Refining Land-Cover Maps Based on Probabilistic Re-Classification in CCA Ordination Space
Abstract
:1. Introduction
2. Materials and Methods
2.1. Explanatory Variables
2.2. CCA vs. GLM
- 1)
- The response variables I matrix is transformed to Q matrix consisting of () for each element pij in the sample I matrix, where and are sums of values in row i and column j, respectively.
- 2)
- Weighted multiple regression is performed (weights applied to matrix Z (i.e., the matrix of explanatory variables), which is a diagonal matrix with diagonal elements being computed as ), with coefficient vector B hence matrix of fitted values derived:
- 3)
- Principal component analysis is run based on matrix, with eigenvalues and eigenvectors U derived.
- 4)
- Site scores are computed as linear combinations of explanatory variables Z (also known as environmental variables in numerical ecology) using the estimated canonical coefficients B:
2.3. Sampling
2.4. Refinement Accuracy Evaluation and Uncertainty Representation
3. Experiments of Map Refinement with Globeland30 Product
3.1. The Study Area and Experimental Datasets
3.2. Modeling and Predictive Mapping
3.3. Evaluation of the Proposed Method’s Performance
4. Discussion
4.1. Further Interpretations and Analyses of Modeling and Predictive Mapping for Refinement
4.2. Comparisons with Related Work
4.3. Issues of Reference Data and Sampling
4.4. Recommendation for Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Intermediate Results of CCA and GLM-Based Modeling
Map Class | Reference Class | |||||||
---|---|---|---|---|---|---|---|---|
Artfct | Bare | Cultivt | Forest | Grass | Water | Wetland | UA | |
Artfct (E) | 0.1 | 6.1 × 10−3 | 2.0 × 10−2 | 3.9 × 10−2 | 1.6 × 10−2 | 1.6 × 10−2 | 0 | 52.0 |
Artfct (O) | 6.2 | 0.4 | 0.2 | 0.1 | 0.4 | 0.1 | 0 | 84.0 |
Bare (E) | 0 | 1.3 × 10−2 | 7.2 × 10−3 | 9.6 × 10−3 | 8.2 × 10−3 | 4.8 × 10−4 | 0 | 33.8 |
Bare (O) | 0 | 3.7 × 10−2 | 9.0 × 10−3 | 1.2 × 10−2 | 1.3 × 10−2 | 1.6 × 10−3 | 0 | 51.1 |
Cultivt (E) | 0.1 | 2.5 × 10−2 | 0.2 | 4.5 × 10−2 | 6.4 × 10−2 | 0.1 | 3.5 × 10−2 | 36.7 |
Cultivt (O) | 3.6 | 0.8 | 43.4 | 2.5 | 1.8 | 5.8 | 2.3 | 72.1 |
Forest (E) | 0.1 | 3.0 × 10−2 | 0.3 | 0.4 | 0.2 | 0.4 | 0.1 | 26.4 |
Forest (O) | 0.1 | 3.8 × 10−2 | 0.8 | 8.3 | 0.8 | 0.3 | 0.2 | 79.3 |
Grass (E) | 3.1 × 10−2 | 6.1 × 10−3 | 0.1 | 0.1 | 0.3 | 0.1 | 3.7 × 10−2 | 38.3 |
Grass (O) | 0.2 | 0.1 | 0.3 | 0.2 | 1.3 | 0.4 | 4.6 × 10−2 | 51.2 |
Water (E) | 0 | 0 | 2.3 × 10−2 | 7.5 × 10−3 | 1.3 × 10−2 | 0.2 | 3.0 × 10−2 | 71.0 |
Water (O) | 0.1 | 0.4 | 0.4 | 0.1 | 0.6 | 12.5 | 0.6 | 85.6 |
Wetland (E) | 0 | 0 | 2.7 × 10−4 | 0 | 5.3 × 10−4 | 9.1 × 10−3 | 1.1 × 10−2 | 53.8 |
Wetland (O) | 0 | 0 | 0.1 | 1.0 × 10−2 | 2.0 × 10−2 | 0.3 | 1.0 | 69.3 |
PA | 59.8 | 2.9 | 95.1 | 73.0 | 29.5 | 62.8 | 22.9 |
Sample Sets (Sample Size Indicated by Number of Pixels) | Optimal Explanatory Variables |
---|---|
Full sample 3000 | cultivt + forest + grass + wetland + water + artfct + hom3 + hom5 + p1w3 + p5w3 + p6w3 + p5w5 + p8w5 + p5w7 + p9w9 + area + patch1 + patch2 + patch3 + patch4 + patch5 + patch6 |
Subset samples | |
1480 | p8w3 + p1w3 + wetland + p3w3 + forest + con5 + p6w3 + grass + artfct + hom5 + water + cultivt + p1w9 + p2w9 + p5w3 + patch4 + patch6 + patch5 + p9w9 + p9w7 + dom7 + patch1 + p3w7 |
720 | p8w3 + p5w3 + p6w3 + p9w5 + p2w3 + p5w5 + con7 + forest + patch6 + water + patch1 + patch4 + cultivt + p2w9 + p1w5 + het7 + hom9 |
360 | p8w5 + p1w3 + p2w5 + p5w3 + p9w5 + p3w3 + forest + patch4 + p9w7 + con9 + patch6 + p5w7 + p9w9 |
Sample Sets (Sample Size Indicated by Number of Pixels) | Significant Canonical Axes and Explained Proportions (%) of the Overall Variation | |||||
---|---|---|---|---|---|---|
CCA1 | CCA2 | CCA3 | CCA4 | CCA5 | CCA6 | |
Full Sample | 9.5 | 7.4 | 7.2 | 5.0 | 4.2 | 2.5 |
Subset Samples | ||||||
1480 | 9.8 | 8.2 | 7.5 | 5.6 | 4.4 | 3.2 |
720 | 10.2 | 8.8 | 7.8 | 7.0 | 4.5 | 2.7 |
360 | 10.0 | 9.2 | 7.7 | 6.0 | 3.5 | 1.7 |
Training Sample Sets | Sample Size (Number of Pixels) | Optimal k for CCA (Unweighted) |
---|---|---|
Full set | 3000 | 25 |
Subsets | ||
1480 | 12 | |
720 | 19 | |
360 | 23 |
Reference Classes | Significant Explanatory Variables |
---|---|
(a) 3000 | |
Artfct | Grass + POINT_X + p1w3 + p2w3 + p3w3 + p6w3 + p8w3 + con3 + ent3+ patch1 + patch2 + patch3 + patch4 + patch5 + patch6 + patch7 |
Bare | Cultivt + Forest + Grass + Water + Artfct + POINT_X + POINT_Y + p1w3 + p3w3 + p5w3 |
Cultivt | Cultivt + Wetland + POINT_X + POINT_Y + p1w3 + p2w3 + p6w3 + p8w3 + con3 + dom3 |
Forest | Forest + Grass + Water + Artfct + p1w3 + p3w3 + p5w3 + p6w3 + p8w3 + p9w3 |
Grass | Cultivt + Forest + Wetland + Water + Artfct + POINT_Y + p1w3 + p3w3 + p9w3 + ent3+ patch5 + patch6 + patch7 |
Water | Cultivt + Forest + Grass + Water + Artfct + POINT_X + POINT_Y + p1w3 + p2w3 + p3w3 + p6w3 + p8w3 + p9w3 + con3 + dom3 + het3 + patch4 + patch7 |
Wetland | Wetland + p1w3 + p2w3 + p3w3 + p5w3 + p6w3 + het3 |
(b) 1480 | |
Artfct | Grass + POINT_Y + p1w3 + p2w3 + p3w3 + p6w3 + p8w3 + con3 + ent3 |
Bare | Cultivt + Forest + Grass + Water + Artfct + POINT_Y + p1w3 + p2w3 + p5w3 + p8w3 + p9w3 + con3 |
Cultivt | Cultivt + POINT_X + POINT_Y + p1w3 + p2w3 + p3w3 + p5w3 + p9w3 + con3 + het3 |
Forest | Forest + Grass + Water + Artfct + p1w3 + p2w3 + p3w3 + p5w3 + p6w3 + p8w3 + p9w3 + con3 + dom3 + het3 |
Grass | Cultivt + Forest + Water + Artfct + p1w3 + p2w3 + p5w3 + p6w3 + p9w3 + het3 |
Water | Cultivt + Forest + Grass + Water + Artfct + POINT_X + POINT_Y + p1w3 + p2w3 + p3w3 + p5w3 + p8w3 + p9w3 + dom3 + ent3 + het3 |
Wetland | Forest + Water + p2w3 + p3w3 + p5w3 + p6w3 + p8w3 + p9w3 + con3 + het3 |
(c) 720 | |
Artfct | p1w3 + p3w3 + p8w3 + ent3 |
Bare | Cultivt + Forest + Grass + Water + p1w3 + p5w3 + p8w3 + dom3 + ent3 + het3 |
Cultivt | Forest + Artfct + p1w3 + p2w3 + p3w3 + p8w3 + p9w3 |
Forest | Forest + Grass + Artfct + POINT_Y + p1w3 + p2w3 + p9w3 |
Grass | Water + p1w3 + p2w3 + p5w3 + p6w3 + p8w3 + p9w3 + hom3 |
Water | Cultivt + Forest + Grass + Water + Artfct + p1w3 + p2w3 + p3w3 + p5w3 + p6w3 + p9w3 + dom3 + ent3 + het3 |
Wetland | Grass + p1w3 + p5w3 + p6w3 + hom3 |
(d) 360 | |
Artfct | p1w3 + p2w3 + p3w3 + p6w3 + p8w3 + ent3 |
Bare | Cultivt + Forest + Artfct + POINT_X + p1w3 + p2w3 + p8w3 + p9w3 + hom3 |
Cultivt | Water + Artfct + p1w3 + p2w3 + p3w3 + p5w3 + p8w3 + p9w3+ area + patch1 + patch2 + patch4 + patch5 + patch6 |
Forest | Forest + Artfct + POINT_Y + p1w3 + p2w3 + p3w3 + p6w3 + p9w3+ area + patch2 + patch4 + patch6 + patch7 |
Grass | p1w3 + p2w3 + p3w3 + p5w3 + p6w3 + p8w3 + p9w3+ patch5 |
Water | Cultivt + Artfct + p1w3 + p2w3 + p3w3 + p5w3 + p6w3 + p9w3 + het3 |
Wetland | Cultivt + Grass + POINT_Y + p1w3 + p2w3 + p5w3 + p6w3 + ent3 + het3 + hom3 |
Classes | Moran’s I | p-Value |
---|---|---|
(a) | ||
Artfct | 0.02 | 0.81 |
Bare | 0.01 | 0.70 |
Cultivt | 0.06 | 0.24 |
Forest | 0.06 | 0.33 |
Grass | 0.07 | 0.31 |
Water | 0.14 | 0.07 |
Wetland | 0.13 | 0.06 |
(b) | ||
Artfct | 0.02 | 0.68 |
Bare | 0.40 | 0 |
Cultivt | 0.05 | 0.41 |
Forest | 0.08 | 0.19 |
Grass | 0.08 | 0.19 |
Water | 0.11 | 0.06 |
Wetland | 0.13 | 0.04 |
References
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- Christman, Z.; Rogan, J.; Eastman, J.R.; Turner, B.L. Quantifying uncertainty and confusion in land change analyses: A case study from central Mexico using MODIS data. GIScience Remote Sens. 2015, 52, 543–570. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Gass, L.; Dewitz, J.A.; Sorenson, D.G.; Granneman, B.J.; Poss, R.V.; Baer, L.A. Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD). Remote Sens. Environ. 2017, 191, 328–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickham, J.; Stehman, S.V.; Homer, C.G. Spatial patterns of the united states national land cover dataset (NLCD) land-cover change thematic accuracy (2001-2011). Int. J. Remote Sens. 2018, 39, 1729–1743. [Google Scholar] [CrossRef] [Green Version]
- Tsendbazar, N.E.; Herold, M.; de Bruin, S.; Lesiv, M.; Fritz, S.; Van De Kerchove, R.; Buchhorn, M.; Duerauer, M.; Szantoi, Z.; Pekel, J.F. Developing and applying a multi-purpose land cover validation dataset for Africa. Remote Sens. Environ. 2018, 219, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Wickham, J.; Stehman, S.V.; Neale, A.C.; Mehaffey, M. Accuracy assessment of NLCD 2011 percent impervious cover for selected USA metropolitan areas. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101955. [Google Scholar] [CrossRef]
- Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 2019, 231. [Google Scholar] [CrossRef]
- Smith, J.H.; Stehman, S.V.; Wickham, J.D.; Yang, L. Effects of landscape characteristics on land-cover class accuracy. Remote Sens. Environ. 2003, 84, 342–349. [Google Scholar] [CrossRef]
- Van Oort, P.A.J.; Bregt, A.K.; De Bruin, S.; De Wit, A.J.W.; Stein, A. Spatial variability in classification accuracy of agricultural crops in the Dutch national land-cover database. Int. J. Geogr. Inf. Sci. 2004, 18, 611–626. [Google Scholar] [CrossRef]
- Foody, G.M. Local characterization of thematic classification accuracy through spatially constrained confusion matrices. Int. J. Remote Sens. 2005, 26, 1217–1228. [Google Scholar] [CrossRef]
- Burnicki, A.C. Modeling the probability of misclassification in a map of land cover change. Photogramm. Eng. Remote Sens. 2011, 77, 39–50. [Google Scholar] [CrossRef]
- Park, N.W.; Kyriakidis, P.C.; Hong, S.Y. Spatial estimation of classification accuracy using indicator kriging with an image-derived ambiguity index. Remote Sens. 2016, 8, 320. [Google Scholar] [CrossRef] [Green Version]
- Comber, A.; Brunsdon, C.; Charlton, M.; Harris, P. Geographically weighted correspondence matrices for local error reporting and change analyses: Mapping the spatial distribution of errors and change. Remote Sens. Lett. 2017, 8, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. Mapping per-pixel predicted accuracy of classified remote sensing images. Remote Sens. Environ. 2017, 191, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ. 2018, 204, 648–658. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Mei, Y.; Yang, W. Geostatistical characterization of local accuracies in remotely sensed land cover change categorization with complexly configured reference samples. Remote Sens. Environ. 2019, 223, 63–81. [Google Scholar] [CrossRef]
- Szantoi, Z.; Geller, G.N.; Tsendbazar, N.E.; See, L.; Griffiths, P.; Fritz, S.; Gong, P.; Herold, M.; Mora, B.; Obregón, A. Addressing the need for improved land cover map products for policy support. Environ. Sci. Policy 2020, 112, 28–35. [Google Scholar] [CrossRef]
- Campos, J.C.; Brito, J.C. Mapping underrepresented land cover heterogeneity in arid regions: The Sahara-Sahel example. ISPRS J. Photogramm. Remote Sens. 2018, 146, 211–220. [Google Scholar] [CrossRef]
- Stehman, S.V. Impact of sample size allocation when using stratified random sampling to estimate accuracy and area of land-cover change. Remote Sens. Lett. 2012, 3, 111–120. [Google Scholar] [CrossRef]
- See, L.; Schepaschenko, D.; Lesiv, M.; McCallum, I.; Fritz, S.; Comber, A.; Perger, C.; Schill, C.; Zhao, Y.; Maus, V.; et al. Building a hybrid land cover map with crowdsourcing and geographically weighted regression. ISPRS J. Photogramm. Remote Sens. 2015, 103, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Tsendbazar, N.E.; de Bruin, S.; Mora, B.; Schouten, L.; Herold, M. Comparative assessment of thematic accuracy of GLC maps for specific applications using existing reference data. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 124–135. [Google Scholar] [CrossRef]
- Yang, W.J. Local Classification Accuracy Modeling and Land-Cover Information Refinement Based on Class-Heterogeneity-Stratified Reference Sample Data; Wuhan University: Wuhan, China, 2019. [Google Scholar]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Franklin, J.; Woodcock, C.E.; Warbington, R. Multi-attribute vegetation maps of Forest Service lands in California supporting resource management decisions. Photogramm. Eng. Remote Sens. 2000, 66, 1209–1217. [Google Scholar]
- Miller, J.; Franklin, J. Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence. Ecol. Modell. 2002, 157, 227–247. [Google Scholar] [CrossRef]
- Tomppo, E.O.; Gagliano, C.; De Natale, F.; Katila, M.; McRoberts, R.E. Predicting categorical forest variables using an improved k-Nearest Neighbour estimator and Landsat imagery. Remote Sens. Environ. 2009, 113, 500–517. [Google Scholar] [CrossRef]
- Duveneck, M.J.; Thompson, J.R.; Wilson, B.T. An imputed forest composition map for New England screened by species range boundaries. For. Ecol. Manag. 2015, 347, 107–115. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Chen, Q.; Domke, G.M.; Næsset, E.; Gobakken, T.; Chirici, G.; Mura, M. Optimizing nearest neighbour configurations for airborne laser scanning-assisted estimation of forest volume and biomass. Forestry 2017, 90, 99–111. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology. In Biometrics; Elsevier Science: Amsterdam, The Netherlands, 1984; Volume 40, p. 280. [Google Scholar]
- Ohmann, J.L.; Gregory, M.J. Predictive mapping of forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, USA. Can. J. For. Res. 2002, 32, 725–741. [Google Scholar] [CrossRef]
- Dirnböck, T.; Dullinger, S.; Gottfried, M.; Ginzier, C.; Grabherr, G. Mapping alpine vegetation based on image analysis, topographic variables and Canonical Correspondence Analysis. Appl. Veg. Sci. 2003, 6, 85–96. [Google Scholar] [CrossRef]
- Schmidtlein, S.; Sassin, J. Mapping of continuous floristic gradients in grasslands using hyperspectral imagery. Remote Sens. Environ. 2004, 92, 126–138. [Google Scholar] [CrossRef]
- Thessler, S.; Ruokolainen, K.; Tuomisto, H.; Tomppo, E. Mapping gradual landscape-scale floristic changes in Amazonian primary rain forests by combining ordination and remote sensing. Glob. Ecol. Biogeogr. 2005, 14, 315–325. [Google Scholar] [CrossRef]
- Middleton, M.; Närhi, P.; Arkimaa, H.; Hyvönen, E.; Kuosmanen, V.; Treitz, P.; Sutinen, R. Ordination and hyperspectral remote sensing approach to classify peatland biotopes along soil moisture and fertility gradients. Remote Sens. Environ. 2012, 124, 596–609. [Google Scholar] [CrossRef]
- Adams, B.T.; Matthews, S.N.; Peters, M.P.; Prasad, A.; Iverson, L.R. Mapping floristic gradients of forest composition using an ordination-regression approach with landsat OLI and terrain data in the Central Hardwoods region. For. Ecol. Manag. 2019, 434, 87–98. [Google Scholar] [CrossRef]
- Jilge, M.; Heiden, U.; Neumann, C.; Feilhauer, H. Gradients in urban material composition: A new concept to map cities with spaceborne imaging spectroscopy data. Remote Sens. Environ. 2019, 223, 179–193. [Google Scholar] [CrossRef]
- Feilhauer, H.; Faude, U.; Schmidtlein, S. Combining Isomap ordination and imaging spectroscopy to map continuous floristic gradients in a heterogeneous landscape. Remote Sens. Environ. 2011, 115, 2513–2524. [Google Scholar] [CrossRef]
- Oldeland, J.; Dorigo, W.; Lieckfeld, L.; Lucieer, A.; Jürgens, N. Combining vegetation indices, constrained ordination and fuzzy classification for mapping semi-natural vegetation units from hyperspectral imagery. Remote Sens. Environ. 2010, 114, 1155–1166. [Google Scholar] [CrossRef]
- Harris, A.; Charnock, R.; Lucas, R.M. Hyperspectral remote sensing of peatland floristic gradients. Remote Sens. Environ. 2015, 162, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Hakkenberg, C.R.; Peet, R.K.; Urban, D.L.; Song, C. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing. Ecol. Appl. 2018, 28, 177–190. [Google Scholar] [CrossRef]
- Ohmann, J.L.; Gregory, M.J.; Henderson, E.B.; Roberts, H.M. Mapping gradients of community composition with nearest-neighbour imputation: Extending plot data for landscape analysis. J. Veg. Sci. 2011, 22, 660–676. [Google Scholar] [CrossRef]
- Chiang, J.L.; Liou, J.J.; Wei, C.; Cheng, K.S. A feature-space indicator Kriging approach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4046–4055. [Google Scholar] [CrossRef]
- Cantoni, E.; Ronchetti, E. Robust inference for generalized linear models. J. Am. Stat. Assoc. 2001, 96, 1022–1030. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yang, W.; Zhang, W.; Wang, Y.; Liu, D.; Xiu, Y. An explorative study on estimating local accuracies in land-cover information using logistic regression and class-heterogeneity-stratified data. Remote Sens. 2018, 10, 1581. [Google Scholar] [CrossRef] [Green Version]
- Legendre, P.; Oksanen, J.; ter Braak, C.J.F. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2011, 2, 269–277. [Google Scholar] [CrossRef]
- Crookston, N.L.; Finley, A.O. yaImpute: An R package for κNN imputation. J. Stat. Softw. 2008, 23, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bivand, R.; Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 2015, 63, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Sweeney, S.P.; Evans, T.P. An edge-oriented approach to thematic map error assessment. Geocarto Int. 2012, 27, 31–56. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques, 3rd ed.; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Zhang, J.; Foody, G.M. A fuzzy classification of sub-urban land cover from remotely sensed imagery. Int. J. Remote Sens. 1998, 19, 2721–2738. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. Lect. Notes Comput. Sci. 2005, 3408, 345–359. [Google Scholar] [CrossRef]
- Feng, M.; Bai, Y. A global land cover map produced through integrating multi-source datasets. Big Earth Data 2019, 3, 191–219. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Liu, X.; Zhao, Y.; Yu, C.; Gong, P. Difficult to map regions in 30 m global land cover mapping determined with a common validation dataset. Int. J. Remote Sens. 2018, 39, 4077–4087. [Google Scholar] [CrossRef]
- Lin, Y.P.; Yeh, M.S.; Deng, D.P.; Wang, Y.C. Geostatistical approaches and optimal additional sampling schemes for spatial patterns and future sampling of bird diversity. Glob. Ecol. Biogeogr. 2008, 17, 175–188. [Google Scholar] [CrossRef]
- Kilibarda, M.; Tadić, M.P.; Hengl, T.; Luković, J.; Bajat, B. Global geographic and feature space coverage of temperature data in the context of spatio-temporal interpolation. Spat. Stat. 2015, 14, 22–38. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Stehman, S.V.; Liknes, G.C.; Næsset, E.; Sannier, C.; Walters, B.F. The effects of imperfect reference data on remote sensing-assisted estimators of land cover class proportions. ISPRS J. Photogramm. Remote Sens. 2018, 142, 292–300. [Google Scholar] [CrossRef]
- Roberts, G.; Rao, N.K.; Kumar, S. Logistic regression analysis of sample survey data. Biometrika 1987, 74, 1–12. [Google Scholar] [CrossRef]
- Bollen, K.A.; Biemer, P.P.; Karr, A.F.; Tueller, S.; Berzofsky, M.E. Are Survey Weights Needed? A Review of Diagnostic Tests in Regression Analysis. Annu. Rev. Stat. Its Appl. 2016, 3, 375–392. [Google Scholar] [CrossRef] [Green Version]
- Lumley, T. Survey Sampling, a Guide to Analysis Using R; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Winship, C.; Radbill, L. Sampling Weights and Regression Analysis. Sociol. Methods Res. 1994, 23, 230–257. [Google Scholar] [CrossRef]
- Kainz, W. Logical consistency. In Elements of Spatial Data Quality; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1995; pp. 109–137. [Google Scholar]
- Abercrombie, S.P.; Friedl, M.A. Improving the Consistency of Multitemporal Land Cover Maps Using a Hidden Markov Model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 703–713. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Liu, D.; Yang, W.; Zhang, W. Accuracy assessment of GlobeLand30 2010 land cover over China based on geographically and categorically stratified validation sample data. Remote Sens. 2018, 10, 1213. [Google Scholar] [CrossRef] [Green Version]
- DeFries, R.; Hansen, M.; Steininger, M.; Dubayah, R.; Sohlberg, R.; Townshend, J. Subpixel forest cover in central Africa from multisensor, multitemporal data. Remote Sens. Environ. 1997, 60, 228–246. [Google Scholar] [CrossRef]
- McGarigal, K.; Tagil, S.; Cushman, S.A. Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landsc. Ecol. 2009, 24, 433–450. [Google Scholar] [CrossRef]
Explanatory Variables (Abbreviation) | Description |
---|---|
Class | Indicators of map class labels at a pixel concerned. Six of them are required for representing seven land classes occurring in the study area. |
Class proportion | Proportions of candidate classes in a moving window. P“m”W“n” represents proportion of map class “m” in a moving window sized “n”. |
Heterogeneity (HET) | The number of classes in the moving window centered on a pixel concerned. |
Homogeneity (HOM) | The number of pixels with the same class label as that of the center pixel in its neighborhood (i.e., a certain-sized moving window). |
Entropy (ENT) | The average uncertainty of class occurrences computed as ENT(pi) = −. When the probability (pi) of each class present in a moving window is roughly the same, entropy value reaches its maximum, and when only one class dominates, entropy value is zero. |
Dominance (DOM) | The deviation value between landscape diversity (measured by entropy) and maximum diversity (ln(C), C being the number of classes occurring in the neighborhood) [47,48]. It is calculated as DOM = ln(C) − ENT. A higher value indicates that the neighborhood is dominated by one or a few land-cover classes, and a lower value indicates that land-cover types have nearly equal proportions. |
Contagion (CON) | The extent to which different cover types are clumped within a moving window. After estimation of probabilities (pij) by which different pairs of cover types occur as adjacent pixels, entropy (ENT(pij)) of pixel class adjacency is calculated. CON is computed by scaling ENT(pij) to its maximum possible value under the null hypothesis of no contagion (ENT(pij)max, which is 2ln(C) when adjacent pixels’ order is preserved, C being the number of classes): CON = 1 − ENT(pij)/ENT(pij)max [11,49]. High contagion values indicate good connectivity of certain patch types, while low contagion values mean that the landscape is highly fragmented. |
Polygon area | Areal extent (logarithm, base 10) of the polygon where a pixel falls in [10]. |
Polygonal class adjacency | A set of Patch”m” representing polygonal adjacency in terms of relative frequencies of map classes coded “m” occurring as first-order polygonal neighbors of the polygon a pixel falls in. |
Geospatial coordinates | Map pixels’ coordinates (denoted X and Y). |
Strata and Sub-Strata | Nstrata | Training Sample Size (Sampling Intensity) | Test Sample Size (Sampling Intensity) |
---|---|---|---|
Artfct_E | 19,324 | 100 (0.52) | 50 (0.26) |
Artfct_O | 699,787 | 200 (0.03) | 90 (0.01) |
Bare_E | 3658 | 80 (2.19) | 40 (1.10) |
Bare_O | 6994 | 90 (1.29) | 40 (0.58) |
Cultivt_E | 56,721 | 120 (0.21) | 60 (0.11) |
Cultivt_O | 5,739,203 | 1095 (0.02) | 160 (0.003) |
Forest_E | 133,655 | 140 (0.10) | 70 (0.05) |
Forest_O | 1,001,767 | 280 (0.03) | 100 (0.01) |
Grass_E | 70,366 | 120 (0.17) | 60 (0.09) |
Grass_O | 248,912 | 170 (0.07) | 80 (0.03) |
Water_E | 23,895 | 100 (0.42) | 50 (0.21) |
Water_O | 1,395,043 | 285 (0.02) | 110 (0.01) |
Wetland_E | 2033 | 80 (3.93) | 40 (1.97) |
Wetland_O | 133,735 | 140 (0.10) | 70 (0.05) |
Strata and Sub-Strata | Subset Samples | ||
---|---|---|---|
Artfct_E | 49 | 24 | 12 |
Artfct_O | 99 | 48 | 24 |
Bare_E | 48 | 24 | 12 |
Bare_O | 48 | 24 | 12 |
Cultivt_E | 62 | 30 | 15 |
Cultivt_O | 544 | 264 | 132 |
Forest_E | 74 | 36 | 18 |
Forest_O | 111 | 54 | 27 |
Grass_E | 62 | 30 | 15 |
Grass_O | 87 | 42 | 21 |
Water_E | 49 | 24 | 12 |
Water_O | 136 | 66 | 33 |
Wetland_E | 37 | 18 | 9 |
Wetland_O | 74 | 36 | 18 |
Totals | 1480 | 720 | 360 |
Training Sample Sizes | (Canonical Correspondence Analysis) CCA | (Generalized Linear Modeling) GLM | ||
---|---|---|---|---|
I | II | I | II | |
360 | ||||
E | 4.5/−4.4 | 21.6/25.0 | 5.4/0.9 | 20.7/27.2 |
O | 1.0/1.2 | 2.5/2.8 | 1.0/0.1 | 1.6/1.9 |
All | 1.1/1.2 | 3.1/2.8 | 1.1/0.6 | 2.3/2.0 |
720 | ||||
E | 12.2/4.8 | 29.6/35.0 | 5.5/1.9 | 27.1/33.9 |
O | 1.4/0.3 | 2.5/3.2 | 1.1/0.2 | 2.4/2.8 |
All | 1.7/1.0 | 3.4/3.3 | 1.2/0.7 | 3.2/3.1 |
1480 | ||||
E | 11.8/−0.9 | 22.1/30.9 | 6.7/−5.6 | 28.8/34.7 |
O | 1.4/0.6 | 2.9/2.5 | 0.6/−0.4 | 2.5/2.8 |
All | 1.7/1.5 | 3.5/2.7 | 0.8/0.3 | 3.3/3.2 |
3000 | ||||
E | 14.7/3.5 | 32.3/38.3 | 14.5/3.8 | 32.1/39.8 |
O | 1.6/0.7 | 3.1/3.3 | 0.7/−0.4 | 2.1/2.5 |
All | 2.0/1.5 | 4.0/3.8 | 1.1/0.6 | 3.1/3.0 |
Strata and Sub-Strata | Training Sample Size (pixels) | The Original Map | |||||||
---|---|---|---|---|---|---|---|---|---|
3000 | 1480 | 720 | 360 | ||||||
I | II | I | II | I | II | I | II | ||
Artfct_E | −8.0/−1.0 | 12.0/10.7 | 0.0/0.0 | 6.0/1.3 | −10.0/2.1 | 2.0/7.3 | −8.0/2.8 | 10.0/11.4 | 66.0/66.2 |
Artfct_O | 0.0/0.0 | 0.0/0.0 | 0.0/0.0 | 1.1/1.0 | 0.0/0.0 | 1.1/1.0 | 0.0/0.0 | 0.0/0.0 | 88.9/89.0 |
Artfct_all | −0.2/0.1 | 0.3/0.3 | 0.0/0.0 | 1.2/1.0 | −0.3/0.1 | 1.1/1.2 | −0.2/0.1 | 0.3/0.4 | 88.3/88.4 |
Bare_E | 10.0/7.3 | 47.5/16.7 | 17.5/21.4 | 45.0/39.7 | 12.5/5.7 | 40.0/13.6 | 5.0/5.8 | 25.0/82.9 | 15.0/15.1 |
Bare_O | −2.5/−0.5 | 12.5/5.7 | 7.5/19.0 | 22.5/32.7 | 2.5/26.5 | 22.5/34.9 | −32.5/−32.3 | 5.0/59.6 | 40.0/40.2 |
Bare_all | 1.8/3.4 | 24.5/11.2 | 10.9/22.9 | 30.2/37.5 | 5.9/35.0 | 28.5/43.4 | −19.6/−20.4 | 11.9/68.1 | 31.4/31.6 |
Cultivt_E | 15.0/11.4 | 30.0/23.8 | 13.3/15.0 | 30.0/26.6 | 11.7/16.6 | 26.7/32.2 | 16.7/25.6 | 33.3/41.6 | 33.3/33.6 |
Cultivt_O | 2.5/2.0 | 3.8/3.0 | 2.5/2.5 | 3.8/3.0 | 2.5/3.0 | 3.1/4.0 | 1.9/2.0 | 3.1/2.5 | 76.9/77.1 |
Cultivt_all | 2.6/2.2 | 4.0/3.3 | 2.6/2.7 | 4.0/3.3 | 2.6/3.2 | 3.4/4.4 | 2.0/2.3 | 3.4/2.9 | 76.4/76.6 |
Forest_E | 27.1/15.7 | 44.4/32.4 | 22.9/21.8 | 27.1/29.6 | 22.9/15.0 | 40.0/23.7 | 12.9/5.3 | 31.4/23.9 | 24.3/24.5 |
Forest_O | 0.0/1.5 | 3.0/3.2 | 0.0/0.6 | 0.0/0.6 | 0.0/0.6 | 1.0/2.5 | 1.0/3.1 | 5.0/4.3 | 82.0/82.1 |
Forest_all | 3.2/5.5 | 7.9/8.4 | 2.7/5.6 | 3.2/6.0 | 2.7/5.2 | 5.6/7.6 | 2.4/6.9 | 8.1/9.1 | 75.2/75.4 |
Grass_E | 1.7/6.4 | 26.7/29.5 | −3.3/5.3 | 16.7/19.2 | 3.3/8.7 | 30.0/46.3 | −13.3/33.1 | 5.0/47.3 | 38.3/38.6 |
Grass_O | 0.0/0.2 | 10.0/6.5 | −6.3/−2.2 | 6.3/0.7 | −2.5/3.0 | 12.5/9.9 | 1.3/2.6 | 8.8/7.4 | 58.8/59.0 |
Grass_all | 0.4/3.0 | 13.7/11.3 | −5.6/0.5 | 8.5/4.9 | −1.2/6.1 | 16.4/16.1 | −2.0/7.3 | 7.9/12.7 | 54.3/54.5 |
Water_E | 0.0/0.0 | 0.0/0.0 | 0.0/−0.2 | 0.0/0.0 | −2.0/−0.2 | −2.0/0.0 | −10.0/−1.2 | −4.0/1.2 | 90.0/90.1 |
Water_O | 0.0/0.0 | 0.0/0.0 | 0.0/0.0 | 0.0/0.0 | −0.9/0.0 | 0.0/0.0 | −1.8/0.0 | −1.8/0.0 | 90.9/91.0 |
Water_all | 0.0/0.0 | 0.0/0.0 | 0.0/0.0 | 0.0/0.0 | −0.9/0.0 | 0.0/0.0 | −2.0/0.0 | −1.9/0.0 | 90.9/91.0 |
Wetland_E | 30.0/18.3 | 45.0/34.9 | 2.5/−1.6 | 30.0/10.0 | 5.0/2.8 | 30.0/26.6 | 20.0/11.8 | 27.5/25.2 | 40.0/40.2 |
Wetland_O | 0.0/0.0 | 10.0/7.4 | −1.4/0.0 | 17.1/2.0 | 0.0/0.0 | 0.0/0.0 | 0.0/0.0 | 0.0/0.0 | 67.1/67.4 |
Wetland_all | 0.4/0.3 | 10.5/7.8 | −1.4/0.0 | 17.3/2.1 | 0.1/0.1 | 0.4/0.4 | 0.3/0.2 | 0.4/0.4 | 66.7/67.0 |
E | 14.7/3.5 | 32.5/38.3 | 11.8/−0.9 | 22.1/30.9 | 12.2/4.8 | 29.6/35.0 | 4.5/−4.4 | 21.6/25.0 | 36.8/31.0 |
O | 1.6/0.7 | 3.1/3.3 | 1.4/0.6 | 2.9/2.5 | 1.4/0.3 | 2.5/3.2 | 1.0/1.2 | 2.5/2.8 | 79.8/79.1 |
All | 2.0/1.5 | 4.0/3.8 | 1.7/1.5 | 3.5/2.7 | 1.7/1.0 | 3.4/3.3 | 1.1/1.2 | 3.1/2.8 | 78.4/78.1 |
Accuracy Gains | Training Samples (pixels) | |||||||
---|---|---|---|---|---|---|---|---|
3000 | 1480 | 720 | 360 | |||||
I | II | I | II | I | II | I | II | |
OAs/F0.01 | ||||||||
2.0/1.5 | NA | 1.9/1.5 | NA | 1.9/1.2 | NA | 1.5/1.2 | NA | |
UAs/F0.01 | ||||||||
cultivated | 1.9/1.9 | 6.0/6.0 | 2.5/1.9 | 5.4/6.0 | 3.0/3.2 | 5.8/5.0 | 1.4/1.7 | 5.3/3.7 |
(1.9/1.9) | (3.4/3.4) | (2.2/2.4) | (3.2/3.1) | (2.4/2.6) | (3.3/4.2) | (1.0/1.3) | (2.9/2.5) | |
forest | 5.5/5.4 | 9.8/9.7 | 5.6/5.4 | 6.2/9.7 | 5.6/5.1 | 8.3/8.7 | 7.7/6.5 | 10.7/9.7 |
(5.2/5.10 | (8.7/8.6) | (4.4/4.4) | (5.5/5.5) | (5.1/4.5) | (7.5/7.2) | (7.0/5.9) | (9.6/8.6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Zhang, J.; Yang, W.; Tang, Y. Refining Land-Cover Maps Based on Probabilistic Re-Classification in CCA Ordination Space. Remote Sens. 2020, 12, 2954. https://doi.org/10.3390/rs12182954
Wan Y, Zhang J, Yang W, Tang Y. Refining Land-Cover Maps Based on Probabilistic Re-Classification in CCA Ordination Space. Remote Sensing. 2020; 12(18):2954. https://doi.org/10.3390/rs12182954
Chicago/Turabian StyleWan, Yue, Jingxiong Zhang, Wenjing Yang, and Yunwei Tang. 2020. "Refining Land-Cover Maps Based on Probabilistic Re-Classification in CCA Ordination Space" Remote Sensing 12, no. 18: 2954. https://doi.org/10.3390/rs12182954
APA StyleWan, Y., Zhang, J., Yang, W., & Tang, Y. (2020). Refining Land-Cover Maps Based on Probabilistic Re-Classification in CCA Ordination Space. Remote Sensing, 12(18), 2954. https://doi.org/10.3390/rs12182954