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Abstract: It is increasingly recognized that classification accuracy should be characterized locally at
the level of individual pixels to depict its spatial variability to better inform users and producers of
land-cover information than by conventional error-matrix-based methods. Local or per-pixel accuracy
is usually estimated through empirical modelling, such as logistic regression, which often proceeds
in a class-aggregated or a class-stratified way, with the latter being generally more accurate due to its
accommodation for between-class inhomogeneity in accuracy-context relations. As an extension to
class-stratified modelling, class-heterogeneity-stratified modelling, in which logistic models are
built separately for contextually heterogeneous vs. homogeneous sub-strata in individual strata of
map classes, is proposed in this paper for proper handling of within-class inhomogeneity in
accuracy-context relations to increase accuracy of estimation. Unlike in existing literature where
sampling is usually approached separately, the double-stratification method is also adopted in
sampling design so that more sample data are likely allocated to heterogeneous sub-strata (which are
more prone to misclassifications than homogeneous ones). This class-heterogeneity-stratified method
furnished for sampling and modelling jointly thus constitutes an integrative framework for accuracy
estimation and information refinement. As the first step in building up such a framework, this paper
investigates the proposed double-stratification method’s performance and sensitivity to sample size
regarding local accuracy estimation in comparison with those of existing methods through a case
study concerning Globeland30 2010 land cover over Wuhan, China. A detailed review of existing
methods for analyses, estimation, and use of local accuracy was provided, helping to put the proposed
research in a broader context. Candidate explanatory variables for logistic regression included sample
pixels’ map classes, positions, and contextual features that were computed in different-sized moving
windows. Relative performances of these methods were evaluated based on an independent reference
sample, with all methods found reliable. It was confirmed that the proposed method is in general
the most accurate, as observed with varying sample sizes. The proposed method’s competitive
performance is thus proved, reinforcing its potential for information refinement. Extensions to and
uncertainty aspects of the proposed method were discussed, with further research proposed.

Keywords: local accuracy; land cover; spatial heterogeneity; strata and sub-strata; validation sample
data; class occurrence pattern indices; sampling
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1. Introduction

Land-cover information is important for resource management and environmental modelling.
A variety of land-cover information products (static and dynamic, crisp and soft) are generated from
different sensor datasets at regional and global scales [1–6]. This research focuses on static land-cover
information coded with discrete class labels rather than percent covers (or fractional covers or class
proportions). However, land-cover information is always inaccurate to some extent. This is because
information about land-cover status and dynamics is not directly measurable but results from complex
processes of image and data analyses, interpretation, and reasoning, which are subject to various
forms of uncertainty. There are increasing research efforts directed towards describing, quantifying,
and analyzing accuracies (or misclassification errors) in land-cover information [7–13].

Conventionally, classification accuracy is assessed based on error matrices constructed from
certain reference or validation sample data. Various accuracy measures, such as percent correctly
classified (PCC) pixels (also termed overall accuracy), producer’s accuracy, and user’s accuracy,
can be computed from error matrices [14,15]. On the other hand, as increasingly recognized, local
(per-pixel) accuracy should be analyzed and estimated so that users can better understand how
misclassifications are related to characteristics of the landscapes being mapped and producers may
pursue classifier improvements and information refinement. Spatial analyses, modelling, estimation,
and applications concerning local accuracies in land-cover information are discussed by various
authors [16–34], as reviewed below.

Research on local accuracy has focused on two major inter-related aspects: (1) local accuracy
characterization through spatial and statistical analyses of accuracy-context associations, and (2) local
accuracy estimation which is usually based on sample data and empirically built accuracy models.
Here, context, as a broadly defined term, includes map class labels, locations, and indices quantifying
patterns of class occurrences, as is the case in this paper. It may also be defined in image data and
feature space [16]. Classes can refer to static land-cover types or their changes (e.g., forest loss and
urban gain, as in [17]), although this paper concerns the former case. We review related work on these
two aspects below.

Research on analyses of accuracy-context relationships has found that informative contextual
features (for explaining spatial variations in classification accuracy) include spatial heterogeneity, patch
size, and other landscape pattern indices [18–20]. Heterogeneity indicates textural complexity of
land-cover classes occurring in certain neighborhoods and generally includes compositional
(the number and proportions of different classes) and configurational (the spatial arrangement of
classes) types [21]. A few examples are as follows.

It was found that land-cover heterogeneity and patch size were important factors determining
local accuracy for the United States National Land-Cover Data (NLCD) land-cover product [18,19].
Van Oort et al. established relationships between classification error and landscape characteristics,
showing that the probability of correct classification decreases with higher focal heterogeneity
(in a neighborhood of 3 by 3 pixels) and smaller patch size [20]. Lechner et al. developed a
statistical simulation model to test the effects of patch size and shape, classification threshold, and
grid location on classification accuracy of small and linear features. They found that the patch size
was an important factor affecting classification accuracy [22]. Chen et al. analyzed and examined the
relationships between accuracies of crop classification and area estimation and spatial heterogeneities,
in particular, sample pixel impurity and landscape heterogeneity, and found that the impact of
configurational heterogeneity on the area estimation was more significant than that of the compositional
heterogeneity [21]. As reviewed above, complex landscapes (as indicated by increased heterogeneity,
decreased dominance, and smaller patch sizes, etc.) likely lead to more misclassifications. Clearly,
misclassifications are also more likely with blurred remote-sensing images and lack of class separability
in feature space (e.g., [16]). Logistic models were usually used for describing statistical relationships
between local accuracies and contextual/landscape patterns [18–20]. There is also increasing research
on local accuracy estimation (or prediction) as follows.
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Various methods were explored for estimating local accuracies. These include empirical modelling
(e.g., logistic regression [17,23,24]), interpolation with inverse distance weighting (after computing
accuracy measures based on locally constrained error matrices) [25,26], kernel functions [24], estimation
based on local error matrices that are constructed by geographic weightings [27], kriging [28],
and logistic-regression-kriging [29,30]. Maps displaying estimated per-pixel accuracies, such as
probabilities of correct classification (or misclassification), user’s accuracies (commission errors),
and producer’s accuracies (omission errors), were also generated (see [17,23] for examples).

The aforementioned methods are mostly employed in the spatial domain (i.e., user’s
domain), while some of them are also applicable in the spectral domain (i.e., producer’s domain)
(e.g., kernel functions and logistic regression, as described in [24]). A useful method for local accuracy
estimation in the spectral domain is the so-called calibration method that seeks to transform various
classification certainty measures, such as maximum posterior probabilities, which are computed as
intermediate results prior to output of end results, to accuracy indicators [31]. There was also research
on local accuracy estimation in combined spectral and spatial domains. For example, Steele et al. [28]
formulated a concept of misclassification probability and present a resampling-based method of
estimating misclassification probabilities at training sample locations, from which misclassification
probability estimates are then interpolated to a lattice of points via kriging. Additional examples of
combined spectral and spatial methods [16,29], in which spectral data and spectrally—derived soft
class probabilities were used as the basis for modelling local accuracies, respectively.

As this research is oriented to local accuracy estimation in spatial domains, we elaborate on
relevant (spatial—domain) methods, though most of them are mentioned above. A useful method is to
compare map and reference class labels at certain sample locations so that a map of misclassifications
can be created, helping to analyze their occurrences in the map being assessed. However, such
an error location map does not show complete-coverage misclassifications over the problem
domain. For mapping per-pixel accuracies, Foody [25] proposed a method based on interpolating
accuracy measures computed from locally constructed error matrices. This method relies heavily
on availability of relatively dense sample data to work well (a sampling intensity of about 6% was
employed [25]). However, sampling intensities say 2.5% which are definitely affordable for small
areas (e.g., [24]) will become prohibitive for large-area assessments (e.g., [17]). Developments on
this method are reflected on geographical weighting and other extensions in local construction of
error matrices [23,27,32]. In addition to such methods making use of only locational information
contained in the sample data, logistic modelling using contextual information (in addition to locational
information) for estimating local accuracy may be usefully explored (as in this paper), given the
observation that per-pixel probability of correct classification is closely related to contextual features
characterizing patterns of map class occurrences in the neighborhoods [18–20]. In fact, logistic
regression was implemented in both geographic space (e.g., locations) [24] and contextual feature
space (e.g., contextual information about class occurrence patterns and landscape characteristics) [17].
The fitted logistic models can then be used to estimate the per-pixel probabilities of correct classification
and hence generate maps showing spatially varying accuracies. See the work by Wickham et al. [17],
Khatami et al. [24] and Zhang and Mei [30] for examples of using logistic models built on sample data
and land-cover map data to estimate local accuracies.

Having provided some relatively solid justification for local accuracy estimation based on logistic
modelling (which this research adopts), we consider issues of sampling (for collecting reference sample
data), in particular, coupling of sampling designs and modelling approaches, below. The coupling of
modelling and sampling facilitates integration of accuracy estimation and information refinement,
with the latter using information about local accuracies in fusion of map and reference data for
enhancing quality of fused maps [33,34]. This integrative framework actually represents the paper’s
major contribution to the literature, as is seen below.



Remote Sens. 2018, 10, 1581 4 of 21

Like in error-matrix-based accuracy assessment, reference or validation sample data consisting of
reference class labels (from which binary data indicating correct or incorrect classifications at sample
pixels are obtained) are necessary for model-building. As understandable, models empirically built
and model predictions are conditional to specific sample data employed (for model training), which are
collected following certain sampling designs. It is thus important to reflect on how logistic modelling
was implemented in combination with sampling in the past. The review below aims to provide a
general indication to the largely loose coupling between modelling and sampling in existing literature,
though it is by no mean comprehensive or detailed.

Smith et al. implemented logistic regression for characterizing local accuracy in the NLCD
datasets in the eastern US encompassing four regions across 21 states with 5020 sample pixels
(presumably with a region-stratified random sampling design) by a class-aggregated modelling
strategy [18], with models built for individual regions separately. Then, Smith et al. carried out
logistic modelling of local accuracies by a (map) class-stratified modelling strategy (stratifications
with map classes at both Levels I and II), using the same sample set (5020 sample pixels) [19].
Based on a class-aggregated modelling strategy, Van Oort et al. used a sample set of 1161 grid
cells (collected with a kind of near-systematic sub-sampling) to model and analyze the classification
accuracy of agricultural crops in the Dutch national land-cover database [20]. Based on a simple
random sample data collected at a sampling intensity of about 5%, Zhang and Mei integrated logistic
regression and geostatistics for local accuracy characterization in land-cover change information via
class-aggregated modelling [30]. With stratified random sample data collected at intensities of 0.5%
and 2.5%, Khatami et al. compared logistic modelling with other modelling approaches for estimating
local accuracies in classified remote-sensing images, with both class-aggregated and class-specific
(i.e., class-stratified) modelling approaches considered in the spatial domain or spectral domain [24].
It was confirmed that class-specific modelling provides more accurate estimation of local accuracies
than class-aggregated modelling, as investigated in [18,19,24].

As reviewed above, with reference sample data collected, logistic modelling can be performed in a
(map) class-aggregated or class-stratified way. The latter is well suited to accommodating between-class
inhomogeneity in accuracy-context relations, as demonstrated in [19], and has been confirmed to be
more accurate than the former [24]. In addition to systematic sampling and random sampling (simple
or stratified), which are among the commonly used sampling designs, sampling adaptive to local
class heterogeneity (e.g., class impurity in a focal neighborhood of 3 by 3 pixels) was also explored for
accuracy assessment [35]. This is motivated by the observation that boundary areas (i.e., edge pixels)
are more likely misclassified than inner areas (i.e., interior pixels), as amply demonstrated in the
literature on local accuracy estimation [35]. Based on sample data in which edge pixels and interior
pixels were treated separately, accuracy assessment was carried out, showing large differences between
classification accuracies in segments of edge pixels and those of interior pixels [36].

Similar to the aforementioned error-matrix-based accuracy assessment, models of local accuracies
may be built separately for contextually heterogeneous vs. homogeneous pixel segments (sub-strata)
in individual strata of map classes, hopefully increasing accuracy in resultant model estimation.
In other words, as an extension to class-stratified modelling, class-heterogeneity-stratified modelling
can be usefully explored for proper handling of within-strata inhomogeneity in accuracy-context
relations. This double-stratified method should also be considered for sampling pertaining to
reference sample data collection so that sampling and modelling are well coupled with each other.
More importantly, with this double-stratified method applied in sampling designs, heterogeneous
sub-strata (which usually are more prone to misclassification than homogeneous sub-strata) are likely
sampled at greater sampling intensities than with other designs without considering sub-stratification
by heterogeneity. The increased number of sample pixels in error-prone locations will, in turn,
enable detailed studies of misclassification patterns and facilitate direct correction of misclassification
errors for refinement of land-cover information through fusion of map data and reference sample
data. This helps to broaden usability of sample data for not only local accuracy estimation but also
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information refinement. Therefore, the aforementioned class-heterogeneity-stratified method for
sampling and logistic regression modelling constitutes this paper’s major contribution to the literature.
The main features and values of the proposed double-stratification method include a combined
perspective of sampling and modelling (which were seldom treated coherently in the past) and an
integrative construct for local accuracy characterization and information refinement.

As the first step towards building up the aforementioned integrative framework,
this paper investigates performances of the proposed double-stratified method (featuring
class-heterogeneity-stratification in both logistic modelling and sampling) in comparison with
those of alternative methods (i.e., logistic regression modelling and sampling that are not
class-heterogeneity-stratified). This is important as the proposed method needs to be proved
competitive in terms of performance for local accuracy estimation at the first place to be worthy of
being pursued further for information refinement. In addition to comparing the proposed and
alternative methods’ performances based on a separate model-testing sample, these methods’
sensitivities to sample sizes were also analyzed, with their robustness to varying sample sizes
examined. This (sensitivity analysis) actually represents another contribution of this research to
the literature, as it was rarely considered in similar research. As shown in the case study, the proposed
class-heterogeneity-stratified method generates significantly more accurate estimation of local
accuracies than alternative methods including a double-stratification method with sub-stratification
by edge vs. interior pixels (as described in [36]), according to results of statistical testing and
sensitivity analyses.

The remainder of the article is as follows. In Section 2, the study area and data used in the research
are described first, followed by descriptions of methods for sampling and logistic regression modelling,
in particular, those with double stratifications by class and heterogeneity. Section 3 describes the
experiment carried out and the results obtained, aiming to test the proposed method in comparison
with alternative methods. Finally, Section 5 concludes the paper after discussing some issues in
Section 4.

2. Materials and Methods

2.1. The Study Area and Experimental Data

GlobeLand30 2010 land-cover dataset for Wuhan city was used for the study in this paper,
as shown in Figure 1. As a global fine-resolution land-cover information product, GlobeLand30
(for 2000 and 2010), which was produced by the National Geomatics Center of China (NGCC) in 2014,
has ten land-cover classes (http://www.globallandcover.com). The city of Wuhan (Lat 29◦58′–31◦22′ N,
Long 113◦41′–115◦05′ E) is about 8495 km2 in areal extent, located in the middle and lower reaches of
the Yangtze, and is the provincial capital of China’s Hubei province, as shown in Figure 1 (the inset
map of China, lower right corner). For Wuhan, there are seven classes (Table 1, except for shrub, tundra,
and permanent snow and ice), as shown in Figure 1. In particular, the dominate class is cultivated
land, occupying about 60 percent of Wuhan’s areal extent, followed by water, forest, and artificial
surface, which account for 15 percent, 12 percent, and 7 percent of the total area of Wuhan, respectively.
Grassland, wetland, and bare land together take about 6 percent of Wuhan’s areal extent.

Reference data recording reference class labels are required for local accuracy estimation.
Reference class labeling is defined as the best available assessment of the ground conditions. Collecting
reference data is a time-consuming and costly procedure. In the study, the reference classes at sample
pixels (sampling will be described in the next subsection) were obtained using visual interpretation of
high spatial resolution images (i.e., Google Earth images). Interpretation was undertaken according to
the standards consistent with GlobeLand30 classification system (Table 1). In most cases, Google
Earth images were used for interpretation. When such images were not available, actual ground visits
and Landsat TM image flown in temporal proximity of corresponding GlobeLand30 2010 maps were
used as sources to obtain reference class labels. A set of reference data were used as (model) training

http://www.globallandcover.com
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data, with another as testing data for performance evaluation (which is to be described in Section 3.4).
The training data and testing data were independent. For the training data, further information about
sampling design and resultant sample data collected is provided in Sections 2.2 and 3.1, respectively.Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 22 
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Figure 1. GlobeLand30 2010 land cover for Wuhan, China.

Table 1. GlobeLand30 2010 land-cover classes.

Class Name (Abbreviation) Definition

Cultivated land (Cultivt) Land used for agriculture, horticulture, and gardens, including paddy
fields, irrigated and dry farmland, vegetable and fruit gardens, etc.

Forest Land covered by trees, vegetation covers over 30%, including deciduous
and coniferous forests, and sparse woodland with cover 10–30%, etc.

Grassland (Grass) Land covered by natural grass with cover over 10%, etc.

Shrub Land covered by shrubs with cover over 30%, including deciduous and
evergreen shrubs, and desert steppe with cover over 10%, etc.

Wetland
Land covered by wetland plants and water bodies, including inland
marsh, lake marsh, river floodplain wetland, forest/shrub wetland, peat
bogs, mangrove, and salt marsh, etc.

Water bodies (Water) Water bodies in land area, including river, lake, reservoir, fish pond, etc.
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Table 1. Cont.

Class Name (Abbreviation) Definition

Tundra
Land covered by lichen, moss, hardy perennial herbs and shrubs in the
polar regions, including shrub tundra, herbaceous tundra, wet tundra,
and barren tundra, etc.

Artificial surfaces (Artfct)
Land modified by human activities, including all kinds of habitation,
industrial and mining area, transportation facilities, and interior urban
green zones and water bodies, etc.

Bare land (Bare) Land with vegetation cover lower than 10%, including desert, sandy
fields, Gobi, bare rocks, saline and alkaline land, etc.

Permanent snow and ice Lands covered by permanent snow, glacier, and icecap.

2.2. Sampling Design and Sample Allocation for Reference Data

In simple random sampling (SRS), n (sample) units are selected out of N units in the population
such that every one of the distinct samples has an equal chance of being drawn. By a stratified
random sampling (StRS) that may be based on geographic regions or map classes [12–14], independent
and random sample units are drawn from individual strata. In this study, SRS and StRS were
employed for comparative study about the proposed class-heterogeneity-stratified sampling design in
the context of local accuracy estimation. They were sampling designs well suited for class-aggregated
(CA) and class-stratified (CS) modelling, respectively, thus identified also as CA and CS, respectively,
in the remainder of the paper.

As mentioned previously, for the proposed method, stratification is first based on map class and
then heterogeneity/homogeneity. Here, homogeneity is defined as the number of pixels with the
same class label as that of the center pixel in a focal neighborhood of 3 by 3 pixels. The homogeneity
value can be viewed as the patch size of the center pixel in the focal neighborhood. A homogeneity
value of 4 is chosen to be the threshold value to determine if the center pixel lies in a homogeneous
sub-stratum or a heterogeneous one within a stratum of a certain map class. In contrast, a threshold of
8 was used for determining if the center pixel is interior (i.e., it belongs to a homogeneous sub-stratum)
in [36]. The former sampling design (stratified by map classes and sub-stratified by pixels being at
the centers of homogenous vs. heterogeneous focal neighborhoods) is labeled EO, while the latter
(stratified by class and sub-stratified by edge vs. interior pixels) EI.

For sample allocation, Neyman allocation method was used in this study. This is because Neyman
allocation considering stratum size or proportion and the degree of variation of each stratum will
greatly improve variance or standard error of estimation. For StRS, in particular, when sample size is
fixed, variance or standard error of estimation can be minimized by Neyman allocation. For example,
Neyman allocation method was used for sample allocation among different strata of map classes [35].
By Neyman allocation method, the sample size for a stratum (but sub-stratum for EI or EO) is
calculated as:

nh = n
WhSh

L
∑

h=1
WhSh

(1)

where nh is the number of sample units in stratum h, n is total sample size, Wh indicates the stratum’s
area proportion, and Sh represents the stratum’s standard deviation.

In this paper, for CS sampling and class-heterogeneity-stratified sampling (EO and EI),
the “strata” when using Equation (1) were map classes and combinations of map classes
and heterogeneity/homogeneity sub-classes, respectively. When conducting Neyman allocation,
the standard deviation (or variance) of each stratum should be known for calculating the sample
size of each stratum. Standard deviation of each stratum was estimated based on initial sample data,
as in [13,35]. For stratum h, its standard deviation (Sh) is calculated according to Equation (5.55) in [37].
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The initial sample data were collected using stratified sampling design with proper stratification plan
(e.g., class-stratification for Method CS, class-heterogeneity-stratification for Methods EI and EO).

2.3. Logistic Regression Modelling

Logistic regression models are usually used to describe relationships between a binary response
variable I(x) and one or more explanatory variables Zk(x) (k = 1, . . . , K) at pixel x. For mapping local
accuracies, the response variable is an indicator I(x) for classification correctness (or agreement between
the map and reference class labels) at pixel x, and is coded as 1 if pixel x was correctly classified and 0
otherwise. The explanatory variables are pattern indices for map class occurrences within multi-scale
neighborhoods, as discussed previously. Model predictions are probabilities of individual pixels being
correctly classified. A logistic model is

log
(

p(x)
1− p(x)

)
= β0 +

K

∑
k=1

βkZk(x) (2)

where p(x) is the probability of pixel x being correctly classified, β = (β0, β1, β2 . . . , βk) represents the
parameters to be estimated. Relations between p(x) and I(x) are further discussed in the Discussion,
so is possible extension to logistic-regression-based estimation.

Logistic regression analyses are preferably approached in a way well coupled with the
model-training sample data available. In this study, logistic modelling was performed in different
ways: for Methods EO and EI, models were built for individual sub-strata separately; models were
built for individual strata in CS; for CA, a single model was built for the study areas as a whole.
Resultant logistic models built for EO and EI should be applied to their corresponding sub-strata in the
land-cover map concerned, and those for CS to corresponding strata. When modelling is performed
separately per land-cover class, as in EO, EI, and CS methods, logistic models can be applied to
commission errors [17], although only per-pixel probabilities of correct classification were considered
in this study.

Class occurrence pattern indices including homogeneity, heterogeneity, dominance, entropy, and
contagion were used as candidate explanatory variables in this study (Table 2). These pattern indices
were quantified in different-sized moving windows. In the study, due to computational limitation,
moving window sizes were 3 by 3, 5 by 5, to 39 by 39 pixels at the maximum.

Definitions for the candidate explanatory variables shown in Table 2 are as follows. Class is
represented by six binary variables, as there are seven land classes occurring in the study area.
Homogeneity (Hom) refers to the number of pixels with the same map class label as the center pixel in
a neighborhood (or moving window). Heterogeneity (Het) indicates the number of different classes
in the moving window. If the value of heterogeneity equals 1, it indicates that the neighborhood is
pure or homogeneous with the same class. Entropy (Ent) indicates the average uncertainty of class
occurrences. When the probability of each class being present in a given neighborhood is roughly
the same, entropy value reaches its maximum, and when only one class dominates, entropy value
is zero. Dominance is the difference between the maximum possible diversity of the neighborhood
or moving window being considered (measured by entropy, ln(K), K being the number of classes
occurring in the moving window) and computed diversity in the moving window. Thus, dominance
measures the extent to which one or a few cover types dominate the landscape (the moving window,
to be more precise). A higher value indicates that the neighborhood is dominated by one or a few
land-cover classes, and a lower value indicates that land-cover types have nearly equal proportions [38],
given the same number of classes in the area (moving window) (as the maximum diversity value is
determined by the number of classes in an area). Clearly, dominance is related to entropy, although
their relation is modulated by K, which is itself varied rather than fixed across the landscape where
moving windows fall in. Contagion index describes the degree of clumping of land cover, which is
computed from the frequencies by which different pairs of cover types occur as adjacent pixels within
a moving window [39]. Because the index contains spatial information, it is one of the most important
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landscape pattern indices. In general, high contagion values show that certain landscape patch types
form good connectivity; on the contrary, low contagion values indicate that the landscape is highly
fragmented [20,39].

The −2LogLikelihood statistics (−2LL) is often used to test whether all regression parameters in a
model are simultaneously zero, furthermore, the difference between the -2LL of the two models follows
a chi-square distribution with degrees freedom being equal to the number of the extra variables to
those shared by the two models [40]. A χ2-test then can be used to test whether the addition of these
extra variables can significantly improve model-fitting.

Table 2. Class occurrence pattern indices.

Variable Abbreviation Description

Land cover Class the class labels of the sample pixel

Homogeneity Hom the number of pixels with the same label as the sample pixel in its neighborhood

Heterogeneity Het the number of land-cover class in the window centered on the sample pixel

Entropy Ent the weighted mean of the entropy associated with the single class, expressed in
terms of probability of various class types

Dominance Dom the degree to which one or few land-cover types predominate the landscape in
terms of proportion

Contagion Con the extent to which classes in a patch (moving window centered at the pixel
being considered) are clumped

3. Experiment, Results, and Analyses

The experiment procedures consisted of reference sample data collection (for model-training
and testing, see Sections 3.1 and 3.4, respectively), model-building, predictive mapping of local
accuracies using models fitted with training data, and performance evaluation based on testing data.
The performances of different methods for local accuracy estimation were compared, so were their
sensitivities to sample size.

3.1. Training Sample Data Collection

As mentioned in Section 2.2, the sampling designs tested were: (1) SRS (CA); (2) StRS (CS),
(3) EI (a sampling design with stratification by map classes and sub-stratification by edge/interior
pixels), and (4) EO (the proposed class-heterogeneity-stratified random sampling). For all methods
being examined, the sample size was 3000 pixels (for model-training). The rationales are that a sample
size of 3000 pixels is about the minimum to enable wetland and bare land (rare classes) to be allocated
minimum numbers of sample pixels necessary for model-building and that the sample size is to be
reduced to 1000 pixels at the minimum for sensitivity analysis as in Section 3.5. Sample allocations for
the aforementioned sampling designs are shown in Table 3. For sample allocation, the Neyman method
was used for all methods except CA (where SRS was adopted). For EO and EI, the homogenous and
heterogonous areas of each class were considered as different strata during sampling.

As shown in Table 3 (upper part, strata of classes), sampling intensities are about the same across
different classes (strata) for Method CA as SRS was employed therein, while variations among different
classes are apparently increasing in CS, EI, and EO. As shown in Table 3 (lower part), sampling
intensities at heterogeneous sub-strata are obviously higher than at homogeneous sub-strata, as
evaluated relative to the respective population sub-strata (e.g., about 3.93% for Wetland_E, wetland
class, heterogeneous sub-stratum, but only 0.10% for Wetland_O, wetland class, homogeneous
sub-stratum). Such a remarkable difference is seen to be narrower in the cases of EI, even reversed in
CS and CA (Wetland_E vs. Wetland_O, for example).
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Table 3. Sample allocations for different sampling designs (number of sample pixels belonging to
individual strata or sub-strata, while sampling intensities (in percentages) shown in parentheses are
with respect to the total number of pixels (Nstrata) belonging to specific strata or sub-strata in the
land-cover map).

Strata
Sample Designs Nstrata

SRS (CA) StRS (CS) EI EO

Cultivt 1812(0.03) 1795(0.03) 1570(0.03) 1215(0.02) 5,795,924
Forest 363(0.03) 360(0.03) 340(0.03) 420(0.04) 1,135,422
Grass 104(0.03) 110(0.03) 175(0.05) 290(0.09) 319,278

Wetland 57(0.04) 90(0.07) 165(0.12) 220(0.16) 135,768
Water 459(0.03) 370(0.03) 375(0.03) 385(0.03) 1,418,938
Artfct 201(0.03) 195(0.03) 215(0.03) 300(0.04) 719,111
Bare 4(0.04) 80(0.75) 160(1.50) 170(1.60) 10,652

Strata and Sub-Strata
(E-Heterogeneous O-Homogeneous)

Cultivt_E 17(0.03) 20(0.04) 21(0.04) 120(0.21) 56,721
Cultivt_O 1795(0.03) 1775(0.03) 1549(0.03) 1095(0.02) 5,739,203
Forest_E 42(0.03) 46(0.03) 44(0.03) 140(0.10) 133,655
Forest_O 321(0.03) 314(0.03) 296(0.03) 280(0.03) 1,001,767
Grass_E 32(0.05) 24(0.03) 29(0.04) 120(0.17) 70,366
Grass_O 72(0.03) 86(0.03) 146(0.06) 170(0.07) 248,912

Wetland_E 0(0) 1(0.05) 6(0.30) 80(3.93) 2033
Wetland_O 57(0.04) 89(0.07) 159(0.12) 140(0.10) 133,735

Water_E 2(0.01) 2(0.01) 7(0.03) 100(0.42) 23,895
Water_O 457(0.03) 368(0.03) 368(0.03) 285(0.02) 1,395,043
Artfct_E 6(0.03) 10(0.05) 11(0.06) 100(0.52) 19,324
Artfct_O 195(0.03) 185(0.03) 204(0.03) 200(0.03) 699,787
Bare_E 0(0) 22(0.60) 41(1.12) 80(2.19) 3658
Bare_O 4(0.06) 58(0.83) 119(1.70) 90(1.29) 6994

3.2. Model Selection

For model selection, an exhaustive procedure was applied to find the optimal model containing
the largest number of significant explanatory variables based on a particular model-training sample,
as in [20]. There were 98 candidate explanatory variables (i.e., map class (1), pattern indices computed
in different-sized windows (95), and sample pixel’s coordinates (2)) to choose from. The pattern indices
in different windows were written as the combination of abbreviations and numbers, where numbers
represented the sizes of the window. For example, Hom3 indicated the homogeneity of the sample
data in a 3 by 3 pixels’ window. Individual candidate explanatory variables were tested using
chi-square statistics with respect to their statistical significance in model-fitting. This was to test if
adding a candidate variable to a model already selected (i.e., a simpler model) significantly improves
model-fitting (i.e., leading to a significant decrease in model deviance) (at a significance level (α) of 0.05).
The significance of interaction terms for every two significant explanatory variables already selected
in logistic regression was also assessed. Optimal models with the largest number of significant
explanatory variables were identified when it was confirmed that adding variables further leads to
insignificant reduction in model deviances. This means that a simpler model (with less significant
explanatory variables) is preferred between two models with the same level of goodness of fit.
This procedure was implemented on the R software system.

Results of model selection are shown in Table 4. “E” and “I” (Method EI) represent edge
(more heterogeneous) and interior (more homogeneous) pixels, respectively, in Table 4. Thus, Forest_I
indicates interior pixels sub-stratum for Forest class, and corresponds (though not one-to-one) to
Forest_O (for Method EO) of homogenous sub-stratum of Forest class.
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Table 4. Optimal models with significant explanatory variables for different methods.

Methods Strata or Sub-Strata Significant Explanatory Variables

CA Ent9 Class Con3 Ent39 Con37 Ent5

CS

Cultivt Hom5 Ent33 Con33 Dom15
Forest Hom3 Con39
Grass Dom19 Hom35 Het3

Wetland Het27 Dom33 Ent25 Y
Water Y
Artfct X Hom3
Bare Y Ent3 Dom13 Con3 Het31

EI

Cultivt_E Y Hom5
Cultivt_I Hom39 X Y
Forest_E Hom5 Y Ent39 Dom15
Forest_I Con31
Grass_E Hom3 Hom37
Grass_I Hom5 Het27

Wetland_E Hom19 Con39 Con3 Ent5
Wetland_I X Hom39 Y
Water_E X
Water_I Y Hom5 Dom7
Artfct_E Het5
Artfct_I Hom39
Bare_E Het5 Het15
Bare_I Con11 Dom35

EO

Cultivt_E Dom37 Het11
Cultivt_O Het7 Het3 Hom39
Forest_E Con5 Hom5
Forest_O Het25 Hom5
Grass_E Ent3 Dom5 Het13
Grass_O Dom33

Wetland_E Con3 Y
Wetland_O Dom13

Water_E X Con5
Water_O Y
Artfct_E Y
Artfct_O Het3
Bare_E Het5
Bare_O X Con17 Het39

Unsurprisingly, there are apparent differences in the optimal models for individual strata or
sub-strata, as shown in Table 4. In other words, individual strata or sub-strata have their own optimal
models with unique significant explanatory variables of their own. This (non-uniformity of logistic
models of local accuracies across map strata and heterogeneity sub-strata) confirms the need for
modelling local accuracies for individual map classes and heterogeneous/homogeneous sub-strata
(of each class) separately. This also necessitates sensitivity analyses (to be described in Section 3.5) for
methods being tested with respect to different sample sizes.

Lastly, regarding relative significance of locational vs. contextual explanatory variables in logistic
modelling, the latter seem to be more informative in explaining observed classification correctness.
This is supported by the results shown in Table 4, where accuracy models have solely contextual
features (e.g., CS, Forest) as explanatory variables in 21 cases out of a total of 36 cases, while there are
only four cases when explanatory variables are locations alone (e.g., CS, Water).
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3.3. Mapping Per-Pixel Probabilities of Correct Classification and Classification Correctness at
Sample Locations

With models of local accuracies obtained for the four methods (i.e., CA, CS, EI, and EO) as in
Table 4, maps of per-pixel probabilities of correct classification were generated using these models,
as shown in Figure 2a–d, respectively. The differences between the maps of estimated local accuracies
shown in Figure 2 are somehow appreciable. Also, we can check their differences quantitatively using
model-testing sample data, as shown later.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 22 
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Also shown in Figure 2 are maps of observed classification correctness indicators (simply termed
maps of misclassifications) at model-training sample pixels. These maps of misclassifications were
obtained by comparing map and reference class labels, with 1 indicating correct classification, and 0
for misclassification, shown as blue and red points in subfigures of Figure 2. They are overlaid on their
corresponding maps of estimated per-pixel probabilities of correct classification. Differences in error
locations appear more appreciable than those in estimated per-pixel accuracies, due to use of different
training samples.

As shown in Figure 2, locations of misclassifications (in red) are more likely found near locations
with smaller estimated probabilities of correct classification (from orange to red). On the other hand,
locations of correct classifications (in blue) are more likely found near locations with larger estimated
probabilities of correct classification (from green to blue).

The closeness between estimated probabilities and actual indicators of correct classification can be
assessed quantitatively using the area under the receiver operating characteristic curve (AUC) [41–44],
as in the next subsection for performance evaluation based on independent testing sample data. AUC is
a commonly used metric for assessing performances (discriminatory power) of models constructed to
predict binary outcomes. AUC values can theoretically range from 0 to 1, with larger value indicating
greater accuracy in predictions [42,43]. Using training sample data (3000 sample pixels but different
designs for different methods) as references, AUC values for the four methods tested were computed
using an R package pROC [45]. Their AUC values were estimated to be 0.6810, 0.7198, 0.7349, and
0.7625, for methods CA, CS, EI, and EO, respectively, indicating their increasing accuracy in predicting
per-pixel probabilities of correct classification. Nevertheless, it should be noted that assessing models’
accuracy based on training data is not recommendable. Rather, we should use independent sample
data to assess these models’ performances, as in the next subsection.

3.4. Performance Evaluation

As mentioned previously, AUC was used to evaluate performances of different methods for local
accuracy estimation. T-test was performed on AUC values to examine whether there exist significant
differences between the aforementioned different methods.

For this, an independent set of 1020 model-testing sample pixels were acquired (with a simple
random design) from visual interpretation of high-resolution satellite images, as described in
Section 2.1. Different sets of local accuracy estimations (obtained with samples collected with
different sampling designs) were compared to their corresponding reference indicator data, with AUCs
computed also using the R package pROC [45]. AUC values obtained by these different methods are
shown in Table 5.

Table 5. AUC values for different methods.

Method CA CS EI EO

AUC 0.7516 0.7724 0.7667 0.7968

As mentioned previously, the range of AUC is from 0.0 to 1.0. Models are graded as excellent,
fair, and poor. Specifically, models providing excellent predictions have AUC values higher than 0.9,
fair models have AUC values between 0.7 and 0.9, and models are considered as poor when their
AUC values are below 0.7 [41,43]. The AUC values shown in Table 5 (based on testing sample data)
are in the range between 0.75 and 0.8. Thus, all methods should be considered as fair. In comparison,
as shown in Table 5, the performances of predictions obtained with EO, CS, and EI are better than
that with CA in terms of AUC values, with EO method getting the greatest AUC value of 0.7968.
AUC values shown in Table 5 are greater than their respective AUC values obtained with training
sample data. This is perhaps due to use of different sample designs by them and a much smaller
sample size used in the latter. After all, AUC values obtained from sample data were estimates and
can be assessed with respect to their variability, as examined in the next subsection.
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T-test was performed to determine statistical significances of differences between these AUC
values, leading to results shown in Table 6. R package pROC [45] was used also for testing
the significances of differences in AUC values obtained from alternative methods. pROC has a
built-in function for t-test, assessing the significance of differences in AUC values, with variance
and covariance of AUC estimates for a pair of methods computed by the package before p-values
are output.

Table 6. T-test results of statistical significance in differences between AUC values shown in Table 5
(p-value shown, * for significant at α = 0.10, ** for significant at α = 0.05).

T-test EO vs. EI EO vs. CS EO vs. CA EI vs. CS EI vs. CA CS vs. CA

p-value 0.005 ** 0.028 ** 0.0002 ** 0.664 0.119 0.069 *

As shown in Table 6, EO method is significantly more accurate (α = 0.05) than EI, CS, and CA
methods, while CS is significantly more accurate than SRS (α = 0.10). Comparing EI and CS methods,
there was no significant difference between them.

3.5. Sensitivity Analysis

As model predictions depend on model-training sample data characteristics (i.e., sampling design
and sample size), it is important to undertake sensitivity analysis for the methods being compared in
the study. This was done in the following steps:

• The original sample size (3000 pixels) decreased at an equal step of 200 (pixels), down to 1000 pixels
at the minimum, leading to ten reduced sample sizes (Nd d = 1, 2, . . . , 10) for ten new samples.
Sample allocations to strata and sub-strata were done proportionately to the reduced sample sizes
Nd for new samples, according to sample allocation for the original sample shown in Table 3.

• The ten new sample sets (of reduced sizes) for each method were collected from the original
sample by SRS from the original sample (CA), individual strata (CS), or sub-strata (EO and EI).

• Logistic regression modelling was done using samples of reduced sizes, for the four methods.
For this, model selection was carried out for all methods with all new samples with reduced sizes
(refer to Section 3.2 for technical detail). This resulted in different models with different optimal
explanatory variables based on different new samples for different methods.

• Local accuracies were estimated for different methods using their respective new samples of
reduced sizes. The resultant accuracy estimations were assessed using the test sample (1020 pixels)
mentioned in Section 3.4, leading to AUC values for different methods with new samples of
reduced sizes.

• Steps 2 through 4 were repeated 20 times, giving rises to 20 AUC values for each of the method
with a specific reduced sample size Nd Means and standard deviation were computed based on
these AUC values. The mean AUC values for different methods with different reduced sample
sizes are shown in Figure 3.

As shown in Figure 3, for all methods, mean AUC values decrease as sample sizes decrease.
EO method has the highest mean AUC values except for the sample with 1200 pixels when CS method
performs slightly better. When the sample size is greater than 1800 pixels, the order of performances
from good to poor in terms of mean AUC values is Methods EO, CS, EI, and CA. As sample size
decreases from 1800 to 1000, the order of performances for Methods CS, EI, and CA fluctuates, with
Method EI performing worse than Method CA. Two more observations are outstanding from Figure 3.
First, CA method’s quality of predictions (as quantified by AUC values) does not increase as sample
size increases after 1400. Second, even with much smaller sample size, class-specific methods, especially
EO method, can perform better than or the same as CA. For example, AUC of EO with 1400 samples
is very close to AUC of CA with 3000 samples. From a practical point of view, this is important as it
shows a simple modification in modelling can save costs via decreasing sample size.
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Figure 3. Mean AUC values for different methods with varying sample sizes.

T-test was undertaken based on the aforementioned sets of AUC values (means and standard
deviation) for different methods with sample sizes. The results are shown in Table 7. Method EO is
significantly more accurate than other methods, especially when the sample size is greater than
1800 pixels. Method EI is significantly less accurate than Method CS. When the sample size is no
less than 2000, all kinds of stratified methods are significantly more accurate than CA. However,
when sample size is less than 1800, the relativity among Methods EI, CS, and CA fluctuates.

Table 7. T-test results for significance in method pairwise differences based on mean AUC values with
reduced sample sizes (p-value shown, * for significance at α = 0.10, ** at α = 0.05, and *** at α = 0.01).

Sample Size EO vs. EI EO vs. CS EO vs. CA EI vs. CS EI vs. CA CS vs. CA

3000 — — — — — —
2800 4.8 × 10−11 *** 1.8 × 10−6 *** 2.2 × 10−16 *** 0.927 4.6 × 10−8 *** 1.3 × 10−7 ***
2600 4.2 × 10−8 *** 2.1 × 10−5 *** 4.4 × 10−14 *** 0.991 2.0 × 10−4 *** 2.8 × 10−9 ***
2400 7.7 × 10−10 *** 4.1 × 10−5 *** 1.1 × 10−13 *** 0.999 4.0× 10−5 *** 7.1 × 10−9 ***
2200 4.7 × 10−7 *** 2.2 × 10−4 *** 4.7 × 10−10 *** 0.974 0.550 0.008 ***
2000 1.4 × 10−4 *** 0.010 ** 1.6 × 10−7 *** 0.883 0.085 * 0.006 ***
1800 0.004 *** 0.010 ** 6.4 × 10−5 *** 0.473 0.242 0.323
1600 0.059 * 0.259 0.288 0.788 0.862 0.563
1400 5.9 × 10−7 *** 0.070 * 0.195 0.996 1.000 0.793
1200 0.118 0.566 0.156 0.937 0.529 0.098 *
1000 8.4 × 10−5 *** 0.101 0.123 0.992 0.991 0.521

4. Discussion

As shown in the results obtained in the study, the proposed class-heterogeneity-stratified method
(applied for sampling and logistic modelling jointly) was confirmed to be the most accurate for
estimating local accuracies in comparison with other methods. Sensitivity analyses also showed the
proposed method’s effectiveness and robustness, confirming its fair level of reliability. This study has
met its goal of testing the proposed method’s performance in local accuracy estimation, as the first
step towards building an integrative framework for accuracy estimation and information refinement.

Below, some aspects of the work reported in the paper are reflected upon, with further work
prospected briefly.
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Firstly, in the paper, residuals of logistic regression predictions were not analyzed with respect to
spatial correlation, nor was logistic-regression-kriging explored for mapping local accuracies as
in [30]. In the logistic model in Equation (2), p(x) represents the probability of correct classification
(or agreement between map and reference class labels) at pixel x. p(x) is actually the mean of a binary
variable I(x) indicating if x is correctly classified: p(x) = E(I(x)). Logistic-regression-kriging can thus be
viewed as kriging with local means to get estimation of I(x), with logistic regression predicting
local means, while kriging transferring spatial information contained in residuals (i.e., I(x) − p(x))
from sampled locations to unsampled ones [46]. It (logistic-regression-kriging) certainly merits
consideration for mapping local accuracies, especially when regression residuals are spatial correlated
(hence should be incorporated for improved estimation of local accuracies). However, given the
paper’s future orientation to information refinement (after local accuracy estimation), it makes sense to
perform kriging based on land-cover data concerned directly (rather than indicator data representing
classification correctness) when pursuing data fusion in the future. Another reason for having not
pursued kriging in the paper is the extra computational cost that would be incurred by implementing
kriging after logistic regression, since sensitivity analysis, as a relatively novel aspect of this study,
was already computationally expensive.

Secondly, in this study, double-stratified modelling in combination with double-stratified
sampling was confirmed to be the most accurate for local accuracy estimation, given same sample
sizes. However, it is worth exploring how sampling may be optimally configured (beyond double
stratifications) with respect to information refinement [33,34] (the top priority in the future). Related to
this is the issue of how we may figure out the optimal sample size for a specific study area given the
budgets for reference data collection. Furthermore, it is important to devise methods for combined
use of all reference data available to improve accuracy characterization and data fusion, regardless of
with what designs (which may be more complex than those in this study) they were originally collected.
We acknowledge that there is great room for improvements of and extensions to the work done in the
paper, being aware that sampling is itself a topic of breadth and depth.

Thirdly, some technical aspects are worth further explorations. On one hand, given the facts
that double-stratified modelling tends to become complicated with much more models to build
than CA modelling and that sub-stratified models are very much homogenized over corresponding
data sub-strata, it seems sensible to explore possible simplification of sub-stratified models without
significantly compromising accuracy of estimation (e.g., using sub-stratum means). On the other hand,
it is worth exploring the double-stratification method in time. For this, it is interesting to investigate
how the double-stratification method may be used to characterize per-pixel accuracies in land-cover
change [17,30].

Fourthly, we discuss the issue concerning threshold selection for defining heterogeneous vs.
homogeneous sub-strata, which are essential for the proposed Method EO. As described in Section 2.2,
the threshold for a sub-stratum being homogeneous was 4 pixels in a neighborhood of 3 by 3 pixels.
This means that the class type of center pixel needs to be in majority (no less than 5/9) to claim
it being in a relatively homogeneous neighborhood. Please note that homogeneity is defined as
the number of pixels with the same class label as that of the center pixel in the focal neighborhood
(see also Table 2). Clearly, unlike first level stratification by map classes that are fixed for a given
map, sub-stratification into heterogeneous vs. homogeneous pixels segments in a stratum can be
made on a more adaptive basis, as threshold selection is obviously related to and varies by the
land-cover mosaic (cover types, patch shape, and landscape texture, etc.) depicted in the map being
assessed. By adaptively selecting thresholds of homogeneity in sub-stratification, we can optimize
sub-stratification by optimal thresholding to maximize reliability in estimated local accuracies under
the constraints of sampling intensity and sample size. This issue (threshold selection) is certainly
worth exploring in future research.
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Fifthly, we discuss potentially useful methods for per-pixel accuracy estimation in soft (subpixel)
classifications [2,5]. Soft classifications are often considered as a kind of fuzzy classifications.
In other words, “fuzzy” is more general than “soft” in conceptual terms, as the former refers to
the cases whereby classes themselves are vaguely defined (e.g., the severity of drought). However,
for soft classifications representing subpixel proportions of candidate classes in individual pixels, their
probabilistic interpretations seem to be more relevant. With this understanding, we assume numerical
equivalence (or similarity, more correctly) between subpixel class proportions and fuzzy membership
values without causing confusion in the following discussion. Comber et al. [32] represented
one piece of pioneering work on per-pixel accuracy estimation for fuzzy/soft classifications,
while Khatami et al. [47] was more recent contribution to the relevant literature. For such maps,
per-pixel accuracy measures were differences between map and reference membership values
(or class proportions) for a candidate class (denoted D) in [32,47] (absolute differences, |D|, were used
in the former). In the papers by Comber et al. [32] and Khatami et al. [47], spatial interpolation was
applied to generate surfaces of weighted moving window means of D’s at sample locations, where
weights are computed with distance-based kernels in a similar manner to geographically weighted
regression (GWR). Clearly, the proposed method is not directly applicable to estimating local accuracies
in fuzzy maps. To make the proposed method applicable to fuzzy classifications, two extensions are
required. One concerns adaptions to regression modelling, the other is related to how heterogeneity is
defined on fuzzy maps to better facilitate double-stratification on such maps. Regression modelling
needs to consider the fact that accuracy measures applied to fuzzy maps are no longer probabilistic
but continuous-valued D. Thus, regression analyses rather than logistic regression may be explored.
See the work by Shortridge and Messina [48] for an example of analyses of continuous-valued errors
in Shuttle Radar Topography Mission (SRTM) DEM and their associations with globally available
topographic and land-cover variables across a wide range of landscapes in the United States, although
it was not about classifications per se. On the other hand, definitions of heterogeneity vs. homogeneity
should be reviewed in the context of fuzzy maps and their local accuracy modelling [49]. It seems that
continua of heterogeneity-homogeneity are closely related to class proportions (or fuzziness in class
memberships), although relations are not yet well understood. Once heterogeneity is defined with
proper thresholds, double-stratification may be implemented: sub-stratifications of heterogeneity vs.
homogeneity are based on the thresholds chosen while strata of prototype map classes are based on
alpha-cuts [49,50] or maximum membership values (or dominant classes’ proportions) [51].

Lastly but not the least, it should be recognized that there is issue of uncertainty related to
estimated local accuracies. This is so because the models obtained (i.e., significant explanatory variables
and model parameters) were conditional to the specific sample data given, as shown in Table 4, even to
sample data with same sampling design and sample size (Table 7). Reference sample data quality [52]
is also a factor, although reference data in this research were assumed to be accurate. More importantly,
the explanatory variables used in this research were derived from map data that were known to be
contaminated with unavoidable misclassification errors. This means that estimated local accuracies
were subject to two-levels of uncertainties propagating: from map data to explanatory variables
(i.e., contextual features or landscape pattern indices computed from a land-cover map being assessed)
and from explanatory variables to logistic-modelling-based estimation. Local accuracy estimation
(reported in the paper and elsewhere) is, thus, by no means perfect, no matter how sophisticated
the methods employed are. It is important to develop and promote methods that not only depict
spatially varying accuracies in land-cover information products but also support uncertainty analyses
in predicted per-pixel accuracies.

We discuss further the aforementioned two-level uncertainties in the remainder of this section.
As mentioned above, unless field-measured data that are sufficiently accurate are used [53], spatial
analyses and modelling based on remote-sensing data and land-cover information estimated from them
are subject to uncertainty. There is impressive literature on uncertainty in landscape pattern indices
(or metrics) and analyses due to misclassification errors in land-cover maps [54–59]. As landscape
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pattern indices were used as explanatory variables for logistic modelling of accuracy in this paper,
existing methods in the literature listed above may be usefully explored for analyzing sensitivities of
relevant pattern indices to misclassification errors.

However, we need to go further to analyze and quantify uncertainty in estimated local accuracies
using map-data-derived pattern indices in future research. Relevant literature is rather limited,
especially with respect to uncertainty in logistic-modelling-based accuracy estimation. Nevertheless,
literature on error-in-variables in regression analysis may shed light on issues of two-level uncertainties,
while simulation-based error modelling is well worth exploring as another promising methodology.
Regarding regression modelling considering error-in-variables, Zhang et al. [60] and Fu et al. [61])
addressed error-in-variables issue in the context of forest inventory using linear regression analyses
based on remote-sensing data that are known to suffer from errors. Literature on error-in-variables in
the context of logistic regression is more relevant to furthering this research, as logistic regression is
designed for binary response variables (e.g., agreement/disagreement between map and reference
labels). The work by Carroll and Wand [62] and Yi et al. [63] may serve as good starting points for
further research. On the other hand, simulation-based approaches (e.g., [59]) also merit consideration.
We can simulate (land-cover) maps containing misclassification errors. These simulated maps can be
used to generate a large sample of maps showing estimated local accuracies. Statistical summary and
analyses on these maps of local accuracies can provide useful information about the effects of map
inaccuracy on resultant per-pixel accuracy estimation, supporting uncertainty-informed local accuracy
estimation and information refinement. Simulation-based methods are necessarily adapted to facilitate
conditioning to reference sample data, to accommodate spatial correlation in misclassification errors in
land-cover maps being assessed, and to promote mechanism-based uncertainty analyses [64].

5. Conclusions

Local accuracy characterization for land-cover information products is important for users and
producers alike. In this paper, Method EO (a class-heterogeneity-stratified method) is proposed for
sampling and modelling in the context local accuracy estimation. This method was compared with
three alternative methods (Methods EI, CS, and CA) based on GlobeLand30 2010 land cover over
Wuhan. Comparisons were also made under different sample sizes through sensitivity analysis. It was
confirmed that Method EO generally yields the most accurate estimates of local accuracies with varying
sample sizes, while Method CS performs with the second highest accuracy. The work accomplished in
this paper holds great potentials for further research on local accuracy estimation and information
refinement based on data fusion, given continuing proliferation of land-cover information products
and growing accumulation of reference sample data for product validation.

As discussed in Section 4, although logistic modelling using class-heterogeneity-stratified data was
advocated as a promising method for local accuracy estimation with a fair level of reliability confirmed,
there exist issues deserving further research. The major issue concerns two-level uncertainty in Method
EO and other alternatives, as explanatory variables used were actually map data and their derivatives
(i.e., contextual features), which are subject to errors themselves. As conventionally understood, the
reliability of resultant local accuracy estimates depends on various factors, such as sampling intensity
and sample size, domains of explanatory variables (spatial vs. spectral), and strengths of empirically
derived accuracy-context relationships. While these factors were analyzed or discussed to some extent
in the past, potential effects of two-level uncertainty on local accuracy estimation have not received the
kind of research attention they deserve. Advancements on methods for handling and incorporating
two-level uncertainty in local accuracy mapping will bring our research on land-cover information
validation and refinement to an elevated level of sophistication.
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