Long-Term Trends in Root-Zone Soil Moisture across CONUS Connected to ENSO
Abstract
:1. Introduction
2. Dataset Description
2.1. Root Zone Soil Moisture (RZSM)
2.2. Normalized Difference Vegetation Index (NDVI)
2.3. ENSO, PDO, and AMO Indices
3. Methods
3.1. Trend Analysis
3.2. Wavelet Transform Analysis
4. Results
4.1. Trend Analysis
4.1.1. Winter (DJF)
4.1.2. Spring (MAM)
4.1.3. Summer (JJA)
4.1.4. Fall (SON)
4.2. Wavelet Transform Analysis
5. Discussion
6. Conclusions
- (1)
- Long-term trends across CONUS between 1992 and 2018 RZSM favor drying over wetting and were particularly strong during JJA in which 75% of CONUS exhibited a drying trend; in 22% of pixels were significant (Table 2).
- (2)
- These trends cannot be clearly connected to climate change and instead have a more obvious link to oceanic-atmospheric teleconnections connected to ENSO (Table 3; Figure 9). In particular, amplification of ENSO by cool PDO and warm AMO can explain in part the pronounced drying noted during the early 21st century, particularly in central CONUS (Figure 10c,d). This is particularly evident during the 2011–2013 La Nina, which was amplified by in-phase cool PDO and warm AMO conditions.
- (3)
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Chen, F.; Crow, W.T.; Cosh, M.H.; Colliander, A.; Asanuma, J.; Berg, A.; Bosch, D.D.; Caldwell, T.G.; Collins, C.H.; Jensen, K.H.; et al. Uncertainty of Reference Pixel Soil Moisture Averages Sampled at SMAP Core Validation Sites. J. Hydrometeorol. 2019, 20, 1553–1569. [Google Scholar] [CrossRef]
- Tabatabaeenejad, A.; Burgin, M.; Duan, X.; Moghaddam, M. P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second-Order Polynomial: First AirMOSS Results. IEEE Trans. Geosci. Remote Sens. 2015, 53, 645–658. [Google Scholar] [CrossRef]
- Bolten, J.; Crow, W. Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture. Geophys. Res. Lett. 2012, 39, L19406. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; De Lannoy, G.J.; Liu, Q.; Koster, R.D.; Kimball, J.S.; Crow, W.T.; Ardizzone, J.V.; Chakraborty, P.; Collins, D.W.; Conaty, A.L.; et al. Global assessment of the SMAP Level-4 surface and root-zone soil moisture product using assimilation diagnostics. J. Hydrometeorol. 2017, 18, 3217–3237. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Wild, M.; Grieser, J.; Schaer, C. Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys. Res. Lett. 2008, 35, L17706. [Google Scholar] [CrossRef]
- Kuenzer, C.; Zhao, D.; Scipal, K.; Sabel, D.; Naeimi, V.; Bartalis, Z.; Hasenauer, S.; Mehl, H.; Dech, S.; Wagner, W. El Nino southern oscillation influences represented in ERS scatterometer-derived soil moisture data. Appl. Geogr. 2009, 29, 463–477. [Google Scholar] [CrossRef]
- Svoma, B.M.; Balling, R.C., Jr.; Ellis, A.W. Analysis of soil moisture trends in the Salt River watershed of central Arizona. Theor. Appl. Climatol. 2010, 102, 159–169. [Google Scholar] [CrossRef]
- Tang, C.; Piechota, T.C.; Chen, D. Relationships between oceanic-atmospheric patterns and soil moisture in the Upper Colorado River Basin. J. Hydrol. 2011, 411, 77–90. [Google Scholar] [CrossRef]
- Tang, C.; Chen, D.; Crosby, B.T.; Piechota, T.C.; Wheaton, J.M. Is the PDO or AMO the climate driver of soil moisture in the Salmon River Basin, Idaho? Glob. Planet. Chang. 2014, 120, 16–23. [Google Scholar] [CrossRef]
- Poveda, G.; Jaramillo, A.; Gil, M.M.; Quiceno, N.; Mantilla, R.I. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res. 2002, 37, 2169–2178. [Google Scholar] [CrossRef]
- Niu, J.; Chen, J.; Sivakumar, B. Teleconnection analysis of runoff and soil moisture over the Pearl River basin in southern China. Hydrol. Earth Syst. Sci. 2014, 18, 1475–1492. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Loew, A.; Crueger, T. The relationship between the Madden-Julian oscillation and the land surface soil moisture. Remote Sens. Environ. 2017, 203, 226–239. [Google Scholar] [CrossRef]
- Tobin, K.J.; Crow, W.T.; Dong, J.; Bennett, M.E. Validation of a new soil moisture product Soil MERGE or SMERGE. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3351–3365. [Google Scholar] [CrossRef]
- Cosgrove, B.A.; Lohmann, D.; Mitchell, K.E.; Houser, P.R.; Wood, E.F.; Schaake, J.C.; Robock, A.; Marshall, C.; Sheffield, J.; Duan, Q.Y.; et al. Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res. Atmos. 2003, 108, 8842. [Google Scholar] [CrossRef] [Green Version]
- Crow, W.T.; Su, C.-H.; Ryu, D.; Yilmaz, M.T. Optimal averaging of soil moisture predications from ensemble land surface model simulations. Water Resour. Res. 2015, 51, 9273–9289. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; Van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Albergel, C.; Rüdiger, C.; Pellarin, T.; Calvet, J.C.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Piguet, B.; Martin, E. From near-surface to root-zone soil moisture using an exponential filter: An assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci. 2008, 12, 1323–1337. [Google Scholar] [CrossRef] [Green Version]
- Pinzon, J.E.; Tucker, C.J. A Non-Stationary 1981-2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Hare, S.R.; Mantua, N.J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 2000, 47, 103–145. [Google Scholar] [CrossRef]
- Schwing, F.B.; Moore, C.S.; Ralston, S.; Sakuma, K.M. Record coastal upwelling in the California Current in 1999. Calif. Coop. Fish. Investig. Rep. 2000, 41, 148–160. [Google Scholar]
- Enfield, D.B.; Mestas-Nunez, A.M.; Trimble, P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975; 202p. [Google Scholar]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of precipitation and drought data in Serbia over the period 1980-2010. J. Hydrol. 2013, 494, 32–42. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef] [Green Version]
- Sagarika, S.; Kalra, A.; Ahmad, S. Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. J. Hydrol. 2014, 517, 36–53. [Google Scholar] [CrossRef]
- Mishra, V.; Cherkauer, K.A.; Shukla, S. Assessment of drought due to historic climate variability and projected future climate change in the Midwestern United States. J. Hydrometeorol. 2010, 11, 46–68. [Google Scholar] [CrossRef] [Green Version]
- Cammalleri, C.; Micale, F.; Vogt, J. Recent temporal trend in modelled soil water deficit over Europe driven by meteorological observations. Int. J. Climatol. 2016, 36, 4903–4912. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.M.; Weng, H. Climate signal detection using wavelet transform: How to make a time series sing. Bull. Am. Meteorol. Soc. 1995, 76, 2391–2402. [Google Scholar] [CrossRef] [Green Version]
- Kuss, A.J.M.; Gurdak, J.J. Groundwater level response in US principal aquifers to ENSO, NAO, PDO, and AMO. J. Hydrol. 2014, 519, 1939–1952. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information: National Trends. Available online: https://www.ncdc.noaa.gov/temp-and-precip/us-trends/tavg/ann (accessed on 12 March 2020).
- Zhang, X.; Zwiers, F.W.; Hegerl, G.C.; Lambert, F.H.; Gillett, N.P.; Solomon, S.; Stott, P.A.; Nozawa, T. Detection of human influence on twentieth-century precipitation trends. Nature 2007, 419, 224–232. [Google Scholar] [CrossRef]
- Dolman, A.J.; De Jeu, R.A.M. Evaporation in focus. Nat. Geosci. 2010, 3, 296. [Google Scholar] [CrossRef]
- Durack, P.J.; Wiljffels, S.E.; Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.; Chiang, J.C.H.; Lan, C.W.; Chung, C.H.; Liao, Y.C.; Lee, C.J. Increase in the range between wet and dry season precipitation. Nat. Geosci. 2013, 6, 263–267. [Google Scholar] [CrossRef]
- Yeh, P.J.F.; Wu, C.H. Recent acceleration of the terrestrial hydrologic cycle in the US Midwest. J. Geophys. Res. Atmos. 2018, 123, 2993–3008. [Google Scholar] [CrossRef]
- Fischer, E.M.; Seneviratne, S.I.; Vidale, P.L.; Luethi, D.; Schaer, C. Soil moisture—Atmosphere interactions during the 2003 European summer heat wave. J. Clim. 2007, 20, 5081–5099. [Google Scholar] [CrossRef]
- Peterson, T.C.; Stott, P.A.; Herring, S.; Zwiers, F.W.; Hegerl, G.C.; Min, S.-K.; Zhang, X.; van Oldenborgh, G.J.; van Urk, A.; Allen, M.; et al. Explaining Extreme events of 2011 from a climate perspective. Bull. Am. Meteorol. Soc. 2012, 93, 1041–1067. [Google Scholar] [CrossRef] [Green Version]
- Whan, K.; Zscheischler, J.; Orth, R.; Shongwe, M.; Rahimi, M.; Asare, E.; Seneviratne, S. Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim. Extrem. 2015, 9, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Kiladis, G.N.; Diaz, H.F. Global climatic anomalies associated with extremes in the Southern Oscillation. J. Clim. 1989, 2, 1069–1090. [Google Scholar] [CrossRef] [Green Version]
- Gershunov, A.; Barnett, T.P. Interdecadal modulation of ENSO teleconnections. Bull. Am. Meteorol. Soc. 1998, 79, 2715–2725. [Google Scholar] [CrossRef] [Green Version]
- McCabe, G.J.; Dettinger, M.D. Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol. 1999, 19, 1399–1410. [Google Scholar] [CrossRef]
- Smith, S.R.; Legler, D.M.; Remigio, M.J.; O’Brien, J.J. Comparison of 1997-98 US temperature and precipitation anomalies to historical ENSO warm phases. J. Clim. 1999, 12, 3507–3515. [Google Scholar] [CrossRef]
- Castro, C.L.; McKee, T.B.; Pielke, R.A. The relationship of the North American monsoon to tropical and North Pacific Sea surface temperatures as revealed by observational analyses. J. Clim. 2001, 14, 4449–4473. [Google Scholar] [CrossRef]
- Patricola, C.; Chang, P.; Saravanan, R. Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Nino. Nat. Geosci. 2016, 9, 155–160. [Google Scholar] [CrossRef]
- Mo, K.C.; Schemm, Y.-K.E.; Yoo, S.-H. Influence of ENSO and the Atlantic Multidecadal Oscillation on Drought over the United States. J. Clim. 2009, 22, 5962–5982. [Google Scholar] [CrossRef] [Green Version]
- Higgins, R.W.; Schemm, J.K.E.; Shi, W.; Leetmaa, A. Extreme precipitation events in the western United States related to tropical forcing. J. Clim. 2000, 13, 793–820. [Google Scholar] [CrossRef]
- Cavazos, T.; Rivas, D. Variability of extreme precipitation events in Tijuana, Mexico. Clim. Res. 2004, 25, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Mantua, N.J.; Hare, S.R. The Pacific decadal oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
Year | DJF | MAM | JJA | SON |
---|---|---|---|---|
1991 | N–C | N–C | E–C | E–N |
1992 | E–N | E–W | N–W | N–W |
1993 1994 | N–N | N–W | N–W | N–W |
1994 | N–W | N–N | N–C | E–C |
1995 | E–C | N–N | N–N | L–N |
1996 | L–W | N–W | N–N | N–N |
1997 1998 | N–N | N–W | E–W | E–W |
1998 | E–W | E–N | L–C | L–C |
1999 | L–C | L–C | L–C | L–C |
2000 | L–C | L–C | L–C | L–C |
2001 | L–N | N–C | N–C | N–C |
2002 | N–C | N–C | E–C | E–N |
2003 | E–W | N–N | N–N | N–N |
2004 | N–N | N–N | E–N | E–N |
2005 | E–N | N–W | N–N | N–C |
2006 | L–N | N–C | N–N | E–C |
2007 | E–C | N–C | L–N | L–C |
2008 | L–C | L–C | N–N | N–N |
2009 | L–C | N–C | E–C | E–N |
2010 | E–N | N–N | L–C | L–C |
2011 | L–C | L–C | L–C | L–C |
2012 | L–C | N–C | N–C | N–C |
2013 | N–C | N–C | N–C | N–C |
2014 | N–C | N–W | N–N | N–W |
2015 | E–W | E–W | E–W | E–W |
2016 | E–W | E–W | N–N | L–N |
2017 | N–N | N–N | N–N | L–N |
2018 | L–N | N–C | N–N | E–C |
Product | Overall CONUS | Sign. CONUS | Overall El Nino | Sign. El Nino | Overall La Nina | Sign. La Nina | Overall Neutral | Sign. Neutral |
---|---|---|---|---|---|---|---|---|
SMERGE 2.0 RZSM | ||||||||
DJF | 40.1/59.9 | 3.5/10.5 | 50.8/49.2 | 10.2/7.9 | 56.3/43.7 | 7.5/2.5 | 47.8/52.2 | 3.1/3.7 |
MAM | 43.6/56.4 | 9.5/14.3 | --- | --- | --- | --- | 47.8/52.2 | 8.8/9.4 |
JJA | 25.1/74.9 | 5.0/21.5 | 34.4/65.6 | 1.2/2.0 | 30.5/69.5 | 1.2/7.1 | 32.5/67.5 | 5.6/16.9 |
SON | 41.1/58.9 | 5.7/11.3 | 40.7/59.3 | 3.1/7.8 | 54.8/45.2 | 3.0/2.7 | 42.5/57.5 | 3.7/6.9 |
AVHRR NDVI (No Lag) | ||||||||
DJF | 42.2/57.8 | 9.6/18.4 | ||||||
MAM | 33.2/66.8 | 6.4/25.6 | ||||||
JJA | 45.2/54.8 | 16.0/21.1 | ||||||
SON | 49.3/50.7 | 21.0/16.2 | ||||||
AVHRR NDVI (+1 month lag) | ||||||||
JFM | 40.2/59.8 | 8.8/22.8 | ||||||
AMJ | 42.7/57.3 | 11.6/20.1 | ||||||
JAS | 37.6/62.4 | 11.8/25.9 | ||||||
OND | 49.0/51.0 | 17.7/16.2 |
Cyclicity (Years) | Southwest (n=25) | Great Plains (n = 13) | Southeast (n = 25) |
---|---|---|---|
2 | 2005–2010 | --- | 2006–2010, 2017 |
3 | 2007–2012 | --- | 2007–2008, 2010 |
4 | 1994–1998 | --- | 1994–2000 |
5 | 1995, 1997–2000 | 2014–2015 | 1995–2002 |
6 | 2010–2015 | 1995–1996, 1998, 2010–2015 | 1995–2001 |
7 | 1997–1998, 2000–2003, 2011–2014 | --- | 1996–2000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobin, K.J.; Torres, R.; Bennett, M.E.; Dong, J.; Crow, W.T. Long-Term Trends in Root-Zone Soil Moisture across CONUS Connected to ENSO. Remote Sens. 2020, 12, 2037. https://doi.org/10.3390/rs12122037
Tobin KJ, Torres R, Bennett ME, Dong J, Crow WT. Long-Term Trends in Root-Zone Soil Moisture across CONUS Connected to ENSO. Remote Sensing. 2020; 12(12):2037. https://doi.org/10.3390/rs12122037
Chicago/Turabian StyleTobin, Kenneth J., Roberto Torres, Marvin E. Bennett, Jianzhi Dong, and Wade T. Crow. 2020. "Long-Term Trends in Root-Zone Soil Moisture across CONUS Connected to ENSO" Remote Sensing 12, no. 12: 2037. https://doi.org/10.3390/rs12122037
APA StyleTobin, K. J., Torres, R., Bennett, M. E., Dong, J., & Crow, W. T. (2020). Long-Term Trends in Root-Zone Soil Moisture across CONUS Connected to ENSO. Remote Sensing, 12(12), 2037. https://doi.org/10.3390/rs12122037