Landsat-Based Indices Reveal Consistent Recovery of Forested Stream Catchments from Acid Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Field Data
2.3. Landsat Data and Annual Trajectories
2.4. Data Analysis
3. Results
3.1. Long-Term Trends in Measured Sulfur Deposition and Stream Water Dissolved Inorganic Nitrogen Export
3.2. Long-Term Trends in Remote Sensing Indicators
4. Discussion
4.1. Acidification Retreat across GEOMON Stream Catchments
4.2. Landsat Data Suitability
4.3. Trends in Remote Sensing Indicators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20180321-1 (accessed on 3 January 2020).
- Barredo, J.I.; Bastrup-Birk, A.; Teller, A.; Onaindia, M.; Fernández De Manuel, B.; Madariaga, I.; Rodríguez-Loinaz, G.; Pinho, P.; Nunes, A.; Ramos, A.; et al. Mapping and Assessment of Forest Ecosystems and their Services–Applications and Guidance for Decision Making in the Framework of MAES; Publications Office of the European Union: Brussels, Belgium, 2015. [Google Scholar]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef] [Green Version]
- Jansen, S.; Konrad, H.; Geburek, T. The extent of historic translocation of Norway spruce forest reproductive material in Europe. Ann. For. Sci. 2017, 74, 56. [Google Scholar] [CrossRef]
- Hlásny, T.; Turčáni, M. Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Ann. For. Sci. 2013, 70, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Mezei, P.; Grodzki, W.; Blaženec, M.; Jakuš, R. Factors influencing the wind–bark beetles’ disturbance system in the course of an Ips typographus outbreak in the Tatra Mountains. For. Ecol. Manag. 2014, 312, 67–77. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Nabuurs, G.-J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Rydval, M.; Wilson, R. The Impact of Industrial SO2 Pollution on North Bohemia Conifers. Water Air Soil Pollut. 2012, 223, 5727–5744. [Google Scholar] [CrossRef]
- Stoddard, J.L.; Jeffries, D.S.; Lukewille, A.; Clair, T.A.; Dillon, P.J.; Driscoll, C.T.; Forsius, M.; Johannessen, M.; Kahl, J.S.; Kellogg, J.H.; et al. Regional trends in aquatic recovery from acidification in North America and Europe. Nature 1999, 401, 4. [Google Scholar] [CrossRef]
- Vestreng, V.; Myhre, G.; Fagerli, H.; Reis, S.; Tarrasón, L. Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos. Chem. Phys. 2007, 7, 3663–3681. [Google Scholar] [CrossRef] [Green Version]
- Cienciala, E.; Altman, J.; Doležal, J.; Kopáček, J.; Štěpánek, P.; Ståhl, G.; Tumajer, J. Increased spruce tree growth in Central Europe since 1960s. Sci. Total Environ. 2018, 619–620, 1637–1647. [Google Scholar] [CrossRef]
- Hruška, J.; Cienciala, E. Long-term acidification and nutrition degradation of forest soils—A limiting factor of the present forestry. Czech Geol. Surv. 2005. [Google Scholar]
- Kolář, T.; Čermák, P.; Oulehle, F.; Trnka, M.; Štěpánek, P.; Cudlín, P.; Hruška, J.; Büntgen, U.; Rybníček, M. Pollution control enhanced spruce growth in the “Black Triangle” near the Czech–Polish border. Sci. Total Environ. 2015, 538, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Santrůcková, H.; Santrůcek, J.; Setlík, J.; Svoboda, M.; Kopácek, J. Carbon isotopes in tree rings of Norway spruce exposed to atmospheric pollution. Environ. Sci. Technol. 2007, 41, 5778–5782. [Google Scholar] [CrossRef] [PubMed]
- Grubler, A. Trends in global emissions: Carbon, sulfur, and nitrogen. In Encyclopedia of Global Environmental Change; Munn, T., Ed.; Causes and Consequences of Global Environmental Change; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2001; Volume 3, ISBN 978-0-471-97796-4. [Google Scholar]
- Kopáček, J.; Posch, M.; Hejzlar, J.; Oulehle, F.; Volková, A. An elevation-based regional model for interpolating sulphur and nitrogen deposition. Atmos. Environ. 2012, 50, 287–296. [Google Scholar] [CrossRef]
- Oulehle, F.; Kopáček, J.; Chuman, T.; Černohous, V.; Hůnová, I.; Hruška, J.; Krám, P.; Lachmanová, Z.; Navrátil, T.; Štěpánek, P.; et al. Predicting sulphur and nitrogen deposition using a simple statistical method. Atmos. Environ. 2016, 140, 456–468. [Google Scholar] [CrossRef] [Green Version]
- Oulehle, F.; Chuman, T.; Hruška, J.; Krám, P.; McDowell, W.H.; Myška, O.; Navrátil, T.; Tesař, M. Recovery from acidification alters concentrations and fluxes of solutes from Czech catchments. Biogeochemistry 2017, 132, 251–272. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Fottová, D.; Skořepová, I. Changes in Mass Element Fluxes and their Importance for Critical Loads: Geomon Network, Czech Republic. Waterairsoil Pollut. 1998, 105, 365–376. [Google Scholar] [CrossRef]
- Krám, P.; Hruška, J.; Shanley, J.B. Streamwater chemistry in three contrasting monolithologic Czech catchments. Appl. Geochem. 2012, 27, 1854–1863. [Google Scholar] [CrossRef]
- Navrátil, T.; Kurz, D.; Krám, P.; Hofmeister, J.; Hruška, J. Acidification and recovery of soil at a heavily impacted forest catchment (Lysina, Czech Republic)—SAFE modeling and field results. Ecol. Model. 2007, 205, 464–474. [Google Scholar] [CrossRef]
- Oulehle, F.; McDowell, W.H.; Aitkenhead-Peterson, J.A.; Krám, P.; Hruška, J.; Navrátil, T.; Buzek, F.; Fottová, D. Long-Term Trends in Stream Nitrate Concentrations and Losses Across Watersheds Undergoing Recovery from Acidification in the Czech Republic. Ecosystems 2008, 11, 410–425. [Google Scholar] [CrossRef]
- Hruška, J.; Krám, P.; McDowell, W.H.; Oulehle, F. Increased Dissolved Organic Carbon (DOC) in Central European Streams is Driven by Reductions in Ionic Strength Rather than Climate Change or Decreasing Acidity. Environ. Sci. Technol. 2009, 43, 4320–4326. [Google Scholar] [CrossRef]
- Lamacova, A.; Hruska, J.; Kram, P.; Stuchlik, E.; Farda, A.; Chuman, T.; Fottova, D. Runoff Trends Analysis and Future Projections of Hydrological Patterns in Small Forested Catchments. Soil Water Res. 2014, 9, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote Sensing -Part I—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef] [Green Version]
- Pause, M.; Schweitzer, C.; Rosenthal, M.; Keuck, V.; Bumberger, J.; Dietrich, P.; Heurich, M.; Jung, A.; Lausch, A. In Situ/Remote Sensing Integration to Assess Forest Health—A Review. Remote Sens. 2016, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote Sensing-Part II—A Review of Approaches and Data Models. Remote Sens. 2017, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review ArticleDigital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Eshleman, K.N.; McNeil, B.E.; Townsend, P.A. Validation of a remote sensing based index of forest disturbance using streamwater nitrogen data. Ecol. Indic. 2009, 9, 476–484. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Baumann, M.; Radeloff, V.C.; Abrudan, I.V.; Lieskovsky, J.; Munteanu, C.; Ostapowicz, K.; Hostert, P. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens. Environ. 2014, 151, 72–88. [Google Scholar] [CrossRef]
- Cohen, W.B.; Goward, S.N. Landsat’s Role in Ecological Applications of Remote Sensing. BioScience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, E.A.; Wallace, J.F.; Caccetta, P.A.; Furby, S.L.; Zdunic, K. Forest cover trends from time series Landsat data for the Australian continent. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 453–462. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hermosilla, T.; Coops, N.C.; Hobart, G.W. A nationwide annual characterization of 25years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 2017, 194, 303–321. [Google Scholar] [CrossRef]
- Potapov, P.V.; Turubanova, S.A.; Tyukavina, A.; Krylov, A.M.; McCarty, J.L.; Radeloff, V.C.; Hansen, M.C. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens. Environ. 2015, 159, 28–43. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Pickell, P.D.; Hermosilla, T.; Frazier, R.J.; Coops, N.C.; Wulder, M.A. Forest recovery trends derived from Landsat time series for North American boreal forests. Int. J. Remote Sens. 2016, 37, 138–149. [Google Scholar] [CrossRef]
- Liang, L.; Hawbaker, T.J.; Zhu, Z.; Li, X.; Gong, P. Forest disturbance interactions and successional pathways in the Southern Rocky Mountains. For. Ecol. Manag. 2016, 375, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Senf, C.; Pflugmacher, D.; Wulder, M.A.; Hostert, P. Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 2015, 170, 166–177. [Google Scholar] [CrossRef]
- Oeser, J.; Pflugmacher, D.; Senf, C.; Heurich, M.; Hostert, P. Using Intra-Annual Landsat Time Series for Attributing Forest Disturbance Agents in Central Europe. Forests 2017, 8, 251. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Hostert, P.; Seidl, R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. 2017, 130, 453–463. [Google Scholar] [CrossRef]
- Kupková, L.; Potůčková, M.; Lhotáková, Z.; Albrechtová, J. Forest cover and disturbance changes, and their driving forces: A case study in the Ore Mountains, Czechia, heavily affected by anthropogenic acidic pollution in the second half of the 20th century. Environ. Res. Lett. 2018, 13, 095008. [Google Scholar] [CrossRef]
- Healey, S.; Cohen, W.; Zhiqiang, Y.; Krankina, O. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Deel, L.N.; McNeil, B.E.; Curtis, P.G.; Serbin, S.P.; Singh, A.; Eshleman, K.N.; Townsend, P.A. Relationship of a Landsat cumulative disturbance index to canopy nitrogen and forest structure. Remote Sens. Environ. 2012, 118, 40–49. [Google Scholar] [CrossRef]
- Krám, P.; Oulehle, F.; Štědrá, V.; Hruška, J.; Shanley, J.B.; Minocha, R.; Traister, E. Geoecology of a Forest Watershed Underlain by Serpentine in Central Europe. Northeast. Nat. 2009, 16, 309–328. [Google Scholar] [CrossRef]
- Vávrová, E.; Cudlín, O.; Vavříček, D.; Cudlín, P. Ground vegetation dynamics in mountain spruce (Picea abies (L.) Karsten) forests recovering after air pollution stress impact. Plant Ecol. 2009, 205, 305–321. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Goward, S.; Arvidson, T.; Williams, D.; Faundeen, J.; Irons, J.; Franks, S. Historical Record of Landsat Global Coverage: Mission Operations, NSLRSDA, and International Cooperator Stations. Photogramm. Eng. 2006, 15. [Google Scholar]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the 3rd ERTS Symposium, Washington, DC, USA, 10–14 December 1973; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 3 June 2020).
- Ye, W.; Li, X.; Chen, X.; Zhang, G. A Spectral index for Highlighting Forest cover from Remotely Sensed Imagery; Jackson, T.J., Chen, J.M., Gong, P., Liang, S., Eds.; SPIE Asia-Pacific Remote Sensing: Beijing, China, 2014; p. 92601L. [Google Scholar]
- Mišurec, J.; Kopačková, V.; Lhotáková, Z.; Campbell, P.; Albrechtová, J. Detection of Spatio-Temporal Changes of Norway Spruce Forest Stands in Ore Mountains Using Landsat Time Series and Airborne Hyperspectral Imagery. Remote Sens. 2016, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, A.M.; Emmer, I.M.; Fanta, J.; Sevink, J. Natural regeneration potential of the degraded Krkonoše forests. Land Degrad. Dev. 2000, 11, 459–473. [Google Scholar] [CrossRef]
- Vacek, S.; Hůnová, I.; Vacek, Z.; Hejcmanová, P.; Podrázský, V.; Král, J.; Putalová, T.; Moser, W.K. Effects of air pollution and climatic factors on Norway spruce forests in the Orlické hory Mts. (Czech Republic), 1979–2014. Eur. J. For. Res. 2015, 134, 1127–1142. [Google Scholar] [CrossRef]
- Ponocná, T.; Chuman, T.; Rydval, M.; Urban, G.; Migaɬa, K.; Treml, V. Deviations of treeline Norway spruce radial growth from summer temperatures in East-Central Europe. Agric. For. Meteorol. 2018, 253–254, 62–70. [Google Scholar] [CrossRef]
- Treml, V.; Ponocná, T.; Büntgen, U. Growth trends and temperature responses of treeline Norway spruce in the Czech-Polish Sudetes Mountains. Clim. Res. 2012, 55, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Lin, Y.; Shang, R.; Zhang, J.; Ma, L.; Zhu, Z. Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data. Remote Sens. 2019, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat Surface Reflectance Dataset for North America, 1990 2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Cowles, T.R.; McNeil, B.E.; Eshleman, K.N.; Deel, L.N.; Townsend, P.A. Does the spatial arrangement of disturbance within forested watersheds affect loadings of nitrogen to stream waters? A test using Landsat and synoptic stream water data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 80–87. [Google Scholar] [CrossRef]
- Zahradník, P.; Zahradníková, M. Salvage felling in the Czech Republic‘s forests during the last twenty years. Cent. Eur. For. J. 2019, 65, 12–20. [Google Scholar] [CrossRef]
- Tahovská, K.; Kaňa, J.; Bárta, J.; Oulehle, F.; Richter, A.; Šantrůčková, H. Microbial N immobilization is of great importance in acidified mountain spruce forest soils. Soil Biol. Biochem. 2013, 59, 58–71. [Google Scholar] [CrossRef]
- Altman, J.; Fibich, P.; Santruckova, H.; Dolezal, J.; Stepanek, P.; Kopacek, J.; Hunova, I.; Oulehle, F.; Tumajer, J.; Cienciala, E. Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Sci. Total Environ. 2017, 609, 506–516. [Google Scholar] [CrossRef]
Code | Catchment Name | Area (ha) | Elevation (m a.s.l.) | Mean Temp. (°C) | Mean Precip. (mm) | Bedrock Type | Forest Age | No. of Images |
---|---|---|---|---|---|---|---|---|
ANE | Anenský potok | 27 | 480–540 | 8.0 | 673 | Gneiss | 40–60 | 336 |
CER | Červík | 185 | 640–890 | 6.0 | 1212 | Sandstone, Claystone | 40–60 | 213 |
JEZ | Jezeří | 261 | 475–925 | 6.0 | 815 | Gneiss | 60–80 | 168 |
LES | Lesní potok | 70 | 400–500 | 8.0 | 615 | Granite | 40–60 | 259 |
LIZ | Liz | 99 | 830–1025 | 5.5 | 892 | Gneiss | 60–100 | 180 |
LKV | Loukov | 66 | 470–660 | 7.5 | 754 | Granite | 40–80 | 261 |
LYS | Lysina | 27 | 830–950 | 5.0 | 1005 | Granite | 40–60 | 192 |
MOD | Modrý potok | 262 | 1010–1550 | 3.0 | 1727 | Phyllite, Mica schist | 100–120 | 69 |
PLB | Pluhův bor | 22 | 690–800 | 6.0 | 861 | Serpentinite | 60–100 | 228 |
POM | Polomka | 69 | 510–640 | 7.0 | 697 | Gneiss | 60–80 | 231 |
SAL | Salačova Lhota | 168 | 560–745 | 7.0 | 675 | Gneiss | 60–80 | 206 |
UDL | U dvou louček | 33 | 880–950 | 5.0 | 1502 | Gneiss | 20–40 | 246 |
UHL | Uhlířská | 187 | 780–870 | 5.5 | 1250 | Granite, Granodiorite | 20–40 | 183 |
Vegetation Index | Equation | Reference |
---|---|---|
DI – Disturbance index | see eq. 1–4 | Healey et al. [45] |
EVI – Enhanced vegetation index | 2.5*[(NIR-R)/(NIR+6*R-7.5*B+1)] | Liu and Huete [51] |
NDVI – Normalized difference vegetation index | (NIR-R)/(NIR+R) | Rouse J. W. et al. [52] |
PSRI – Plant senescence reflectance index | (R-G)/NIR | Merzlyak et al. [53] |
TCARI – Transformed chlorophyll absorption reflectance index | 3*[(NIR-R)-0.2(NIR-G)*(NIR/R)] | Haboudane et al. [54] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Švik, M.; Oulehle, F.; Krám, P.; Janoutová, R.; Tajovská, K.; Homolová, L. Landsat-Based Indices Reveal Consistent Recovery of Forested Stream Catchments from Acid Deposition. Remote Sens. 2020, 12, 1944. https://doi.org/10.3390/rs12121944
Švik M, Oulehle F, Krám P, Janoutová R, Tajovská K, Homolová L. Landsat-Based Indices Reveal Consistent Recovery of Forested Stream Catchments from Acid Deposition. Remote Sensing. 2020; 12(12):1944. https://doi.org/10.3390/rs12121944
Chicago/Turabian StyleŠvik, Marian, Filip Oulehle, Pavel Krám, Růžena Janoutová, Kateřina Tajovská, and Lucie Homolová. 2020. "Landsat-Based Indices Reveal Consistent Recovery of Forested Stream Catchments from Acid Deposition" Remote Sensing 12, no. 12: 1944. https://doi.org/10.3390/rs12121944