Forest Potential Productivity Mapping by Linking Remote-Sensing-Derived Metrics to Site Variables
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.3. Remote Sensing Data Collection and Processing
2.4. Prediction of Total Bole Inside-bark Volume (TV) and Height of Thickest 100 Trees (HT)
2.5. Site Factors
2.6. Using Sentinel-2 Variables to Improve BGI in Maine and New Brunswick
2.7. Adding Sentinel-2 Terms to Biomass Growth Non-Linear Equation
3. Results
3.1. Prediction of TV and HT using Field and Sentinel-2 Variables
3.2. Improving Biomass Growth Index Model for Maine and New Brunswick
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weiskittel, A.R.; Crookston, N.L.; Radtke, P.J. Linking climate, gross primary productivity, and site index across forests of the western United States. Can. J. For. Res. 2011, 41, 1710–1721. [Google Scholar] [CrossRef]
- Hennigar, C.; Weiskittel, A.; Allen, H.L.; MacLean, D.A. Development and evaluation of a biomass increment based index for site productivity. Can. J. For. Res. 2017, 47, 400–410. [Google Scholar] [CrossRef]
- Huang, S.; Ramirez, C.; Conway, S.; Kennedy, K.; Kohler, T.; Liu, J. Mapping site index and volume increment from forest inventory, Landsat, and ecological variables in Tahoe National Forest, California, USA. Can. J. For. Res. 2017, 47, 113–124. [Google Scholar] [CrossRef]
- Swenson, J.J.; Waring, R.H.; Fan, W.; Coops, N. Predicting site index with a physiologically based growth model across Oregon, USA. Can. J. For. Res. 2005, 35, 1697–1707. [Google Scholar] [CrossRef]
- Waring, R.H.; Milner, K.S.; Jolly, W.M.; Phillips, L.; McWethy, D. Assessment of site index and forest growth capacity across the Pacific and Inland Northwest USA with a MODIS satellite-derived vegetation index. For. Ecol. Manag. 2006, 228, 285–291. [Google Scholar] [CrossRef]
- Jiang, H.; Radtke, P.J.; Weiskittel, A.R.; Coulston, J.W.; Guertin, P.J. Climate-and soil-based models of site productivity in eastern US tree species. Can. J. For. Res. 2015, 45, 325–342. [Google Scholar] [CrossRef]
- Milner, K.S.; Running, S.W.; Coble, D.W. A biophysical soil–site model for estimating potential productivity of forested landscapes. Can. J. For. Res. 1996, 26, 1174–1186. [Google Scholar] [CrossRef]
- Bunn, A.G.; Goetz, S.J. Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: The influence of seasonality, cover type, and vegetation density. Earth Interact. 2006, 10, 1–19. [Google Scholar] [CrossRef]
- Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R.A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525. [Google Scholar] [CrossRef]
- Rossini, M.; Cogliati, S.; Meroni, M.; Migliavacca, M.; Galvagno, M.; Busetto, L.; Cremonese, E.; Julitta, T.; Siniscalco, M.C.; Morra di Cella, U. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences 2012, 9, 2565–2584. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Zhang, Y.; Duveiller, G.; Jung, M.; Lyapustin, A.; Wang, Y.; Tucker, C.J. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 2018, 10, 1346. [Google Scholar] [CrossRef]
- Mahadevan, P.; Wofsy, S.C.; Matross, D.M.; Xiao, X.; Dunn, A.L.; Lin, J.C.; Gerbig, C.; Munger, J.W.; Chow, V.Y.; Gottlieb, E.W. A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 2, 815–835. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens. Environ. 2008, 112, 1633–1646. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Remote sensing of terrestrial primary production and carbon cycle. In Advances in Land Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2008; pp. 423–444. [Google Scholar]
- McLeod, S.D.; Running, S.W. Comparing site quality indices and productivity in ponderosa pine stands of western Montana. Can. J. For. Res. 1988, 18, 346–352. [Google Scholar] [CrossRef]
- Cohen, W.B.; Spies, T.A. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery. Remote Sens. Environ. 1992, 41, 1–17. [Google Scholar] [CrossRef]
- Hall, R.; Skakun, R.; Arsenault, E.; Case, B. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. For. Ecol. Manag. 2006, 225, 378–390. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Goetz, S.J.; Turubanova, S.; Tyukavina, A.; Krylov, A.; Kommareddy, A.; Egorov, A. Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sens. Environ. 2016, 185, 221–232. [Google Scholar] [CrossRef]
- Skovsgaard, J.P.; Vanclay, J.K. Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. For. Int. J. For. Res. 2008, 81, 13–31. [Google Scholar] [CrossRef]
- Ma, M.; Jiang, H.; Liu, S.; Zhu, C.; Liu, Y.; Wang, J. Estimation of forest-ecosystem site index using remote-sensed data. Acta Ecol. Sin. 2006, 26, 2810–2815. [Google Scholar] [CrossRef]
- Pfeifer, M.; Gonsamo, A.; Disney, M.; Pellikka, P.; Marchant, R. Leaf area index for biomes of the Eastern Arc Mountains: Landsat and SPOT observations along precipitation and altitude gradients. Remote Sens. Environ. 2012, 118, 103–115. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Munehiro, M.; Omasa, K. Relationships between the photochemical reflectance index (PRI) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages. Photosynth. Res. 2012, 113, 261–271. [Google Scholar] [CrossRef]
- Seymour, R.S. Integrating natural disturbance parameters into conventional silvicultural systems: Experience from the Acadian forest of northeastern North America. U. S. Dep. Agric. For. Serv. Gen. Tech. Rep. Pnw 2005, 635, 41. [Google Scholar]
- NB-DNRED. New Brunswick Landbase Polygon Inventory Shapefile and Stand Attributes (2018 Version); Accessed through digital communication with New Brunswick Department Natural Resources and Energy Development on 4 May 2018; New Brunswick Department Natural Resources and Energy Development (NB-DNRED): Fredericton, NB, Canada, 2018.
- NB-DNRED. New Brunswick Enhanced Forest Inventory Predictions for 2015 and 2014 LiDAR Acquisition Areas; Accessed through digital communication with New Brunswick Department Natural Resources and Energy Development on 4 May 2018; New Brunswick Department Natural Resources and Energy Development (NB-DNRED): Fredericton, NB, Canada, 2018.
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Majasalmi, T.; Rautiainen, M. The potential of Sentinel-2 data for estimating biophysical variables in a boreal forest: A simulation study. Remote Sens. Lett. 2016, 7, 427–436. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Clevers, J.; De Jong, S.; Epema, G.; Addink, E.; Van Der Meer, F.; Skidmore, A. Meris and the Red-Edge Index; Second EARSeL workshop on Imaging spectroscopy; EARSeL: Enschede, The Netherlands, 2000; pp. 1–16. [Google Scholar]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-ausing reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv. Space Res. 2007, 39, 100–104. [Google Scholar] [CrossRef]
- Guyot, G.; Baret, F. Utilisation de la haute resolution spectrale pour suivre l’etat des couverts vegetaux. In Spectral Signatures of Objects in Remote Sensing; 1988; p. 279. Available online: https://www.researchgate.net/publication/234432105_Utilisation_de_la_Haute_Resolution_Spectrale_pour_Suivre_L%27etat_des_Couverts_Vegetaux (accessed on 24 June 2020).
- Korhonen, L.; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Weiskittel, A.R.; Kneeshaw, D.; MacLean, D.A. Detection of annual spruce budworm defoliation and severity classification using Landsat imagery. Forests 2018, 9, 357. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties–A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Eitel, J.U.; Vierling, L.A.; Litvak, M.E.; Long, D.S.; Schulthess, U.; Ager, A.A.; Krofcheck, D.J.; Stoscheck, L. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland. Remote Sens. Environ. 2011, 115, 3640–3646. [Google Scholar] [CrossRef]
- Schumacher, P.; Mislimshoeva, B.; Brenning, A.; Zandler, H.; Brandt, M.; Samimi, C.; Koellner, T. Do red edge and texture attributes from high-resolution satellite data improve wood volume estimation in a semi-arid mountainous region? Remote Sens. 2016, 8, 540. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- McKenney, D.W.; Pedlar, J.H.; Papadopol, P.; Hutchinson, M.F. The development of 1901–2000 historical monthly climate models for Canada and the United States. Agric. For. Meteorol. 2006, 138, 69–81. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Ogilvie, J.; Arp, P. Topographic modelling of soil moisture conditions: A comparison and verification of two models. Eur. J. Soil Sci. 2009, 60, 94–109. [Google Scholar] [CrossRef]
- Böhner, J.; McCloy, K.R. SAGA-analysis and modelling applications. Collect. Göttinger Geogr. Abh. 2006, 115, 130. [Google Scholar]
- Goward, S.; Huang, C.; Zhao, F.; Schleeweis, K.; Rishmawi, K.; Lindsey, M.; Dungan, J.; Michaelis, A. NACP NAFD project: Forest disturbance history from Landsat, 1986–2010. ORNL DAAC 2016. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hermosilla, T.; Coops, N.C.; Hobart, G.W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 2017, 194, 303–321. [Google Scholar] [CrossRef]
- Bhattarai, R.; Rahimzadeh-Bajgiran, P.; Weiskittel, A.; MacLean, D. Sentinel-2 based prediction of spruce budworm defoliation using red-edge spectral vegetation indices. Remote Sens. Lett. 2020, 11, 777–786. [Google Scholar] [CrossRef]
- Hudak, A.T.; Lefsky, M.A.; Cohen, W.B.; Berterretche, M. Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sens. Environ. 2002, 82, 397–416. [Google Scholar] [CrossRef]
No | Band/Index * | Band info/ /Formulation | Reference |
---|---|---|---|
1 | b2 | Blue (490 nm) | ----------- |
2 | b3 | Green (560 nm) | |
3 | b4 | Red (665 nm) | |
4 | b5 | Vegetation Red-Edge (705 nm) | |
5 | b6 | Vegetation Red-Edge (740 nm) | |
6 | b7 | Vegetation Red-Edge (783 nm) | |
7 | b8a | Near Infrared (NIR) (865 nm) | |
8 | b11 | Shortwave Infrared (1610 nm) | |
9 | b12 | Shortwave Infrared (2190 nm) | |
10 | CLre | (b7/b5) − 1 | [31] |
11 | EVI7 | 2.5× (b7 − b4)/(b7 + 6 × b4 − 7.5 × b2 + 1) | [32] |
12 | EVI8 | 2.5× (b8a − b4)/(b8a + 6 × b4 − 7.5 × b2 + 1) | [33] |
13 | GNDVI | (b7 − b3)/(b7 + b3) | [34] |
14 | IRECI | (b7 − b4)/(b5/b6) | [35] |
15 | NDVI | (b8a − b4)/(b8a + b4) | [36] |
16 | NDVI45 | (b5 − b4)/(b5 + b4) | [25] |
17 | NDVI65 | (b6 − b5)/(b6 + b5) | [37] |
18 | MSR | ((b7/b4) − 1)/((b7/b4) + 1) 0.5 | [38] |
19 | MTCI | (b6 − b5)/(b5− b4) | [39] |
20 | S2REP | 705 + 35 × ((b4 + b7)/2 − b5)/(b6 − b5) | [40] |
21 | WDRVI | (0.01 × b7 − b5)/(0.01 × b7 + b5)+(1 − 0.01)/(1 + 0.01) | [32] |
Variables | Resolution | Reference/Data Provider | |
---|---|---|---|
Climate | Mean growing season temperature normals 1971–2000 Frost-free days normals 1971–2000 | 800 m | [47] |
Lithology and soil | Bedrock productivity index (BRI) derived from rock type observed regional effect on site Root growing space index (RGS) derived as a combination of maximum root depth and percent course fragment | resampled to 50 m | [2] |
Topography | Depth to water (DTW) predicted at 10 m resolution from DEM Slope in degrees | 20 m | [48] |
Response | Predictor Variables | OOB r2 | RMSE |
---|---|---|---|
Total volume/ha (TV) | Age, Species, Mgmt., BGI | 68.8% | 24.5 |
Age, Species, Mgmt., BGI, July Sentinel-2 (all variables) | 80.5% | 19.3 | |
Age, Species, Mgmt., BGI, September Sentinel-2 (all variables) | 79.9% | 19.7 | |
Age, Mgmt., BGI, July Sentinel-2 (all variables) | 78.7% | 20.2 | |
Age, Mgmt., BGI, July Sentinel-2 (b3, b8a, b11, S2REP, NDVI45) | 78.5% | 20.3 | |
Age, Mgmt., BGI, July Sentinel-2 (b3, b8a, S2REP) | 77.2% | 20.9 | |
All July Sentinel-2 bands and indices | 66.1% | 25.5 | |
July Sentinel-2 (b3, b8a, S2REP) | 57.9% | 28.4 |
Response | Predictor Variables | OOB r2 | RMSE |
---|---|---|---|
Height (HT) | Age, Species, Mgmt., BGI | 59.7% | 1.6 |
Age, Species, Mgmt., BGI, July Sentinel-2 (all variables) | 70.3% | 1.3 | |
Age, Species, Mgmt., BGI, September Sentinel-2 (all variables) | 70.1% | 1.3 | |
Age, Mgmt., BGI, July Sentinel-2 (all variables) | 67.4% | 1.4 | |
Age, Mgmt., BGI, July Sentinel-2 (b3, b8a, b11, S2REP, NDVI45) | 66.8% | 1.4 | |
Age, Mgmt., BGI, July Sentinel-2 (b3, b8a, S2REP) | 64.7% | 1.5 | |
All July Sentinel-2 bands and indices | 56.8% | 1.6 | |
July Sentinel-2 (b3, b8a, S2REP) | 45.0% | 1.8 |
Variable | Used in the Final Model | Description (also See [2]) |
---|---|---|
BM | Yes | Biomass > 9 cm DBH in trees that survive to the next measurement period |
HW | No | % hardwood composition by basal area |
QMD9 | Yes | Quadratic mean diameter (cm) > 9 cm DBH |
S2REP_GWR | Yes | S2REP smoothed with GWR |
Ffree | Yes | Frost-free days |
AvgTempGS | Yes | Average growing season temperature |
BRI | Yes | Bed rock fertility index |
PO | Yes | % Poplar spp. basal area |
Slope | Yes | % Slope |
b8a | No | NIR (no smoothing) |
Pi | Yes | % Pine basal area |
DWT | Yes | Depth to water table |
RGS | Yes | Root growing space (0–100 cm) |
Model Fit Statistics | |||||||
---|---|---|---|---|---|---|---|
Base Model | Base Model +S2REP | Base Model + S2REP + b8a | Base Model + S2REP + b8a+ HW | ||||
n | 7738 | n | 7738 | n | 7738 | n | 7738 |
MB | 1.08 | MB | 3.95 | MB | 2.59 | MB | 2.80 |
MAB | 673.62 | MAB | 663.01 | MAB | 657.80 | MAB | 653.42 |
RMSE | 862.62 | RMSE | 852.10 | RMSE | 845.60 | RMSE | 840.70 |
r2 | 46.6% | r2 | 47.9% | r2 | 48.7% | r2 | 49.3% |
Influential variables | |||||||
Variable | % MSE Incr. | Variable | % MSE Incr. | Variable | % MSE Incr. | Variable | % MSE Incr. |
BM | 63.49% | BM | 54.93% | BM | 58.89% | BM | 59.16% |
Ffree | 10.77% | S2REP_GWR | 10.59% | b8a | 9.11% | HW | 11.63% |
PO | 8.44% | QMD9 | 7.61% | QMD9 | 8.24% | QMD9 | 9.40% |
BRI | 8.39% | AvgTempGS | 7.59% | S2REP_GWR | 7.21% | S2REP_GWR | 5.97% |
QMD9 | 8.16% | PO | 7.25% | Ffree | 6.95% | Ffree | 5.31% |
AvgTempGS | 7.16% | Ffree | 6.92% | PO | 5.64% | AvgTempGS | 4.97% |
Slope | 6.87% | BRI | 5.49% | AvgTempGS | 5.15% | BRI | 4.66% |
DWT | 4.51% | Slope | 4.88% | BRI | 5.08% | PO | 3.98% |
RGS | 1.78% | DWT | 2.50% | Slope | 3.37% | Slope | 3.40% |
Pi | 1.04% | RGS | 1.92% | RGS | 1.54% | b8a | 3.20% |
Pi | 0.66% | DWT | 1.45% | Pi | 1.85% | ||
Pi | 1.02% | DWT | 1.54% | ||||
RGS | 0.95% |
Variable (Parameter) | Base BGI Model | iBGI Model | % Change | ||||||
---|---|---|---|---|---|---|---|---|---|
Coeff. | SE | T | p-Value | Coeff. | SE | T | p-Value | ||
Intercept (a0) | −4573 | 445 | −10.278 | 0.000 | −272,737 | 13201 | −20.661 | 0.000 | - |
Ffree (a1) | 18.71 | 1.28 | 14.612 | 0.000 | 14.75 | 1.21 | 12.240 | 0.000 | 79% |
AveTempGS (a2) | 273.13 | 35.54 | 7.684 | 0.000 | 392.59 | 34.96 | 11.230 | 0.000 | 144% |
DCFI (a3) | 296.41 | 38.39 | 7.721 | 0.000 | 245.70 | 36.48 | 6.736 | 0.000 | 83% |
BRFI (a4) | 1234.1 | 72.25 | 17.082 | 0.000 | 921.52 | 67.80 | 13.593 | 0.000 | 75% |
DWT(a5) | 87.72 | 8.55 | 10.264 | 0.000 | 59.25 | 8.04 | 7.368 | 0.000 | 68% |
Slope (a6) | 729.58 | 150.30 | 4.854 | 0.000 | 636.70 | 134.62 | 4.730 | 0.000 | 87% |
Slope (s0) | 0.76 | 0.17 | 4.435 | 0.000 | 0.78 | 0.19 | 4.111 | 0.000 | 103% |
Slope (s1) | 0.16 | 0.04 | 4.237 | 0.000 | 0.18 | 0.05 | 3.946 | 0.000 | 110% |
PO (a7) | 18.18 | 1.07 | 16.988 | 0.000 | 9.05 | 1.02 | 8.838 | 0.000 | 50% |
Pi (a8) | 7.56 | 1.06 | 7.123 | 0.000 | 16.86 | 1.02 | 16.607 | 0.000 | 223% |
Biomass (b0) | 0.01 | 0.00 | 11.029 | 0.000 | 0.01 | 0.00 | 11.946 | 0.000 | 83% |
QMD (c0) | −0.01 | 0.05 | −0.244 | 0.807 | −0.11 | 0.06 | −1.839 | 0.066 | 846% |
QMD (c1) | 0.05 | 0.01 | 8.902 | 0.000 | 0.05 | 0.01 | 9.580 | 0.000 | 111% |
S2REP (a9) | - | - | - | - | 369.85 | 18.13 | 20.405 | 0.000 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimzadeh-Bajgiran, P.; Hennigar, C.; Weiskittel, A.; Lamb, S. Forest Potential Productivity Mapping by Linking Remote-Sensing-Derived Metrics to Site Variables. Remote Sens. 2020, 12, 2056. https://doi.org/10.3390/rs12122056
Rahimzadeh-Bajgiran P, Hennigar C, Weiskittel A, Lamb S. Forest Potential Productivity Mapping by Linking Remote-Sensing-Derived Metrics to Site Variables. Remote Sensing. 2020; 12(12):2056. https://doi.org/10.3390/rs12122056
Chicago/Turabian StyleRahimzadeh-Bajgiran, Parinaz, Chris Hennigar, Aaron Weiskittel, and Sean Lamb. 2020. "Forest Potential Productivity Mapping by Linking Remote-Sensing-Derived Metrics to Site Variables" Remote Sensing 12, no. 12: 2056. https://doi.org/10.3390/rs12122056
APA StyleRahimzadeh-Bajgiran, P., Hennigar, C., Weiskittel, A., & Lamb, S. (2020). Forest Potential Productivity Mapping by Linking Remote-Sensing-Derived Metrics to Site Variables. Remote Sensing, 12(12), 2056. https://doi.org/10.3390/rs12122056