Forest Potential Productivity Mapping by Linking Remote-Sensing-Derived Metrics to Site Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.3. Remote Sensing Data Collection and Processing
2.4. Prediction of Total Bole Inside-bark Volume (TV) and Height of Thickest 100 Trees (HT)
2.5. Site Factors
2.6. Using Sentinel-2 Variables to Improve BGI in Maine and New Brunswick
2.7. Adding Sentinel-2 Terms to Biomass Growth Non-Linear Equation
3. Results
3.1. Prediction of TV and HT using Field and Sentinel-2 Variables
3.2. Improving Biomass Growth Index Model for Maine and New Brunswick
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weiskittel, A.R.; Crookston, N.L.; Radtke, P.J. Linking climate, gross primary productivity, and site index across forests of the western United States. Can. J. For. Res. 2011, 41, 1710–1721. [Google Scholar] [CrossRef]
- Hennigar, C.; Weiskittel, A.; Allen, H.L.; MacLean, D.A. Development and evaluation of a biomass increment based index for site productivity. Can. J. For. Res. 2017, 47, 400–410. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Ramirez, C.; Conway, S.; Kennedy, K.; Kohler, T.; Liu, J. Mapping site index and volume increment from forest inventory, Landsat, and ecological variables in Tahoe National Forest, California, USA. Can. J. For. Res. 2017, 47, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Swenson, J.J.; Waring, R.H.; Fan, W.; Coops, N. Predicting site index with a physiologically based growth model across Oregon, USA. Can. J. For. Res. 2005, 35, 1697–1707. [Google Scholar] [CrossRef] [Green Version]
- Waring, R.H.; Milner, K.S.; Jolly, W.M.; Phillips, L.; McWethy, D. Assessment of site index and forest growth capacity across the Pacific and Inland Northwest USA with a MODIS satellite-derived vegetation index. For. Ecol. Manag. 2006, 228, 285–291. [Google Scholar] [CrossRef]
- Jiang, H.; Radtke, P.J.; Weiskittel, A.R.; Coulston, J.W.; Guertin, P.J. Climate-and soil-based models of site productivity in eastern US tree species. Can. J. For. Res. 2015, 45, 325–342. [Google Scholar] [CrossRef]
- Milner, K.S.; Running, S.W.; Coble, D.W. A biophysical soil–site model for estimating potential productivity of forested landscapes. Can. J. For. Res. 1996, 26, 1174–1186. [Google Scholar] [CrossRef]
- Bunn, A.G.; Goetz, S.J. Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: The influence of seasonality, cover type, and vegetation density. Earth Interact. 2006, 10, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R.A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525. [Google Scholar] [CrossRef] [Green Version]
- Rossini, M.; Cogliati, S.; Meroni, M.; Migliavacca, M.; Galvagno, M.; Busetto, L.; Cremonese, E.; Julitta, T.; Siniscalco, M.C.; Morra di Cella, U. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences 2012, 9, 2565–2584. [Google Scholar] [CrossRef] [Green Version]
- Joiner, J.; Yoshida, Y.; Zhang, Y.; Duveiller, G.; Jung, M.; Lyapustin, A.; Wang, Y.; Tucker, C.J. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 2018, 10, 1346. [Google Scholar] [CrossRef] [Green Version]
- Mahadevan, P.; Wofsy, S.C.; Matross, D.M.; Xiao, X.; Dunn, A.L.; Lin, J.C.; Gerbig, C.; Munger, J.W.; Chow, V.Y.; Gottlieb, E.W. A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef] [Green Version]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 2, 815–835. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens. Environ. 2008, 112, 1633–1646. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Remote sensing of terrestrial primary production and carbon cycle. In Advances in Land Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2008; pp. 423–444. [Google Scholar]
- McLeod, S.D.; Running, S.W. Comparing site quality indices and productivity in ponderosa pine stands of western Montana. Can. J. For. Res. 1988, 18, 346–352. [Google Scholar] [CrossRef]
- Cohen, W.B.; Spies, T.A. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery. Remote Sens. Environ. 1992, 41, 1–17. [Google Scholar] [CrossRef]
- Hall, R.; Skakun, R.; Arsenault, E.; Case, B. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. For. Ecol. Manag. 2006, 225, 378–390. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Goetz, S.J.; Turubanova, S.; Tyukavina, A.; Krylov, A.; Kommareddy, A.; Egorov, A. Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sens. Environ. 2016, 185, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Skovsgaard, J.P.; Vanclay, J.K. Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. For. Int. J. For. Res. 2008, 81, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Jiang, H.; Liu, S.; Zhu, C.; Liu, Y.; Wang, J. Estimation of forest-ecosystem site index using remote-sensed data. Acta Ecol. Sin. 2006, 26, 2810–2815. [Google Scholar] [CrossRef]
- Pfeifer, M.; Gonsamo, A.; Disney, M.; Pellikka, P.; Marchant, R. Leaf area index for biomes of the Eastern Arc Mountains: Landsat and SPOT observations along precipitation and altitude gradients. Remote Sens. Environ. 2012, 118, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [Green Version]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Rahimzadeh-Bajgiran, P.; Munehiro, M.; Omasa, K. Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages. Photosynth. Res. 2012, 113, 261–271. [Google Scholar] [CrossRef]
- Seymour, R.S. Integrating natural disturbance parameters into conventional silvicultural systems: Experience from the Acadian forest of northeastern North America. U. S. Dep. Agric. For. Serv. Gen. Tech. Rep. Pnw 2005, 635, 41. [Google Scholar]
- NB-DNRED. New Brunswick Landbase Polygon Inventory Shapefile and Stand Attributes (2018 Version); Accessed through digital communication with New Brunswick Department Natural Resources and Energy Development on 4 May 2018; New Brunswick Department Natural Resources and Energy Development (NB-DNRED): Fredericton, NB, Canada, 2018.
- NB-DNRED. New Brunswick Enhanced Forest Inventory Predictions for 2015 and 2014 LiDAR Acquisition Areas; Accessed through digital communication with New Brunswick Department Natural Resources and Energy Development on 4 May 2018; New Brunswick Department Natural Resources and Energy Development (NB-DNRED): Fredericton, NB, Canada, 2018.
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Majasalmi, T.; Rautiainen, M. The potential of Sentinel-2 data for estimating biophysical variables in a boreal forest: A simulation study. Remote Sens. Lett. 2016, 7, 427–436. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Clevers, J.; De Jong, S.; Epema, G.; Addink, E.; Van Der Meer, F.; Skidmore, A. Meris and the Red-Edge Index; Second EARSeL workshop on Imaging spectroscopy; EARSeL: Enschede, The Netherlands, 2000; pp. 1–16. [Google Scholar]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-ausing reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv. Space Res. 2007, 39, 100–104. [Google Scholar] [CrossRef]
- Guyot, G.; Baret, F. Utilisation de la haute resolution spectrale pour suivre l’etat des couverts vegetaux. In Spectral Signatures of Objects in Remote Sensing; 1988; p. 279. Available online: https://www.researchgate.net/publication/234432105_Utilisation_de_la_Haute_Resolution_Spectrale_pour_Suivre_L%27etat_des_Couverts_Vegetaux (accessed on 24 June 2020).
- Korhonen, L.; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Weiskittel, A.R.; Kneeshaw, D.; MacLean, D.A. Detection of annual spruce budworm defoliation and severity classification using Landsat imagery. Forests 2018, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties–A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Eitel, J.U.; Vierling, L.A.; Litvak, M.E.; Long, D.S.; Schulthess, U.; Ager, A.A.; Krofcheck, D.J.; Stoscheck, L. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland. Remote Sens. Environ. 2011, 115, 3640–3646. [Google Scholar] [CrossRef]
- Schumacher, P.; Mislimshoeva, B.; Brenning, A.; Zandler, H.; Brandt, M.; Samimi, C.; Koellner, T. Do red edge and texture attributes from high-resolution satellite data improve wood volume estimation in a semi-arid mountainous region? Remote Sens. 2016, 8, 540. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- McKenney, D.W.; Pedlar, J.H.; Papadopol, P.; Hutchinson, M.F. The development of 1901–2000 historical monthly climate models for Canada and the United States. Agric. For. Meteorol. 2006, 138, 69–81. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Ogilvie, J.; Arp, P. Topographic modelling of soil moisture conditions: A comparison and verification of two models. Eur. J. Soil Sci. 2009, 60, 94–109. [Google Scholar] [CrossRef]
- Böhner, J.; McCloy, K.R. SAGA-analysis and modelling applications. Collect. Göttinger Geogr. Abh. 2006, 115, 130. [Google Scholar]
- Goward, S.; Huang, C.; Zhao, F.; Schleeweis, K.; Rishmawi, K.; Lindsey, M.; Dungan, J.; Michaelis, A. NACP NAFD project: Forest disturbance history from Landsat, 1986–2010. ORNL DAAC 2016. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hermosilla, T.; Coops, N.C.; Hobart, G.W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 2017, 194, 303–321. [Google Scholar] [CrossRef]
- Bhattarai, R.; Rahimzadeh-Bajgiran, P.; Weiskittel, A.; MacLean, D. Sentinel-2 based prediction of spruce budworm defoliation using red-edge spectral vegetation indices. Remote Sens. Lett. 2020, 11, 777–786. [Google Scholar] [CrossRef]
- Hudak, A.T.; Lefsky, M.A.; Cohen, W.B.; Berterretche, M. Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sens. Environ. 2002, 82, 397–416. [Google Scholar] [CrossRef] [Green Version]
No | Band/Index * | Band info/ /Formulation | Reference |
---|---|---|---|
1 | b2 | Blue (490 nm) | ----------- |
2 | b3 | Green (560 nm) | |
3 | b4 | Red (665 nm) | |
4 | b5 | Vegetation Red-Edge (705 nm) | |
5 | b6 | Vegetation Red-Edge (740 nm) | |
6 | b7 | Vegetation Red-Edge (783 nm) | |
7 | b8a | Near Infrared (NIR) (865 nm) | |
8 | b11 | Shortwave Infrared (1610 nm) | |
9 | b12 | Shortwave Infrared (2190 nm) | |
10 | CLre | (b7/b5) − 1 | [31] |
11 | EVI7 | 2.5× (b7 − b4)/(b7 + 6 × b4 − 7.5 × b2 + 1) | [32] |
12 | EVI8 | 2.5× (b8a − b4)/(b8a + 6 × b4 − 7.5 × b2 + 1) | [33] |
13 | GNDVI | (b7 − b3)/(b7 + b3) | [34] |
14 | IRECI | (b7 − b4)/(b5/b6) | [35] |
15 | NDVI | (b8a − b4)/(b8a + b4) | [36] |
16 | NDVI45 | (b5 − b4)/(b5 + b4) | [25] |
17 | NDVI65 | (b6 − b5)/(b6 + b5) | [37] |
18 | MSR | ((b7/b4) − 1)/((b7/b4) + 1) 0.5 | [38] |
19 | MTCI | (b6 − b5)/(b5− b4) | [39] |
20 | S2REP | 705 + 35 × ((b4 + b7)/2 − b5)/(b6 − b5) | [40] |
21 | WDRVI | (0.01 × b7 − b5)/(0.01 × b7 + b5)+(1 − 0.01)/(1 + 0.01) | [32] |
Variables | Resolution | Reference/Data Provider | |
---|---|---|---|
Climate | Mean growing season temperature normals 1971–2000 Frost-free days normals 1971–2000 | 800 m | [47] |
Lithology and soil | Bedrock productivity index (BRI) derived from rock type observed regional effect on site Root growing space index (RGS) derived as a combination of maximum root depth and percent course fragment | resampled to 50 m | [2] |
Topography | Depth to water (DTW) predicted at 10 m resolution from DEM Slope in degrees | 20 m | [48] |
Response | Predictor Variables | OOB r2 | RMSE |
---|---|---|---|
Total volume/ha (TV) | Age, Species, Mgmt., BGI | 68.8% | 24.5 |
Age, Species, Mgmt., BGI, July Sentinel-2 (all variables) | 80.5% | 19.3 | |
Age, Species, Mgmt., BGI, September Sentinel-2 (all variables) | 79.9% | 19.7 | |
Age, Mgmt., BGI, July Sentinel-2 (all variables) | 78.7% | 20.2 | |
Age, Mgmt., BGI, July Sentinel-2 (b3, b8a, b11, S2REP, NDVI45) | 78.5% | 20.3 | |
Age, Mgmt., BGI, July Sentinel-2 (b3, b8a, S2REP) | 77.2% | 20.9 | |
All July Sentinel-2 bands and indices | 66.1% | 25.5 | |
July Sentinel-2 (b3, b8a, S2REP) | 57.9% | 28.4 |
Response | Predictor Variables | OOB r2 | RMSE |
---|---|---|---|
Height (HT) | Age, Species, Mgmt., BGI | 59.7% | 1.6 |
Age, Species, Mgmt., BGI, July Sentinel-2 (all variables) | 70.3% | 1.3 | |
Age, Species, Mgmt., BGI, September Sentinel-2 (all variables) | 70.1% | 1.3 | |
Age, Mgmt., BGI, July Sentinel-2 (all variables) | 67.4% | 1.4 | |
Age, Mgmt., BGI, July Sentinel-2 (b3, b8a, b11, S2REP, NDVI45) | 66.8% | 1.4 | |
Age, Mgmt., BGI, July Sentinel-2 (b3, b8a, S2REP) | 64.7% | 1.5 | |
All July Sentinel-2 bands and indices | 56.8% | 1.6 | |
July Sentinel-2 (b3, b8a, S2REP) | 45.0% | 1.8 |
Variable | Used in the Final Model | Description (also See [2]) |
---|---|---|
BM | Yes | Biomass > 9 cm DBH in trees that survive to the next measurement period |
HW | No | % hardwood composition by basal area |
QMD9 | Yes | Quadratic mean diameter (cm) > 9 cm DBH |
S2REP_GWR | Yes | S2REP smoothed with GWR |
Ffree | Yes | Frost-free days |
AvgTempGS | Yes | Average growing season temperature |
BRI | Yes | Bed rock fertility index |
PO | Yes | % Poplar spp. basal area |
Slope | Yes | % Slope |
b8a | No | NIR (no smoothing) |
Pi | Yes | % Pine basal area |
DWT | Yes | Depth to water table |
RGS | Yes | Root growing space (0–100 cm) |
Model Fit Statistics | |||||||
---|---|---|---|---|---|---|---|
Base Model | Base Model +S2REP | Base Model + S2REP + b8a | Base Model + S2REP + b8a+ HW | ||||
n | 7738 | n | 7738 | n | 7738 | n | 7738 |
MB | 1.08 | MB | 3.95 | MB | 2.59 | MB | 2.80 |
MAB | 673.62 | MAB | 663.01 | MAB | 657.80 | MAB | 653.42 |
RMSE | 862.62 | RMSE | 852.10 | RMSE | 845.60 | RMSE | 840.70 |
r2 | 46.6% | r2 | 47.9% | r2 | 48.7% | r2 | 49.3% |
Influential variables | |||||||
Variable | % MSE Incr. | Variable | % MSE Incr. | Variable | % MSE Incr. | Variable | % MSE Incr. |
BM | 63.49% | BM | 54.93% | BM | 58.89% | BM | 59.16% |
Ffree | 10.77% | S2REP_GWR | 10.59% | b8a | 9.11% | HW | 11.63% |
PO | 8.44% | QMD9 | 7.61% | QMD9 | 8.24% | QMD9 | 9.40% |
BRI | 8.39% | AvgTempGS | 7.59% | S2REP_GWR | 7.21% | S2REP_GWR | 5.97% |
QMD9 | 8.16% | PO | 7.25% | Ffree | 6.95% | Ffree | 5.31% |
AvgTempGS | 7.16% | Ffree | 6.92% | PO | 5.64% | AvgTempGS | 4.97% |
Slope | 6.87% | BRI | 5.49% | AvgTempGS | 5.15% | BRI | 4.66% |
DWT | 4.51% | Slope | 4.88% | BRI | 5.08% | PO | 3.98% |
RGS | 1.78% | DWT | 2.50% | Slope | 3.37% | Slope | 3.40% |
Pi | 1.04% | RGS | 1.92% | RGS | 1.54% | b8a | 3.20% |
Pi | 0.66% | DWT | 1.45% | Pi | 1.85% | ||
Pi | 1.02% | DWT | 1.54% | ||||
RGS | 0.95% |
Variable (Parameter) | Base BGI Model | iBGI Model | % Change | ||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | SE | T | p-Value | Coeff. | SE | T | p-Value | ||
Intercept (a0) | −4573 | 445 | −10.278 | 0.000 | −272,737 | 13201 | −20.661 | 0.000 | - |
Ffree (a1) | 18.71 | 1.28 | 14.612 | 0.000 | 14.75 | 1.21 | 12.240 | 0.000 | 79% |
AveTempGS (a2) | 273.13 | 35.54 | 7.684 | 0.000 | 392.59 | 34.96 | 11.230 | 0.000 | 144% |
DCFI (a3) | 296.41 | 38.39 | 7.721 | 0.000 | 245.70 | 36.48 | 6.736 | 0.000 | 83% |
BRFI (a4) | 1234.1 | 72.25 | 17.082 | 0.000 | 921.52 | 67.80 | 13.593 | 0.000 | 75% |
DWT(a5) | 87.72 | 8.55 | 10.264 | 0.000 | 59.25 | 8.04 | 7.368 | 0.000 | 68% |
Slope (a6) | 729.58 | 150.30 | 4.854 | 0.000 | 636.70 | 134.62 | 4.730 | 0.000 | 87% |
Slope (s0) | 0.76 | 0.17 | 4.435 | 0.000 | 0.78 | 0.19 | 4.111 | 0.000 | 103% |
Slope (s1) | 0.16 | 0.04 | 4.237 | 0.000 | 0.18 | 0.05 | 3.946 | 0.000 | 110% |
PO (a7) | 18.18 | 1.07 | 16.988 | 0.000 | 9.05 | 1.02 | 8.838 | 0.000 | 50% |
Pi (a8) | 7.56 | 1.06 | 7.123 | 0.000 | 16.86 | 1.02 | 16.607 | 0.000 | 223% |
Biomass (b0) | 0.01 | 0.00 | 11.029 | 0.000 | 0.01 | 0.00 | 11.946 | 0.000 | 83% |
QMD (c0) | −0.01 | 0.05 | −0.244 | 0.807 | −0.11 | 0.06 | −1.839 | 0.066 | 846% |
QMD (c1) | 0.05 | 0.01 | 8.902 | 0.000 | 0.05 | 0.01 | 9.580 | 0.000 | 111% |
S2REP (a9) | - | - | - | - | 369.85 | 18.13 | 20.405 | 0.000 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimzadeh-Bajgiran, P.; Hennigar, C.; Weiskittel, A.; Lamb, S. Forest Potential Productivity Mapping by Linking Remote-Sensing-Derived Metrics to Site Variables. Remote Sens. 2020, 12, 2056. https://doi.org/10.3390/rs12122056
Rahimzadeh-Bajgiran P, Hennigar C, Weiskittel A, Lamb S. Forest Potential Productivity Mapping by Linking Remote-Sensing-Derived Metrics to Site Variables. Remote Sensing. 2020; 12(12):2056. https://doi.org/10.3390/rs12122056
Chicago/Turabian StyleRahimzadeh-Bajgiran, Parinaz, Chris Hennigar, Aaron Weiskittel, and Sean Lamb. 2020. "Forest Potential Productivity Mapping by Linking Remote-Sensing-Derived Metrics to Site Variables" Remote Sensing 12, no. 12: 2056. https://doi.org/10.3390/rs12122056
APA StyleRahimzadeh-Bajgiran, P., Hennigar, C., Weiskittel, A., & Lamb, S. (2020). Forest Potential Productivity Mapping by Linking Remote-Sensing-Derived Metrics to Site Variables. Remote Sensing, 12(12), 2056. https://doi.org/10.3390/rs12122056