Surface Properties Linked to Retrieval Uncertainty of Satellite Sea-Ice Thickness with Upward-Looking Sonar Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radar Altimeter Data
2.2. Upward-Looking Sonar Data
3. Results and Discussion
3.1. Satellite-Derived vs. ULS-Measured Sea Ice Draft
3.2. Waveform Parameters and Sea Ice Freeboard Retrievals
3.3. Impact of Sea Ice Freeboard Retrieval Uncertainly on Sea Ice Draft Estimates
3.4. Impact of Sea Ice Freeboard to Thickness Conversion on Sea Ice Draft Estimates
3.5. Effect of Summer Conditions and Sea Ice Type on Sea Ice Draft Estimates
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Laxon, S.; Peacock, N.; Smith, D. High interannual variability of sea ice thickness in the Arctic region. Nature 2003, 425, 947–950. [Google Scholar] [CrossRef]
- Tilling, R.L.; Ridout, A.; Shepherd, A.; Wingham, D.J. Increased Arctic sea ice volume after anomalously low melting in 2013. Nat. Geosci. 2015, 8, 643–646. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Hendricks, S.; Ricker, R.; Kern, S.; Rinne, E. Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: Progress in the ESA Climate Change Initiative. Cryosphere 2018, 12, 2437–2460. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, N.T.; Galin, N.; Studinger, M. An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting. Cryosphere 2014, 8, 1217–1237. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Cunningham, G.F. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2015, 373, 20140157. [Google Scholar] [CrossRef] [PubMed]
- Willatt, R.; Laxon, S.; Giles, K.; Cullen, R.; Haas, C.; Helm, V. Ku-band radar penetration into snow cover on Arctic sea ice using airborne data. Ann. Glaciol. 2011, 52, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R. Simulated effects of a snow layer on retrieval of CryoSat-2 sea ice freeboard. Geophys. Res. Lett. 2014, 41, 5014–5020. [Google Scholar] [CrossRef]
- Nandan, V.; Geldsetzer, T.; Yackel, J.; Mahmud, M.; Scharien, R.; Howell, S.; King, J.; Ricker, R.; Else, B. Effect of Snow Salinity on CryoSat-2 Arctic First-Year Sea Ice Freeboard Measurements: Sea Ice Brine-Snow Effect on CryoSat-2. Geophys. Res. Lett. 2017, 44, 10419–10426. [Google Scholar] [CrossRef] [Green Version]
- Armitage, T.W.K.; Davidson, M.W.J. Using the Interferometric Capabilities of the ESA CryoSat-2 Mission to Improve the Accuracy of Sea Ice Freeboard Retrievals. IEEE Trans. Geosci. Remote Sens. 2014, 52, 529–536. [Google Scholar] [CrossRef]
- Landy, J.C.; Petty, A.A.; Tsamados, M.; Stroeve, J.C. Sea Ice Roughness Overlooked as a Key Source of Uncertainty in CryoSat-2 Ice Freeboard Retrievals. J. Geophys. Res. Ocean. 2020, 125, e2019JC015820. [Google Scholar] [CrossRef]
- Warren, S.G.; Rigor, I.G.; Untersteiner, N.; Radionov, V.F.; Bryazgin, N.N.; Aleksandrov, Y.I. Snow Depth on Arctic Sea Ice. J. Clim. 1999, 12, 16. [Google Scholar] [CrossRef]
- Alexandrov, V.; Sandven, S.; Wahlin, J.; Johannessen, O.M. The relation between sea ice thickness and freeboard in the Arctic. Cryosphere 2010, 4, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Krishfield, R.; Proshutinsky, A. BGOS ULS Data Processing Procedure; Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 2006; 14p. [Google Scholar]
- Hansen, E.; Gerland, S.; Granskog, M.A.; Pavlova, O.; Renner, A.H.H.; Haapala, J.; Løyning, T.B.; Tschudi, M. Thinning of Arctic sea ice observed in Fram Strait: 1990–2011: Thinning of Arctic Sea Ice. J. Geophys. Res. Ocean. 2013, 118, 5202–5221. [Google Scholar] [CrossRef] [Green Version]
- Belter, H.J.; Krumpen, T.; Hendricks, S.; Hoelemann, J.; Janout, M.A.; Ricker, R.; Haas, C. Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: Comparison to mooring observations. Cryosphere 2020, 14, 2189–2203. [Google Scholar] [CrossRef]
- Kurtz, N.T.; Farrell, S.L.; Studinger, M.; Galin, N.; Harbeck, J.P.; Lindsay, R.; Onana, V.D.; Panzer, B.; Sonntag, J.G. Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere 2013, 7, 1035–1056. [Google Scholar] [CrossRef] [Green Version]
- Kern, S.; Khvorostovsky, K.; Skourup, H. European Space Agency Sea Ice Climate Change Initiative: D4.1 Product Validation and Intercomparison Report (PVIR-SIT)—SICCI-PVIR-SIT; Technical Report; European Space Agency: Paris, France, 2018; 193p. [Google Scholar]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; et al. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef] [Green Version]
- Tilling, R.L.; Ridout, A.; Shepherd, A. Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data. Adv. Space Res. 2018, 62, 1203–1225. [Google Scholar] [CrossRef]
- Sallila, H.; Farrell, S.L.; McCurry, J.; Rinne, E. Assessment of contemporary satellite sea ice thickness products for Arctic sea ice. Cryosphere 2019, 13, 1187–1213. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, S.; Paul, S.; Rinne, E. ESA Sea Ice Climate Change Initiative (Sea_Ice_cci): Northern Hemisphere Sea Ice Thickness from the Envisat Satellite on a Monthly Grid (L3C), v2.0; Centre for Environmental Data Analysis: Oxfordshire, UK, 2018; Available online: https://catalogue.ceda.ac.uk/uuid/f4c34f4f0f1d4d0da06d771f6972f180 (accessed on 10 July 2020).
- Hendricks, S.; Paul, S.; Rinne, E. ESA Sea Ice Climate Change Initiative (Sea_Ice_cci): Northern Hemisphere Sea Ice Thickness from the CryoSat-2 Satellite on a Monthly Grid (L3C), v2.0; Centre for Environmental Data Analysis: Oxfordshire, UK, 2018; Available online: https://catalogue.ceda.ac.uk/uuid/ff79d140824f42dd92b204b4f1e9e7c2 (accessed on 10 July 2020).
- Ricker, R.; Hendricks, S.; Helm, V.; Skourup, H.; Davidson, M. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. Cryosphere 2014, 8, 1607–1622. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, N.T.; Farrell, S.L. Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Paul, S.; Hendricks, S.; Rinne, E. European Space Agency Sea Ice Climate Change Initiative: D2.1 Sea Ice Thickness Algorithm Theoretical Basis Document (ATBD)—SICCI-P2-ATBD(SIT); Technical Report; European Space Agency: Paris, France, 2017; 50p. [Google Scholar]
- Ricker, R.; Hendricks, S.; Perovich, D.K.; Helm, V.; Gerdes, R. Impact of snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An observational approach with buoy data. Geophys. Res. Lett. 2015, 42, 4447–4455. [Google Scholar] [CrossRef] [Green Version]
- Wingham, D.J.; Francis, C.R.; Baker, S.; Bouzinac, C.; Brockley, D.; Cullen, R.; de Chateau-Thierry, P.; Laxon, S.W.; Mallow, U.; Mavrocordatos, C.; et al. CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields. Adv. Space Res. 2006, 37, 841–871. [Google Scholar] [CrossRef]
- Laforge, A.; Fleury, S.; Dinardo, S.; Garnier, F.; Remy, F.; Benveniste, J.; Bouffard, J.; Verley, J. Toward improved sea ice freeboard observation with SAR altimetry using the physical retracker SAMOSA+. Adv. Space Res. 2020, in press. [Google Scholar] [CrossRef]
- Mallett, R.D.C.; Lawrence, I.R.; Stroeve, J.C.; Landy, J.C.; Tsamados, M. Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates. Cryosphere 2020, 14, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Zygmuntowska, M.; Rampal, P.; Ivanova, N.; Smedsrud, L.H. Uncertainties in Arctic sea ice thickness and volume: New estimates and implications for trends. Cryosphere 2014, 8, 705–720. [Google Scholar] [CrossRef] [Green Version]
- Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z.S.; Djepa, V.; Wadhams, P.; Sandven, S. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: Results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise. Cryosphere 2015, 9, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Yi, D.; Kurtz, N.; Harbeck, J.; Kwok, R.; Hendricks, S.; Ricker, R. Comparing Coincident Elevation and Freeboard From IceBridge and Five Different CryoSat-2 Retrackers. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1219–1229. [Google Scholar] [CrossRef]
A | B | C | D | |
---|---|---|---|---|
2003–2004 | ● | ● | ● | |
2004–2005 | ● | ● | ● | |
2005–2006 | ● | ● | ||
2006–2007 | ● | ● | ● | ● |
2007–2008 | ● | ● | ● | ● |
2008–2009 | ● | ● | ● | |
2009–2010 | ● | ● | ||
2010–2011 | ● | ● | ● | |
2011–2012 | ● | ● | ● | |
2012–2013 | ● | ● | ● | |
2013–2014 | ● | ● | ● | |
2014–2015 | ● | ● | ● | |
2015–2016 | ● | ● | ● | |
2016–2017 | ● | ● | ● | |
2017–2018 | ● | ● | ● |
October–April Mean × October–April Change Rate | October–November Mean × October–April Change Rate | |||
---|---|---|---|---|
Mooring A | All Moorings | Mooring A | All Moorings | |
LeWEnv | −0.63 | −0.05 | −0.83 | −0.32 |
PPEnv | −0.72 | −0.81 | −0.92 | −0.96 |
drEnv–druls | −0.59 | −0.62 | −0.76 | −0.86 |
LeWCS2 | −0.94 | −0.87 | −0.97 | −0.94 |
PPCS2 | −0.94 | −0.96 | −0.98 | −0.99 |
fbCS2_80–fbCS2_50 | −0.81 | −0.78 | −0.91 | −0.89 |
drCS2_50–druls | 0.22 | −0.33 | −0.16 | −0.56 |
drCS2_80–druls | −0.12 | −0.39 | −0.76 | −0.82 |
October–April Mean | October–November Mean | October–April Change Rate | ||||
---|---|---|---|---|---|---|
Mooring A | All Moorings | Mooring A | All Moorings | Mooring A | All Moorings | |
drEnv–druls × | ||||||
LeWEnv | −0.49 | −0.71 | −0.61 | −0.40 | −0.63 | 0.26 |
PPEnv | 0.51 | 0.68 | 0.60 | 0.35 | 0.56 | −0.24 |
drCS2_50–druls × | ||||||
LeWCS2 | 0.53 | 0.47 | 0.23 | 0.15 | −0.69 | −0.24 |
PPCS2 | −0.61 | −0.52 | −0.37 | −0.25 | 0.80 | 0.34 |
fbCS2_80–fbCS2_50 | −0.36 | −0.33 | −0.02 | 0.02 | 0.33 | 0.05 |
drCS2_80–druls × | ||||||
LeWCS2 | 0.13 | 0.00 | −0.56 | −0.55 | −0.98 | −0.93 |
PPCS2 | −0.22 | −0.06 | 0.41 | 0.44 | 0.89 | 0.81 |
fbCS2_80–fbCS2_50 | 0.05 | −0.15 | 0.74 | 0.69 | 0.86 | 0.88 |
Parameter | October–April Mean | October–November Mean | October–April Change Rate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mooring A | All Moorings | Mooring A | All Moorings | Mooring A | All Moorings | |||||||
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
drEnv–druls × | ||||||||||||
MYI fraction | −0.33 | −0.17 | −0.55 | −0.55 | −0.51 | −0.36 | −0.69 | −0.71 | −0.10 | −0.38 | −0.69 | −0.16 |
SST July | 0.44 | 0.85 | 0.50 | 0.97 | 0.33 | 0.79 | 0.40 | 0.91 | 0.04 | −0.02 | −0.20 | −0.75 |
SST August | 0.60 | 0.88 | 0.69 | 0.95 | 0.55 | 0.87 | 0.58 | 0.91 | −0.24 | −0.23 | −0.34 | −0.79 |
drCS2_50–druls × | ||||||||||||
MYI fraction | 0.07 | −0.18 | 0.06 | −0.35 | −0.35 | −0.60 | −0.27 | −0.59 | −0.05 | −0.09 | −0.48 | −0.64 |
SST July | 0.47 | 0.51 | 0.73 | 0.77 | 0.33 | 0.29 | 0.66 | 0.65 | 0.30 | 0.64 | −0.13 | 0.29 |
SST August | 0.32 | 0.43 | 0.53 | 0.59 | 0.41 | 0.37 | 0.56 | 0.53 | −0.24 | 0.20 | −0.30 | 0.15 |
drCS2_80–druls × | ||||||||||||
MYI fraction | −0.29 | −0.46 | −0.34 | −0.67 | −0.92 | −0.94 | −0.84 | −0.89 | 0.33 | −0.08 | −0.27 | −0.69 |
SST July | 0.54 | 0.37 | 0.79 | 0.57 | 0.37 | 0.10 | 0.72 | 0.47 | −0.05 | 0.32 | −0.44 | −0.18 |
SST August | 0.57 | 0.38 | 0.80 | 0.55 | 0.74 | 0.25 | 0.85 | 0.48 | −0.54 | 0.06 | −0.63 | −0.16 |
Combined × | ||||||||||||
MYI fraction | −0.15 | −0.17 | −0.35 | −0.48 | −0.40 | −0.44 | −0.53 | −0.67 | −0.13 | −0.23 | −0.59 | −0.20 |
SST July | 0.45 | 0.77 | 0.54 | 0.90 | 0.35 | 0.69 | 0.46 | 0.82 | 0.06 | 0.14 | −0.18 | −0.51 |
SST August | 0.54 | 0.78 | 0.66 | 0.80 | 0.56 | 0.81 | 0.62 | 0.81 | −0.28 | −0.14 | −0.29 | −0.61 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khvorostovsky, K.; Hendricks, S.; Rinne, E. Surface Properties Linked to Retrieval Uncertainty of Satellite Sea-Ice Thickness with Upward-Looking Sonar Measurements. Remote Sens. 2020, 12, 3094. https://doi.org/10.3390/rs12183094
Khvorostovsky K, Hendricks S, Rinne E. Surface Properties Linked to Retrieval Uncertainty of Satellite Sea-Ice Thickness with Upward-Looking Sonar Measurements. Remote Sensing. 2020; 12(18):3094. https://doi.org/10.3390/rs12183094
Chicago/Turabian StyleKhvorostovsky, Kirill, Stefan Hendricks, and Eero Rinne. 2020. "Surface Properties Linked to Retrieval Uncertainty of Satellite Sea-Ice Thickness with Upward-Looking Sonar Measurements" Remote Sensing 12, no. 18: 3094. https://doi.org/10.3390/rs12183094
APA StyleKhvorostovsky, K., Hendricks, S., & Rinne, E. (2020). Surface Properties Linked to Retrieval Uncertainty of Satellite Sea-Ice Thickness with Upward-Looking Sonar Measurements. Remote Sensing, 12(18), 3094. https://doi.org/10.3390/rs12183094