In Situ Aircraft Measurements of CO2 and CH4: Mapping Spatio-Temporal Variations over Western Korea in High-Resolutions
Abstract
:1. Introduction
- Characterizing air masses with the short-term (1-min) regression slope between ∆CO and ∆CO2 observed during the 14 flights campaign conducted in 2019 that covered Western Korea and Yellow Sea.
- Characterizing the spatial and temporal variations of CO2 and CH4 across Western Korea where large clusters of CO2 and CH4 emission sources, such as industry, residual, and biogenic sources (such as agriculture, livestock, landfill, and so on), with the short-term (1-min) regression slope between ∆CH4 and ∆CO.
2. Materials and Methods
2.1. Aircraft
2.2. Aircraft Analyzer Setup and Calibration
2.3. H2O Correction Error Analysis
2.4. Total Uncertainty Analysis
2.5. Scientific Aim and Flight Design
2.6. Short-Term Regression Slope Calculation Method
3. Results and Discussion
3.1. Regional Source Characteristics Using Regression Slope between Short-Term (1-min) ∆CO and ∆CO2 Data
3.1.1. Yellow Sea Receptor Analysis
3.1.2. Western Korea Receptor Analysis
3.2. Spatio-Temporal CO2 and CH4 Variations over Western Korea
3.3. Comparison with Backgrounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Callendar, G.S. Variations of the amount of carbon dioxide in different air currents. Q. J. R. Meteorol. Soc. 1940, 66, 395–400. [Google Scholar] [CrossRef]
- Bishof, W. Variations in concentration of carbon dioxide in the free atmosphere. Tellus 1962, 14, 87–90. [Google Scholar]
- Keeling, C.D.; Harris, T.B.; Wilkins, E.M. Concentration of atmospheric carbon dioxide at 500 and 700 milibars. J. Geophys. Res. 1968, 73, 4511–4528. [Google Scholar] [CrossRef]
- Houweling, S.; Rockmann, T.; Aben, I.; Keppler, F.; Krol, M.; Meirink, J.F.; Dlugokencky, E.J.; Frankenberg, C. Atmospheric constraints on global emissions of methane from plants. Geophys. Res. Lett. 2006, 33, L15821. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; Bergamaschi, P.; Butz, A.; Houweling, S.; Meirink, J.F.; Notholt, J.; Petersen, A.K.; Schrijver, H.; Warneke, T.; Aben, I. Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT. Geophys. Res. Lett. 2008, 35, L15811. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, A.L.; Schwietzke, S.; Poulter, B.; Arnold, T.; Lan, X.; Rigby, M.; Vogel, F.R.; van der Werf, G.R.; Janssens, G.-M.; Boesch, H.; et al. Advancing scientific understanding of the global methane budget in support of the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 1475–1512. [Google Scholar] [CrossRef]
- Gregg, J.S.; Andres, R.J.; Marland, G. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett. 2008, 35, L08806. [Google Scholar] [CrossRef]
- Peters, G.P.; Marland, G.; Quere, C.L.; Boden, T.; Canadell, J.G.; Raupach, M.R. Rapid growth in CO2 emissions after the 2008–2009 global financial crises. Nat. Clim. Chang. 2012, 2, 2–4. [Google Scholar] [CrossRef]
- Labzovskii, L.D.; Mark, H.W.L.; Kenea, S.T.; Rhee, J.S.; Lashkari, A.; Li, S.; Goo, T.-Y.; Oh, Y.-S.; Byun, Y.-H. What can we learn about effectiveness of carbon reduction policies from interannual variability of fossil fuel CO2 emission in East Asia. Environ. Sci. Policy 2019, 96, 132–140. [Google Scholar] [CrossRef]
- Li, S.; Kim, J.; Park, S.; Kim, S.-K.; Park, M.-K.; Mühle, J.; Lee, G.; Lee, M.; Jo, C.O.; Kim, K.-R. Source identification and apportionment of halogenated compounds observed at a remote site in East Asia. Environ. Sci. Technol. 2014, 48, 491–498. [Google Scholar] [CrossRef]
- Lee, G.; Oh, H.-R.; Ho, C.H.; Kim, J.; Song, C.-K.; Chang, L.-S.; Lee, J.-B.; Lee, S. Airborne measurements of high pollutant concentration events in the free troposphere over the West Coast of South Korea between 1997 and 2011. Aerosol Air Qual. Res. 2016, 16, 1118–1130. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-J.; Jo, H.-Y.; Kim, S.-W.; Park, M.-S.; Kim, C.-H. Impacts of atmospheric vertical structures on transboundary aerosol transport from China to South Korea. Sci. Rep. 2019, 9, 13040. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Emmons, L.K.; Arellano, A.F., Jr.; Gaubert, B.; Knote, C.; Tilmes, S.; Buchholz, R.R.; Pfister, G.G.; Diskin, G.S.; Blake, D.R.; et al. Source contributions to carbon monoxide concentrations during KORUS-AQ based on CAM-chem model applications. J. Geophys. Res. Atmos. 2019, 124, 2796–2822. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.-O.; Ryoo, S.-B.; Lee, J.-S.; Lee, G.-W. The measurement of atmospheric CO2 at KMA GAW regional stations, its characteristics, and comparisons with other East Asian sites. Atmos. Chem. Phys. 2019, 19, 2149–2163. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Park, S.; Lee, J.-Y.; Ha, K.-J.; Park, M.-K.; Jo, C.J.; Oh, H.; Mühle, J.; Kim, K.-R.; Montzka, S.A.; et al. Chemical evidence of inter-hemispheric air mass intrusion into the Northern Hemisphere mid-latitudes. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Goo, T.-Y.; Moon, H.; Labzovskii, L.; Kenea, S.T.; Oh, Y.-S.; Lee, H.; Byun, Y.-H. Airborne in-situ measurement of CO2 and CH4 in Korea: Case study of vertical distribution measured at Anmyeon-do in Winter. Atmosphere 2019, 29, 511–523, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Kenea, S.T.; Oh, Y.-S.; Goo, T.-Y.; Rhee, J.S.; Byun, Y.H.; Labzovskii, L.D.; Li, S. Comparison of XCH4 derived from g-b FTS and GOSAT and evaluation using aircraft in-situ observations over TCCON site. Asia. Pac. J. Atmos. Sci. 2019, 55, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Delene, D.J. Airborne data processing and analysis software package. Earth Sci. Inform. 2011, 4, 29–44. [Google Scholar] [CrossRef]
- Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P. Long-term greenhouse gas measurements from aircraft. Atmos. Meas. Tech. 2013, 6, 511–526. [Google Scholar] [CrossRef] [Green Version]
- Rella, C.W.; Chen, H.; Andrew, A.E.; Filges, A.; Gerbig, C.; Hatakka, J.; Karion, A.; Miles, N.L.; Richardson, S.J.; Steinbacher, M.; et al. High accuracy measurements of dry mole fraction of carbon dioxide and methane in humid air. Atmos. Meas. Tech. 2013, 6, 837–860. [Google Scholar] [CrossRef] [Green Version]
- Yokouchi, Y.; Inagaki, T.; Yazawa, K.; Tamaru, T.; Enomote, T.; Izumi, K. Estimates of ratios of anthropogenic halocarbon emissions from Japan based on aircraft monitoring over Sagami Bay, Japan. J. Geophys. Res.-Atmos. 2005, 110, D06301. [Google Scholar] [CrossRef] [Green Version]
- Ward, D.E.; Hao, W.M.; Susott, R.A.; Babbitt, R.E.; Shea, R.W.; Kauffman, J.B.; Justice, C.O. Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems. J. Geophys. Res. 1996, 101, 23569–23576. [Google Scholar] [CrossRef]
- Wang, S.X.; Zhao, B.; Cai, S.Y.; Klimont, Z.; Nielsen, C.P.; Morikawa, T.; Woo, J.H.; Kim, Y.; Fu, X.; Xu, J.Y. emission trends and mitigation options for air pollutions in East Asia. Atmos. Chem. Phys. 2014, 14, 6571–6603. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Chevallier, F.; Ciais, P.; Yin, Y.; Deeter, M.N.; Worden, H.M.; Wang, Y.; Zhang, Q.; He, K. Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environ. Res. Lett. 2018, 13, 044007. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Wang, M.; Fu, Q.; Dai, C.; Huang, R.; Bao, Q. Temporal characteristics of greenhouse gases (CO2 and CH4) in the megacity Shanghai, China: Association with air pollutants and meteorological conditions. Atmos. Res. 2020, 235, 1–10. [Google Scholar] [CrossRef]
- Halliday, H.S.; DiGangi, J.P.; Choi, Y.; Diskin, G.S.; Pusede, S.E.; Rana, M.; Nowak, J.B.; Knote, C.; Ren, X.; He, H.; et al. Using short-term CO/CO2 ratios to assess air mass differences over the Korean peninsula during KOURS-AQ. J. Geophys. Res. Atmos. 2019, 124, 10951–10972. [Google Scholar] [CrossRef]
- York, D.; Evenssen, N.M.; Martínes, M.L.; De Basabe Delgado, J. Unified equations for the slope, intercept, and standard error of the best straight line. Am. J. Phys. 2004, 72, 367–375. [Google Scholar] [CrossRef]
- Cantrell, C.A. Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems. Atmos. Chem. Phys. 2008, 8, 5477–5487. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.P.; Hess, G.D. An overview of the HYSPLIT 4 modelling system for trajectories, dispersion and deposition. Aust. Met. Mag. 1998, 47, 295–308. [Google Scholar]
- Wang, Y.; Munger, J.W.; Xu, S.; McElroy, M.B.; Hao, J.; Nielsen, C.P.; Ma, H. CO2 and its correlation with CO at a rural site near Beijing: Implications for combustion efficiency in China. Atmos. Chem. Phys. 2010, 10, 8881–8897. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.X.; Wang, T.J.; Talbot, R.; Xie, M.; Mao, H.T.; Li, S.; Zhuang, B.L.; Yang, X.Q.; Fu, C.B.; Zhu, J.L.; et al. Temporal characteristics of atmospheric CO2 in urban Nanjing, China. Atmos. Res. 2015, 153, 437–450. [Google Scholar] [CrossRef]
- Silva, S.J.; Arellano, A.F.; Worden, H.M. Toward anthropogenic combustion emission constraints from space-based anlaysis of urban CO2/CO sensitivity. Geophys. Res. Lett. 2013, 40, 4971–4976. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Choi, M.; Hong, J.; Lim, H.; Eck, T.F.; Holben, B.N.; Ahn, J.-Y.; Kim, S.; Koo, J.-H. Analysis of long-range transboundary transport (LRTT) effect on Korean aerosol pollution during the KORUS-AQ campaign. Atmos. Environ. 2019, 204, 53–67. [Google Scholar] [CrossRef]
- Liu, L.; Tans, P.P.; Xia, L.; Zhou, L.; Zhang, F. Analysis of patterns in the concentrations of atmospheric greenhouse gases measured in two typical urban clusters in China. Atmos. Environ. 2018, 173, 343–354. [Google Scholar] [CrossRef]
- Shim, K.-M.; Min, S.-H.; Kim, Y.-S.; Jung, M.-P.; Choi, I.-T.; Kang, K.-K. Camparison of carbon budget between rice-barley double cropping and rice mono cropping filed in Gimje, South Korea. Korean J. Agric. Forest Meteorol. 2016, 20, 88–100, (In Korean with English abstract). [Google Scholar]
- Greenhouse Gas Inventory & Research Center of Korea. GIR: National Greenhouse Gas Inventory Report of Korea; Greenhouse Gas Inventory & Research Center of Korea: Seoul, Korea, 2019. [Google Scholar]
- KOSIS: Agricultural Land Area, Statistical Database of Agriculture. 2019. Available online: http://kosis.kr (accessed on 15 September 2020).
- Choi, S.-W.; Kim, J.; Kang, M.; Lee, S.H.; Kang, N.; Shim, K.M. Estimation and mapping of methane emissions from rice paddies in Korea: Analysis of regional differences and characteristics. Korean J. Agric. Meteorol. 2018, 20, 88–100, (In Korean with English abstract). [Google Scholar]
- Tohjima, Y.; Kubo, M.; Minejima, C.; Mukai, H.; Tanimoto, H.; Ganshin, A.; Maksyutov, S.; Katsumata, K.; Machida, T.; Kita, K. Temporal changes in the emissions of CH4 and CO from China estimated from CH4/CO2 and CO/CO2 correlations observed at Hateruma Island. Atmos. Chem. Phys. 2014, 14, 1663–1677. [Google Scholar] [CrossRef] [Green Version]
- Wunch, D.; Wennberg, P.O.; Toon, G.C.; Keppel-Aleks, G.; Yavin, Y.G. Emissions of greenhouse gases from a North American megacity. Geophys. Res. Lett. 2009, 36, L15810. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.K.; VanCuren, T.; Park, S.; Jakober, C.; Herner, J.; FitzGibbon, M.; Blake, D.R.; Parrish, D.D. Methane emissions inventory verification in southern California. Atmos. Environ. 2010, 44, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Peischl, J.; Ryserson, T.B.; Brioude, J.; Aikin, K.C.; Andrews, A.E.; Atlas, E.; Blake, D.; Daube, B.C.; Degouw, J.A.; Dlugokencky, E.; et al. Quantifying sources of methane using light alkanes in the Los Angeles basin, California. J. Geophys. Res. Atmos. 2013, 118, 4974–4990. [Google Scholar] [CrossRef] [Green Version]
- Peischl, J.; Ryerson, T.B.; Aikin, K.C.; Gouw, J.A.; Gilman, J.B.; Holloway, J.S.; Lerner, B.M.; Nadkarni, R.; Neuman, J.A.; Nowak, J.B.; et al. Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and north eastern Marcellus shale gas production regions. J. Geophys. Res. Atmos. 2015, 120, 2119–2139. [Google Scholar] [CrossRef]
- Baker, A.K.; Schuck, T.J.; Brenninkmeijer, C.A.M.; Rauthe-Schöch, A.; Slemr, F.; van Velthoven, P.F.J.; Lelieveld, J. Estimating the contribution of monsoon-related biogenic production to methane emissions from South Asia using CARBIC observations. Geophys. Res. Lett. 2012, 39, L10813. [Google Scholar] [CrossRef]
- Granier, C.; Pétron, G.; Mühle, J.F.; Brasseur, G. The impact of natural and anthropogenic hydrocarbons on the tropospheric budget of carbon monoxide. Atmos. Environ. 2000, 34, 5255–5270. [Google Scholar] [CrossRef]
- Kenea, S.T.; Labzovskii, L.D.; Goo, T.-Y.; Li, S.; Oh, Y.-S.; Byun, Y.-H. Comparison of regional simulation of biospheric CO2 flux from the updated version of CarbonTracker Asia with FLUXCOM and other inversion over Asia. Remote Sens. 2020, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Chen, B.Z.; Van der Laan-Luijkx, I.T.; Machida, T.; Matsueda, H.; Sawa, Y.; Fukuyana, Y.; Langenfelds, R.; Van der Schoot, M.; Xu, G.; et al. Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO2 observations for the period 2006–2010. Atmos. Chem. Phys. 2014, 14, 5807–5824. [Google Scholar] [CrossRef] [Green Version]
CO2 (ppm) | CH4 (ppb) | CO (ppb) | |
---|---|---|---|
Instrument Precision | 0.03 | 0.1 | 2.2 |
Water correction | 0.28 § 0.17 £ | 2.7 § 1.8 £ | 3.0 |
※ Repeatability (simulated flight condition) | 0.03 | 0.5 | 3.0 |
Total uncertainty (KMA Airborne CRDS) | 0.28 § 0.17 £ | 2.7 § | 4.8 |
1.9£ | |||
Expanded uncertainty of NOAA standard | 0.19 | 3.4 | 0.9 |
Flight | Flight Dates | Temperature (°C) | CO2 (ppm) | CH4 (ppb) | |||
---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | ||
CM.1 | 18 January | −6.0 | 9.9 | 412.5 | 458.7 | 1920.4 | 2049.5 |
CM.2 | 15 April | - | - | 415.8 | 439.8 | 1937.1 | 2032.4 |
CM.3 | 15 May | 11.4 | 24.0 | 413.5 | 439.2 | 1937.5 | 2105.3 |
CM.4 | 21 June | 10.8 | 18.5 | 405.5 | 419.9 | 1920.7 | 2180.2 |
CM.5 | 4 July | 16.3 | 20.42 | 396.9 | 417.2 | 1923.5 | 2265.0 |
CM.6 | 19 August | 15.8 | 28.4 | 388.8 | 425.5 | 1947.8 | 2239.5 |
CM.7 | 22 October | 8.9 | 25.1 | 411.1 | 424.4 | 1936.9 | 2047.5 |
CM.8 | 21 November | 2.74 | 15 | 411.0 | 422.3 | 1916.3 | 1997.6 |
CM.9 | 13 December | −2.9 | 4.1 | 413.9 | 437.6 | 1945.6 | 2178.5 |
EM.1 | 16 April | 10.8 | 20.6 | 415.5 | 419.3 | 1934.7 | 1959.3 |
EM.2 | 19 April | 7.2 | 15.6 | 414.0 | 426.6 | 1915.4 | 2035.5 |
EM.3 | 3 May | - | 21.05 | 410.5 | 430.7 | 1954.9 | 2010.3 |
EM.4 | 8 May | 12.6 | 16.5 | 410.0 | 424.3 | 1940.8 | 2033.0 |
EM.5 | 21 May | 14.3 | 21.4 | 416.5 | 424.5 | 1953.2 | 2018.1 |
EM.6 | 22 May | 7.8 | 23.6 | 414.1 | 420.37 | 1933.7 | 2050.9 |
R2 | Mean of Uncertainties for Slope of ∆CO (ppm)/∆CO2 (ppm) | Mean of Uncertainties for Slope of ∆CH4 (ppb)/∆CO (ppb) |
---|---|---|
>0.5 | 6.8 × 10−5 | 4.5 × 10−3 |
<0.5 to >0.4 | 4.1 × 10−4 | 7.1 × 10−3 |
<0.4 | 0.0028 | 0.012 |
Year 2019 | CO2 (ppm) | CH4 (ppb) | |||
---|---|---|---|---|---|
CM Mission Average | Background Average | CM Mission Average | Background Average | ||
CM.1 | 18 January | 415.4 ± 5.5 | 411.9 | 1942.5 ± 27.4 | 1906.8 |
CM.2 | 5 April | 420.6 ± 3.4 | 415.1 | 1967.5 ± 16.2 | 1926.8 |
CM.3 | 15 May | 419.2 ± 4.8 | 415.4 | 2006.3 ± 47.3 | 1937.3 |
CM.4 | 21 June | 410.5 ±2.4 | 409.2 | 1968.3 ± 67.7 | 1950.4 |
CM.5 | 4 July | 404.0 ± 3.8 | 401.2 | 2019.4 ± 79.7 | 1931.9 |
CM.6 | 19 August | 399.5 ± 4.7 | 399.8 | 2071.4 ± 63.1 | 1953.2 |
CM.7 | 22 Octomber | 413.2 ± 3.2 | 409.5 | 1949.7 ± 37.5 | 1913.8 |
CM.8 | 21 November | 416.2 ± 3.2 | 413.9 | 1957.2 ± 21.2 | 1943.5 |
CM.9 | 13 December | 416.6 ± 3.3 | 415.5 | 1964.3 ± 33.1 | 1947.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Kim, Y.; Kim, J.; Kenea, S.T.; Goo, T.-Y.; Labzovskii, L.D.; Byun, Y.-H. In Situ Aircraft Measurements of CO2 and CH4: Mapping Spatio-Temporal Variations over Western Korea in High-Resolutions. Remote Sens. 2020, 12, 3093. https://doi.org/10.3390/rs12183093
Li S, Kim Y, Kim J, Kenea ST, Goo T-Y, Labzovskii LD, Byun Y-H. In Situ Aircraft Measurements of CO2 and CH4: Mapping Spatio-Temporal Variations over Western Korea in High-Resolutions. Remote Sensing. 2020; 12(18):3093. https://doi.org/10.3390/rs12183093
Chicago/Turabian StyleLi, Shanlan, Youngmi Kim, Jinwon Kim, Samuel Takele Kenea, Tae-Young Goo, Lev D. Labzovskii, and Young-Hwa Byun. 2020. "In Situ Aircraft Measurements of CO2 and CH4: Mapping Spatio-Temporal Variations over Western Korea in High-Resolutions" Remote Sensing 12, no. 18: 3093. https://doi.org/10.3390/rs12183093
APA StyleLi, S., Kim, Y., Kim, J., Kenea, S. T., Goo, T. -Y., Labzovskii, L. D., & Byun, Y. -H. (2020). In Situ Aircraft Measurements of CO2 and CH4: Mapping Spatio-Temporal Variations over Western Korea in High-Resolutions. Remote Sensing, 12(18), 3093. https://doi.org/10.3390/rs12183093