A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data
Abstract
:1. Introduction
2. Methods
2.1. NHI Algorithm
2.2. The Google Earth Engine (GEE) Platform
2.3. NHI Tool
3. Results
3.1. Identification of Unrest/Quiescience Periods of Active Volcanoes
3.2. Assessing Advantages of Data Integration in Monitoring Active Volcanoes
3.3. Lava Flows Monitoring and Mapping
3.4. Localization of Active Vents and Thermal Anomaly Assessment
3.5. Quantification of the NHI Tool Performance
4. Discussion
Future Perspectives
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Volcano Discovery. How Many Volcanic Eruptions Occur Every Year? Available online: https://www.volcanodiscovery.com/volcanology/faq/how-many-eruptions-per-year.html (accessed on 28 April 2020).
- Hooper, A.; Prata, F.; Sigmundsson, F. Remote Sens. of volcanic hazards and their precursor. Proc. IEEE 2012, 100, 2908–2930. [Google Scholar] [CrossRef]
- Tanguy, J.C.; Ribière, C.; Scarth, A.; Tjetjep, W.S. Victims from volcanic eruptions: A revised database. Bull. Volcanol. 1998, 60, 137–144. [Google Scholar] [CrossRef]
- Oppenheimer, C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog. Phys. Geogr. 2003, 27, 230–259. [Google Scholar] [CrossRef]
- Favalli, M.; Tarquini, S.; Papale, P.; Fornaciai, A.; Boschi, E. Lava flow hazard and risk at Mt. Cameroon volcano. Bull. Volcanol. 2012, 74, 423–439. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Hérault, A.; Zago, V. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. Geol. Soc. Am. Bull. 2019, 132, 1615–1625. [Google Scholar] [CrossRef]
- USGS Volcano Hazard Programme. Volcanoes can affect the Earth’s Climate. Available online: https://volcanoes.usgs.gov/vhp/gas_climate.html (accessed on 28 May 2020).
- Prata, A.J.; Tupper, A. Aviation hazards from volcanoes: The state of the science. Nat. Hazards 2009, 51, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Budd, L.; Griggs, S.; Howarth, D.; Ison, S. A fiasco of volcanic proportions? Eyjafjallajökull and the closure of European airspace. Mobilities 2011, 6, 31–40. [Google Scholar] [CrossRef]
- Harris, A.J.; Butterworth, A.L.; Carlton, R.W.; Downey, I.; Miller, P.; Navarro, P.; Rothery, D.A. Low-cost volcano surveillance from space: Case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bull. Volcanol. 1997, 59, 49–64. [Google Scholar] [CrossRef]
- Dean, K.; Servilla, M.; Roach, A.; Foster, B.; Engle, K. Satellite monitoring of remote volcanoes improves study efforts in Alaska. Eos Trans. Am. Geophys. Union 1998, 79, 413–423. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.; Garbeil, H.; Harris, A.; Pilger, E. Automated volcanic eruption detection using MODIS. Remote Sens. Environ. 2002, 82, 135–155. [Google Scholar] [CrossRef] [Green Version]
- Pergola, N.; Marchese, F.; Tramutoli, V. Automated detection of thermal features of active volcanoes by means of infrared AVHRR records. Remote Sens. Environ. 2004, 93, 311–327. [Google Scholar] [CrossRef]
- Lombardo, V. AVHotRR: Near-real time routine for volcano monitoring using IR satellite data. Geol. Soc. Lond. Spec. Publ. 2016, 426, 73–92. [Google Scholar] [CrossRef]
- Coppola, D.; Laiolo, M.; Cigolini, C.; Delle Donne, D.; Ripepe, M. Enhanced volcanic hot-spot detection using MODIS IR data: Results from the MIROVA system. Geol. Soc. Lond. Spec. Publ. 2015, 426, 181–205. [Google Scholar] [CrossRef]
- Kaneko, T.; Yasuda, A.; Takasaki, K.; Nakano, S.; Fujii, T.; Honda, Y.; Kajiwara, K.; Murakami, H. A new infrared volcano monitoring using GCOM-C (SHIKISAI) satellite: Applications to the Asia-Pacific region. Earth Planets Space 2020, 72, 1–16. [Google Scholar] [CrossRef]
- MODVOLC, Near-Real Time Satellite Monitoring of Global Volcanism Using MODIS. Available online: http://modis.higp.hawaii.edu/ (accessed on 10 June 2020).
- MIROVA—Middle InfraRed Observation of Volcanic Activity, Near Real Time Detection System. Available online: https://www.mirovaweb.it/ (accessed on 10 June 2020).
- Coppola, D.; Laiolo, M.; Cigolini, C.; Massimetti, F.; Delle Donne, D.; Ripepe, M.; Arias, H.; Barsotti, S.; Parra, B.C.; Centeno, R.G.; et al. Thermal Remote Sens. for global volcano monitoring: Experiences from the MIROVA system. FrEaS 2019, 7, 362. [Google Scholar]
- REALVOLC. Available online: http://vrsserv2.eri.u-tokyo.ac.jp/graph.html (accessed on 10 June 2020).
- Alaska Volcano Observatory (AVO). Available online: https://avo.alaska.edu/ (accessed on 28 May 2020).
- Kamchatka Volcanic Eruption Response Team (KVERT). Available online: http://www.kscnet.ru/ivs/kvert/index_eng.php (accessed on 10 June 2020).
- Pergola, N.; Coviello, I.; Filizzola, C.; Lacava, T.; Marchese, F.; Paciello, R.; Tramutoli, V. A review of RSTVOLC, an original algorithm for automatic detection and near-real-time monitoring of volcanic hot spots from space. Geol. Soc. Lond. Spec. Publ. 2015, 426, 55–72. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Fortuna, L.; Del Negro, C. The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 2011, 54, 544–550. [Google Scholar]
- HOTVOLC. Available online: http://www.obs.univ-bpclermont.fr/SO/televolc/hotvolc/ (accessed on 28 May 2020).
- Aster Volcano Archive (AVA). Available online: https://ava.jpl.nasa.gov/index.php (accessed on 28 May 2020).
- Reath, K.; Pritchard, M.E.; Moruzzi, S.; Alcott, A.; Coppola, D.; Pieri, D. The AVTOD (ASTER Volcanic Thermal Output Database) Latin America archive. J. Volcanol. Geotherm. Res. 2019, 376, 62–74. [Google Scholar] [CrossRef] [Green Version]
- Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). ASTER Users Advisory. Available online: https://asterweb.jpl.nasa.gov/swir-alert.asp (accessed on 28 April 2020).
- Ramsey, M.S.; Flynn, I.T. The Spatial and Spectral Resolution of ASTER Infrared Image Data: A Paradigm Shift in Volcanological Remote Sens. Remote Sens. 2020, 12, 738. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.; Helder, D.; Barsi, J.; Markham, B. Continuous calibration improvement in solar reflective bands: Landsat 5 through Landsat 8. Remote Sens. Environ. 2016, 185, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.W.; de Souza Filho, C.R.; Wright, R.; Sabatino, G.; Pabon, R.C. HOTMAP: Global hot target detection at moderate spatial resolution. Remote Sens. Environ. 2016, 177, 78–88. [Google Scholar] [CrossRef]
- Layana, S.; Aguilera, F.; Rojo, G.; Vergara, Á.; Salazar, P.; Quispe, J.; Urra, P.; Urrutia, D. Volcanic Anomalies Monitoring System (VOLCANOMS), a Low-Cost Volcanic Monitoring System Based on Landsat Images. Remote Sens. 2020, 12, 1589. [Google Scholar] [CrossRef]
- Marchese, F.; Neri, M.; Falconieri, A.; Lacava, T.; Mazzeo, G.; Pergola, N.; Tramutoli, V. The Contribution of Multi-Sensor Infrared Satellite Observations to Monitor Mt. Etna (Italy) Activity during May to August 2016. Remote Sens. 2018, 10, 1948. [Google Scholar] [CrossRef] [Green Version]
- Valade, S.; Ley, A.; Massimetti, F.; D’Hondt, O.; Laiolo, M.; Coppola, D.; Loibl, D.; Hellwich, O.; Walter, T.R. Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System. Remote Sens. 2019, 11, 1528. [Google Scholar] [CrossRef] [Green Version]
- Marchese, F.; Genzano, N.; Neri, M.; Falconieri, A.; Mazzeo, G.; Pergola, N. A Multi-Channel Algorithm for Mapping Volcanic Thermal Anomalies by Means of Sentinel-2 MSI and Landsat-8 OLI Data. Remote Sens. 2019, 11, 2876. [Google Scholar] [CrossRef] [Green Version]
- Massimetti, F.; Diego, C.; Marco, L.; Sébastien, V.; Cigolini, C.; Ripepe, M. Volcanic Hot-Spot Detection Using SENTINEL-2: A Comparison With MODIS–MIROVA Thermal Data Series. Remote Sens. 2020, 12, 820. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, N.; Chittimalli, S.K.; Balasubramanian, S.V.; Vellucci, V. Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. Remote Sens. Environ. 2019, 220, 19–29. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Quayle, B.; Lorenz, E.; Morelli, F. Active fire detection using Landsat-8/OLI data. Remote Sens. Environ. 2016, 185, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Google Earth Engine. Guide, Introduction. Available online: https://developers.google.com/earth-engine (accessed on 28 April 2020).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Institute of Methodologies for Environmental Analysis (IMAA). Open Data, NHI (Normalized Hot Spot Indices): A Tool for Mapping Volcanic Thermal Anomalies at a Global Scale from Space. Available online: http://www.imaa.cnr.it/en/10066-open-data/712-nhi-normalized-hotspot-indices-tool (accessed on 28 April 2020).
- Global Volcanism Program, Volcanoes of the World, v. 4.8.6.; Venzke, E (Ed.); Smithsonian Institution. 2013. Available online: https://doi.org/10.5479/si.GVP.VOTW4-2013 (accessed on 28 April 2020).
- USGS. Landsat 8 Data Users Handbook. Available online: https://www.usgs.gov/media/files/landsat-8-data-users-handbook (accessed on 30 September 2020).
- Ren, H.; Du, C.; Liu, R.; Qin, Q.; Yan, G.; Li, Z.L.; Meng, J. Noise evaluation of early images for Landsat 8 Operational Land Imager. Opt. Express 2014, 22, 27270–27280. [Google Scholar] [CrossRef] [PubMed]
- ESA Sentinel Online. Radiometric Performance. Available online: https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/performance (accessed on 28 April 2020).
- Skakun, S.; Vermote, E.; Roger, J.C.; Justice, C. Multispectral misregistration of Sentinel-2A images: Analysis and implications for potential applications. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2408–2412. [Google Scholar] [CrossRef] [PubMed]
- Morfitt, R.; Barsi, J.; Levy, R.; Markham, B.; Micijevic, E.; Ong, L.; Scaramuzza, P.; Vanderwerff, K. Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit. Remote Sens. 2015, 7, 2208–2237. [Google Scholar] [CrossRef] [Green Version]
- ESA- Sentinel Online, Revisit and Coverage. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/revisit-coverage (accessed on 4 August 2020).
- Global Volcanism Program. Report on Tolbachik (Russia) (Venzke, E., Ed.). Bulletin of the Global Volcanism Network 2017, 42:10. Smithsonian Institution. Available online: https://doi.org/10.5479/si.GVP.BGVN201710-300240 (accessed on 2 October 2020).
- Dvigalo, V.N.; Svirid, I.Y.; Shevchenko, A.V. The first quantitative estimates of parameters for the Tolbachik Fissure Eruption of 2012–2013 from aerophotogrammetric observations. J. Volcanol. Seismol. 2013, 8, 261–268. [Google Scholar] [CrossRef]
- Zelenski, M.; Malik, N.; Taran, Y. Emissions of trace elements during the 2012–2013 effusive eruption of Tolbachik volcano, Kamchatka: Enrichment factors, partition coefficients and aerosol contribution. J. Volcanol. Geotherm. Res. 2014, 285, 136–149. [Google Scholar] [CrossRef]
- KVERT, Plosky Tolbachik Volcano. Last VONA/KVERT Releases. Available online: http://www.kscnet.ru/ivs/kvert/volc?name=Plosky%20Tolbachik&lang=en (accessed on 1 June 2020).
- ESA-Copernicus, Sentinel 2, L1C Data quality Report. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report (accessed on 1 June 2020).
- Mandanici, E.; Bitelli, G. Preliminary comparison of sentinel-2 and landsat 8 imagery for a combined use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.C. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 2018, 215, 482–494. [Google Scholar] [CrossRef]
- Chastain, R.; Housman, I.; Goldstein, J.; Finco, M.; Tenneson, K. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. Remote Sens. Environ. 2019, 221, 274–285. [Google Scholar] [CrossRef]
- Global Volcanism Program, 2018. Report on Karangetang (Indonesia) (Venzke, E., Ed.). Bulletin of the Global Volcanism Network, 43:5. Smithsonian Institution. Available online: https://doi.org/10.5479/si.GVP.BGVN201805-267020 (accessed on 1 June 2020).
- Plank, S.; Marchese, F.; Filizzola, C.; Pergola, N.; Neri, M.; Nolde, M.; Martinis, S. The July/August 2019 Lava Flows at the Sciara del Fuoco, Stromboli–Analysis from Multi-Sensor Infrared Satellite Imagery. Remote Sens. 2019, 11, 2879. [Google Scholar] [CrossRef] [Green Version]
- Dvorak, J.J.; Mastrolorenzo, G. The Mechanisms of Recent Vertical Crustal Movements in Campi Flegrei Caldera, Southern Italy; Geological Society of America: Boulder, CO, USA, 1991; Volume 263. [Google Scholar]
- Sabbarese, C.; Ambrosino, F.; Chiodini, G.; Giudicepietro, F.; Macedonio, G.; Caliro, S.; De Cesare, W.; Bianco, F.; Pugliese, M.; Roca, V. Continuous radon monitoring during seven years of volcanic unrest at Campi Flegrei caldera (Italy). Sci. Rep. 2020, 10, 9551. [Google Scholar] [CrossRef]
- Dawson, J.B.; Pinkerton, H.; Pyle, D.M.; Nyamweru, C. June 1993 eruption of Oldoinyo Lengai, Tanzania: Exceptionally viscous and large carbonatite lava flows and evidence for coexisting silicate and carbonate magmas. Geology 1994, 22, 799–802. [Google Scholar] [CrossRef]
- Zuppetta, A.; Sava, A. Stress pattern at Campi Flegrei from focal mechanisms of the 1982–1984 earthquakes (Southern Italy). J. Volcanol. Geotherm. Res. 1991, 48, 127–137. [Google Scholar] [CrossRef]
- Global Volcanism Program, 1981. Report on Acatenango (Guatemala) (McClelland, L., Ed.). Scientific Event Alert Network Bulletin, 6:3. Smithsonian Institution. Available online: https://doi.org/10.5479/si.GVP.SEAN198103-342080. (accessed on 3 July 2020).
- USGS—Kilauea 2018, Lower East Rift Zone and Summit-Collapse Event. Available online: https://wim.usgs.gov/geonarrative/kilauea2018/ (accessed on 1 June 2020).
- Global Volcanism Program. Report on Nishinoshima (Japan). In Bulletin of the Global Volcanism Network 2020; Crafford, A.E., Venzke, E., Eds.; Smithsonian Institution: Washington, DC, USA, 2020. [Google Scholar]
- Sennert, S.K. (Ed.) Report on Sierra Negra (Ecuador). In Weekly Volcanic Activity Report; Smithsonian Institution and US Geological Survey: Boulder, CO, USA, 2018. [Google Scholar]
- Global Volcanism Program. 2019. Report on Ol Doinyo Lengai (Tanzania) (Crafford, A.E., Venzke, E., Eds.). Bulletin of the Global Volcanism Network, 44:9. Smithsonian Institution. Available online: https://doi.org/10.5479/si.GVP.BGVN201909-222120 (accessed on 23 June 2020).
- Kervyn, M.; Ernst, G.G.J.; Harris, A.J.L.; Belton, F.; Mbede, E.; Jacobs, P. Thermal Remote Sens. of the low-intensity carbonatite volcanism of Oldoinyo Lengai, Tanzania. Int. J. Remote Sens. 2008, 29, 6467–6499. [Google Scholar] [CrossRef]
- Caputo, T.; Bellucci Sessa, E.; Silvestri, M.; Buongiorno, M.F.; Musacchio, M.; Sansivero, F.; Vilardo, G. Surface temperature multiscale monitoring by thermal infrared satellite and ground images at Campi Flegrei volcanic area (Italy). Remote Sens. 2019, 11, 1007. [Google Scholar] [CrossRef] [Green Version]
- Burgi, P.Y.; Darrah, T.H.; Tedesco, D.; Eymold, W.K. Dynamics of the Mount Nyiragongo lava lake. J. Geophys. Res. Solid Earth 2014, 119, 4106–4122. [Google Scholar] [CrossRef] [Green Version]
- Norjamaki, I.; Tokola, T. Comparison of atmospheric correction methods in mapping timber volume with multitemporal Landsat images in Kainuu, Finland. Photogramm. Eng. Remote Sens. 2007, 73, 155–163. [Google Scholar] [CrossRef]
- Major, J.J.; Dzurisin, D.; Schilling, S.P.; Poland, M.P. Monitoring lava-dome growth during the 2004–2008 Mount St. Helens, Washington, eruption using oblique terrestrial photography. Earth Planet. Sci. Lett. 2009, 286, 243–254. [Google Scholar] [CrossRef]
- Vaughan, R.G.; Hook, S.J.; Ramsey, M.S.; Realmuto, V.J.; Schneider, D.J. Monitoring eruptive activity at Mount St. Helens with TIR image data. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Lacava, T.; Marchese, F.; Arcomano, G.; Coviello, I.; Falconieri, A.; Faruolo, M.; Paciello, R.; Pergola, N.; Tramutoli, V. Thermal monitoring of Eyjafjöll volcano eruptions by means of infrared MODIS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3393–3401. [Google Scholar] [CrossRef]
- Brooks, E.B.; Wynne, R.H.; Thomas, V.A. Using window regression to gap-fill Landsat ETM+ post SLC-Off data. Remote Sens. 2018, 10, 1502. [Google Scholar] [CrossRef] [Green Version]
- USGS, Landsat Known Issues. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-known-issues (accessed on 3 June 2020).
- Pieri, D.; Abrams, M. ASTER watches the world’s volcanoes: A new paradigm for volcanological observations from orbit. J. Volcanol. Geotherm. Res. 2003, 135, 13–28. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Bazilian, M.D.; Zhizhin, M.; Ghosh, T.; Baugh, K.; Hsu, F.C. The potential role of natural gas flaring in meeting greenhouse gas mitigation targets. Energy Strategy Rev. 2018, 20, 156–162. [Google Scholar] [CrossRef]
- Faruolo, M.; Coviello, I.; Filizzola, C.; Lacava, T.; Pergola, N.; Tramutoli, V. A satellite-based analysis of the Val d’Agri Oil Center (southern Italy) gas flaring emissions. Nat. Hazards Earth Syst. Sci. 2014, 14, 2783–2793. [Google Scholar] [CrossRef] [Green Version]
- Faruolo, M.; Lacava, T.; Pergola, N.; Tramutoli, V. The VIIRS-Based RST-FLARE Configuration: The Val d’Agri Oil Center Gas Flaring Investigation in Between 2015–2019. Remote Sens. 2020, 12, 819. [Google Scholar] [CrossRef] [Green Version]
- Fisher, D.; Wooster, M.J. Shortwave IR adaption of the mid-infrared radiance method of fire radiative power (FRP) retrieval for assessing industrial gas flaring output. Remote Sens. 2018, 10, 305. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.C.; Ghosh, T. Methods for global survey of natural gas flaring from visible infrared imaging radiometer suite data. Energies 2016, 9, 14. [Google Scholar] [CrossRef]
- Yu, P.; Xu, R.; Abramson, M.J.; Li, S.; Guo, Y. Bushfires in Australia: A serious health emergency under climate change. Lancet Planet. Health 2020, 4, e7–e8. [Google Scholar] [CrossRef] [Green Version]
- Nolan, R.H.; Boer, M.M.; Collins, L.; Resco de Dios, V.; Clarke, H.; Jenkins, M.; Belinda, K.; Bradstock, R.A. Causes and consequences of eastern Australia’s 2019-20 season of mega-fires. Global Chang. Biol. 2020, 26, 1039–1041. [Google Scholar] [CrossRef] [Green Version]
- Fire Information for Resource Management System (FIRMS). Available online: https://firms.modaps.eosdis.nasa.gov/ (accessed on 28 April 2020).
- Anantrasirichai, N.; Albino, F.; Hill, P.; Bull, D.; Biggs, J. Detecting Volcano Deformation in InSAR using Deep learning. arXiv 2018, arXiv:1803.00380. [Google Scholar]
NHI Tool Version | Initial Test on SWIR Radiance | Test for Hot Spot Pixels | Test for Extreme Pixels | Test for MSI Multispectral Misregistration Issues | |
---|---|---|---|---|---|
OLI | MSI | ||||
v. 1.1 | L2.2 > 3.0 | NHISWIR > 0 (mid-low intensity) OR NHISWNIR > 0 (high-intensity) | N/A | N/A | |
v. 1.2 | L0.44 < 80 AND ND12-8A > −0.6 * L0.44 < 80 AND ND12-8A > −0.2 | ||||
v.1.3/1.4 | L2.2 > 2.0 | L1.6 ≥ 71.3 AND L0.44 < 70 | L1.6 ≥ 70 AND L0.705 < 70 | L0.705 < 90 AND ND12-8A > −0.6 * L0.705 < 70 AND ND12-8A > −0.3 |
Volcano | FPR | DB | Factors | |||
---|---|---|---|---|---|---|
L8-OLI | S2-MSI | |||||
v1.1 | v1.2 | v1.3/1.4 | ||||
Acatenango (Guatemala) | 0.0% | 0.0% | 0.0% | 0.0% | 2.5 km | N/A |
Suwanoseijima (Japan) | 0.0% | 0.8% | 0.8% | 0.8% | 4 km | data issues |
Nishinoshima (Japan) | 0.0% | N/A | N/A | N/A | 4 km | N/A |
Shishaldin (USA) | 0.0% | 1.1% | 0.0% | 0% | 5 km | N/A |
Oldoynio Lengai (Africa) | 1.2% | 0.0% | 0.0% | 0.0% | 5 km | fires |
Campi Flegrei (Italy) | 1.7% | 19.2% | 7.4% | 12.3% | 6 km | fires/data issues |
Tolbachick (USA) | 0.0% | 12.1% | 2.1% | 3.5% | 20 km | data issues |
Landsat-8 OLI Data (YYYYMMDD) | Detected (Yes/No) |
---|---|
20130523 | N |
20130717 | N |
20130818 | N |
20161029 | N |
20180120 | N |
20180512 | N |
20180528 | N |
20180715 | Y |
20180901 | Y |
20190123 | N |
20190224 | Y |
20190616 | Y |
20190702 | Y |
20190803 | Y |
20190819 | N |
20191006 | N |
20200415 | Y |
20200501 | Y |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genzano, N.; Pergola, N.; Marchese, F. A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data. Remote Sens. 2020, 12, 3232. https://doi.org/10.3390/rs12193232
Genzano N, Pergola N, Marchese F. A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data. Remote Sensing. 2020; 12(19):3232. https://doi.org/10.3390/rs12193232
Chicago/Turabian StyleGenzano, Nicola, Nicola Pergola, and Francesco Marchese. 2020. "A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data" Remote Sensing 12, no. 19: 3232. https://doi.org/10.3390/rs12193232
APA StyleGenzano, N., Pergola, N., & Marchese, F. (2020). A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data. Remote Sensing, 12(19), 3232. https://doi.org/10.3390/rs12193232