Introduction to Statistical Time Series; John Wiley: New York, NY, USA, 1976. [Google Scholar]
- Dubinin, V.; Svoray, T.; Dorman, M.; Perevolotsky, A. Detecting biodiversity refugia using remotely sensed data. Landsc. Ecol. 2018, 33, 1815–1830. [Google Scholar] [CrossRef]
- Trapletti, A.; Hornik, K.; LeBaron, B.; Hornik, M.K. Package ‘Tseries’. 2019. Available online: http://cran.utstat.utoronto.ca/web/packages/tseries/tseries.pdf (accessed on 5 June 2019).
- Hao, Y.; Liu, Q.; Li, C.; Kharel, G.; An, L.; Stebler, E.; Zhong, Y.; Zou, C.B. Interactive Effect of Meteorological Drought and Vegetation Types on Root Zone Soil Moisture and Runoff in Rangeland Watersheds. Water 2019, 11, 2357. [Google Scholar] [CrossRef] [Green Version]
- Klausmeyer, K.R.; Shaw, M.R. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS ONE 2009, 4, e6392. [Google Scholar] [CrossRef] [Green Version]
- Rozenstein, O.; Zaady, E.; Katra, I.; Karnieli, A.; Adamowski, J.; Yizhaq, H. The effect of sand grain size on the development of cyanobacterial biocrusts. Aeolian Res. 2014, 15, 217–226. [Google Scholar] [CrossRef]
- Nejidat, A.; Potrafka, R.M.; Zaady, E. Successional biocrust stages on dead shrub soil mounds after severe drought: Effect of micro-geomorphology on microbial community structure and ecosystem recovery. Soil Biol. Biochem. 2016, 103, 213–220. [Google Scholar] [CrossRef]
- Eldridge, L.L.; Knowlton, B.J.; Furmanski, C.S.; Bookheimer, S.Y.; Engel, S.A. Remembering episodes: A selective role for the hippocampus during retrieval. Nat. Neurosci. 2000, 3, 1149–1152. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Zaady, E.; Shachak, M. Microphytic crusts, shrub patches and water harvesting in the Negev Desert: The Shikim system. Landsc. Ecol. 2002, 17, 587–597. [Google Scholar] [CrossRef]
- Getzin, S.; Yizhaq, H.; Bell, B.; Erickson, T.E.; Postle, A.C.; Katra, I.; Tzuk, O.; Zelnik, Y.R.; Wiegand, K.; Wiegand, T.; et al. Discovery of fairy circles in Australia supports self-organization theory. Proc. Natl. Acad. Sci. USA 2016, 113, 3551–3556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubinin, V.; Svoray, T.; Stavi, I.; Yizhaq, H. Using LANDSAT 8 and VENµS Data to Study the Effect of Geodiversity on Soil Moisture Dynamics in a Semiarid Shrubland. Remote Sens. 2020, 12, 3377. https://doi.org/10.3390/rs12203377
Dubinin V, Svoray T, Stavi I, Yizhaq H. Using LANDSAT 8 and VENµS Data to Study the Effect of Geodiversity on Soil Moisture Dynamics in a Semiarid Shrubland. Remote Sensing. 2020; 12(20):3377. https://doi.org/10.3390/rs12203377
Chicago/Turabian StyleDubinin, Vladislav, Tal Svoray, Ilan Stavi, and Hezi Yizhaq. 2020. "Using LANDSAT 8 and VENµS Data to Study the Effect of Geodiversity on Soil Moisture Dynamics in a Semiarid Shrubland" Remote Sensing 12, no. 20: 3377. https://doi.org/10.3390/rs12203377
APA StyleDubinin, V., Svoray, T., Stavi, I., & Yizhaq, H. (2020). Using LANDSAT 8 and VENµS Data to Study the Effect of Geodiversity on Soil Moisture Dynamics in a Semiarid Shrubland. Remote Sensing, 12(20), 3377. https://doi.org/10.3390/rs12203377