The Socio-Economic and Environmental Variables Associated with Hotspots of Infrastructure Expansion in South America
Abstract
:1. Introduction
2. Methods
2.1. Infrastructure Expansion in South American between 2001 and 2011
2.2. Infrastructure Expansion Hotspots
2.3. Socio-Economic and Environmental Variables Associated with Hotspots of Infrastructure Expansion
2.3.1. Socio-Economic and Environmental Variables
2.3.2. Hotspot and Cluster Analyses
3. Results
3.1. Infrastructure Expansion Hotspots
3.2. A Comparison of Socio-Economic and Environmental Variables among Infrastructure Expansion Hotspots
4. Discussion
4.1. Infrastructure Expansion Hotspots
4.2. Infrastructure Expansion Hotspots: Socio-Economic and Environmental Net Changes at Regional Scale
4.3. Socio-Economic and Environmental Characteristics of Infrastructure Expansion Hotspots
Clusters of Infrastructure Expansion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramankutty, N.; Foley, J.A. Characterizing patterns of global land use: An analysis of global croplands data. Glob. Biogeochem. Cycles 1998, 12, 667–685. [Google Scholar] [CrossRef]
- Robinson, T.P.; Wint, G.R.W.; Conchedda, G.; Van Boeckel, T.P.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.I.; Gilbert, M. Mapping the global distribution of livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Dhakal, S.; Bigio, A.; Blanco, H.; Delgado, G.C.; Dewar, D.; Huang, L.; Inaba, A.; Kansal, A.; Lwasa, S.; et al. Human Settlements, Infrastructure, and Spatial Planning. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokana, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 923–1000. ISBN 978-1-107-65481-5. [Google Scholar]
- Bebbington, D.H.; Verdun, R.; Gamboa, C.; Bebbington, A.J. Impacts of Extractive Industry and Infrastructure on Forests. Assessment and Scoping of Extractive Industries and Infrastructure in Relation to Deforestation: Amazonia; Climate Land Use Alliance: San Francisco, CA, USA, 2018; 83p. [Google Scholar]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Grau, R.; Kuemmerle, T.; Macchi, L. Beyond “land sparing versus land sharing”: Environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Curr. Opin. Environ. Sustain. 2013, 5, 477–483. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Núñez, M.J.; Aide, T.M. Built-up expansion between 2001 and 2011 in South America continues well beyond the cities. Environ. Res. Lett. 2018, 13, 084006. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef] [Green Version]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R.; Guneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Daily, G.C.; Ehrlicht, P.R.; Luck, G.W. Effects of household dynamics on resource consumption and biodiversity. Nature 2003, 421, 530–533. [Google Scholar] [CrossRef]
- Rivas, V.; Cendrero, A.; Hurtado, M.; Cabral, M.; Giménez, J.; Forte, L.; del Río, L.; Cantú, M.; Becker, A. Geomorphic consequences of urban development and mining activities; an analysis of study areas in Spain and Argentina. Geomorphology 2006, 73, 185–206. [Google Scholar] [CrossRef]
- Chen, G.; Powers, R.P.; de Carvalho, L.M.T.; Mora, B. Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectricdam in the Amazon basin. Appl. Geogr. 2015, 63, 1–8. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, D.; Moran, E.; Freitas Calvi, M.; Vieira Dutra, L.; Li, G. Examining impacts of the Belo Monte hydroelectric dam construction on land-cover changes using multitemporal Landsat imagery. Appl. Geogr. 2018, 97, 35–47. [Google Scholar] [CrossRef]
- Lees, A.C.; Peres, C.A.; Fearnside, P.M.; Schneider, M.; Zuanon, J.A.S. Hydropower and the future of Amazonian biodiversity. Biodivers. Conserv. 2016, 25, 451–466. [Google Scholar] [CrossRef]
- Mcdonald, R.I.; Forman, R.T.T.; Kareiva, P.; Neugarten, R.; Salzer, D.; Fisher, J. Urban effects, distance, and protected areas in an urbanizing world. Landsc. Urban Plan. 2009, 93, 63–75. [Google Scholar] [CrossRef]
- Deichmann, J.L.; Hernández-Serna, A.; Campos-Cerqueira, M.; Aide, T.M. Soundscape analysis and acoustic monitoring document impacts of natural gas exploration on biodiversity in a tropical forest. Ecol. Indic. 2017, 74, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Finer, M.; Jenkins, C.N. Proliferation of hydroelectric dams in the andean amazon and implications for andes-amazon connectivity. PLoS ONE 2012, 7, e35126. [Google Scholar] [CrossRef]
- Hansen, A.J.; Knight, R.L.; Marzluff, J.M.; Powell, S.; Brown, K.; Gude, P.H.; Jones, K. Effects of Exurban Development on Biodiversity: Patterns, Mechanisms, and Research Needs. Ecol. Appl. 2005, 15, 1893–1905. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Eva, H.D.; Belward, A.S.; De Miranda, E.E.; Di Bella, C.M.; Gond, V.; Huber, O.; Jones, S.; Sgrenzaroli, M.; Fritz, S. A land cover map of South America. Glob. Chang. Biol. 2004, 10, 731–744. [Google Scholar] [CrossRef] [Green Version]
- Apergis, N.; Payne, J.E. Energy consumption and growth in South Asia: Evidence from a panel error correction model. Energy 2010, 329, 1421–1426. [Google Scholar]
- Gómez, S. The Land Market in Latin America and the Caribbean: Concentration and Foreignization; FAO: Santiago, Chile, 2014; ISBN 9789251086155. [Google Scholar]
- Graesser, J.; Aide, T.M.; Grau, H.R.; Ramankutty, N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ. Res. Lett. 2015, 10, 34017. [Google Scholar] [CrossRef]
- Lambin, E.F.; Gibbs, H.K.; Ferreira, L.; Grau, R.; Mayaux, P.; Meyfroidt, P.; Morton, D.C.; Rudel, T.K.; Gasparri, I.; Munger, J. Estimating the world’s potentially available cropland using a bottom-up approach. Glob. Environ. Chang. 2013, 23, 892–901. [Google Scholar] [CrossRef]
- Sperandelli, D.I.; Dupas, F.A.; Dias Pons, N.A. Dynamics of Urban Sprawl, Vacant Land, and Green Spaces on the Metropolitan Fringe of Sao Paulo, Brazil. J. Urban Plan. Dev. 2013, 139, 274–279. [Google Scholar] [CrossRef]
- Corbane, C.; Pesaresi, M.; Kemper, T.; Politis, P.; Florczyk, A.J.; Syrris, V.; Melchiorri, M.; Sabo, F.; Soille, P. Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data 2019, 3, 140–169. [Google Scholar] [CrossRef]
- Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L.; et al. A global human settlement layer from optical HR/VHR RS data: Concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102–2131. [Google Scholar] [CrossRef]
- Zhang, Q.; Pandey, B.; Seto, K.C. A Robust Method to Generate a Consistent Time Series From DMSP/OLS Nighttime Light Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5821–5831. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Imhoff, M.L.; Baugh, K.E.; Hobson, V.R.; Nelson, I.; Safran, J.; Dietz, J.B.; Tuttle, B.T. Night-time lights of the world: 1994–1995. ISPRS J. Photogramm. Remote Sens. 2001, 56, 81–99. [Google Scholar] [CrossRef]
- Sanchez-Cuervo, A.M.; Aide, T.M. Identifying hotspots of deforestation and reforestation in Colombia (2001–2010): Implications for protected areas. Ecosphere 2013, 4, 1–21. [Google Scholar] [CrossRef]
- Harris, N.L.; Goldman, E.; Gabris, C.; Nordling, J.; Minnemeyer, S.; Ansari, S.; Lippmann, M.; Bennett, L.; Raad, M.; Hansen, M.; et al. Using spatial statistics to identify emerging hot spots of forest loss. Environ. Res. Lett. 2017, 12, 024012. [Google Scholar] [CrossRef]
- Aide, T.M.; Grau, H.R.; Graesser, J.; Andrade-Nuñez, M.J.; Aráoz, E.; Barros, A.P.; Campos-Cerqueira, M.; Chacon-Moreno, E.; Cuesta, F.; Espinoza, R.; et al. Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: Satellite image interpretation and expert validation. Glob. Chang. Biol. 2019, 25, 2112–2126. [Google Scholar] [CrossRef] [PubMed]
- Graesser, J.; Ramankutty, N.; Coomes, O.T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 2018, 13, 084021. [Google Scholar] [CrossRef] [Green Version]
- Etter, A.; McAlpine, C.; Wilson, K.; Phinn, S.; Possingham, H. Regional patterns of agricultural land use and deforestation in Colombia. Agric. Ecosyst. Environ. 2006, 114, 369–386. [Google Scholar] [CrossRef]
- Doll, C.N.H. CIESIN Thematic Guide to Night-Time Light Remote Sensing and Its Applications; Center for International Earth Science Information Network of Columbia University: Palisades, NY, USA, 2008. [Google Scholar]
- Weinhold, D.; Reis, E. Transportation costs and the spatial distribution of land use in the Brazilian Amazon. Glob. Environ. Chang. 2008, 18, 54–68. [Google Scholar] [CrossRef]
- Müller, R.; Müller, D.; Schierhorn, F.; Gerold, G. Spatiotemporal modeling of the expansion of mechanized agriculture in the Bolivian lowland forests. Appl. Geogr. 2011, 31, 631–640. [Google Scholar] [CrossRef]
- Richards, P.; VanWey, L. Where Deforestation Leads to Urbanization: How Resource Extraction Is Leading to Urban Growth in the Brazilian Amazon. Ann. Assoc. Am. Geogr. 2015, 105, 806–823. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.L.; Aide, T.M.; Riner, G. Land change for all municipalities in Latin America and the Caribbean assessed from 250-m MODIS imagery (2001–2010). Remote Sens. Environ. 2012, 126, 84–103. [Google Scholar] [CrossRef]
- Aide, T.M.; Clark, M.L.; Grau, H.R.; López-Carr, D.; Levy, M.A.; Redo, D.; Bonilla-Moheno, M.; Riner, G.; Andrade-Núñez, M.J.; Muñiz, M. Deforestation and Reforestation of Latin America and the Caribbean (2001–2010). Biotropica 2013, 45, 262–271. [Google Scholar] [CrossRef]
- Álvarez-Berríos, N.L.; Redo, D.J.; Aide, T.M.; Clark, M.L.; Grau, R. Land Change in the Greater Antilles between 2001 and 2010. Land 2013, 2, 81–107. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, W.D. Geography and macroeconomics: New data and new findings. Proc. Natl. Acad. Sci. USA 2006, 103, 3510–3517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-2. 2018. Available online: https://CRAN.R-project.org/package=vegan (accessed on 28 November 2019).
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Borcard, D.; Gillet, F.; Legendre, P. Unconstrained Ordination. In Numerical Ecology with R; Springer: Cham, Switzerland, 2011; pp. 115–151. ISBN 978-0-387-78170-9. [Google Scholar]
- Oksanen, J. Multivariate Analysis of Ecological Communities in R: Vegan Tutorial; Scientific Research Publishing Inc.: Wuhan, China, 2015. [Google Scholar]
- Barragán, J.M.; de Andrés, M. Expansión urbana en las áreas litorales de América Latina y Caribe. Rev. Geogr. Norte Gd. 2016, 149, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Henríquez, C.; Azócar, G.; Romero, H. Monitoring and modeling the urban growth of two mid-sized Chilean cities. Habitat Int. 2006, 30, 945–964. [Google Scholar] [CrossRef]
- Inostroza, L. Informal urban development in Latin American urban peripheries. Spatial assessment in Bogotá, Lima and Santiago de Chile. Landsc. Urban Plan. 2017, 165, 267–279. [Google Scholar] [CrossRef]
- Parés-Ramos, I.K.; Álvarez-Berríos, N.L.; Aide, T.M. Mapping Urbanization Dynamics in Major Cities of Colombia, Ecuador, Perú, and Bolivia Using Night-Time Satellite Imagery. Land 2013, 2, 37–59. [Google Scholar] [CrossRef] [Green Version]
- Romero, H.; Ordenes, F. Emerging Urbanization in the Southern Andes. Mt. Res. Dev. 2004, 24, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, M.; Zapparoli, I. The Challenge of Financing Urban Infrastructure for Sustainable Cities; Housing and Urban Development Division, Inter-American Development Bank: Washington DC, USA, 2017. [Google Scholar]
- Alvarez-Berríos, N.L.; Aide, T.M. Corrigendum: Global demand for gold is another threat for tropical forests (2014 Environ. Res. Lett. 10 014006). Environ. Res. Lett. 2015, 10, 029501. [Google Scholar] [CrossRef]
- Nanni, A.S.; Sloan, S.; Aide, T.M.; Graesser, J.; Edwards, D.; Grau, H.R. The neotropical reforestation hotspots: A biophysical and socioeconomic typology of contemporary forest expansion. Glob. Environ. Chang. 2019, 54, 148–159. [Google Scholar] [CrossRef]
- Redo, D.; Aide, T.M.; Clark, M.L. Vegetation change in Brazil’s dryland ecoregions and the relationship to crop production and environmental factors: Cerrado, Caatinga, and Mato Grosso, 2001–2009. J. Land Use Sci. 2013, 8, 123–153. [Google Scholar] [CrossRef]
- Baptista, S.R. Metropolization and forest recovery in Southern Brazil: A multiscale analysis of the Florianópolis City-Region, Santa Catarina State, 1970 to 2005. Ecol. Soc. 2008, 13, 21. [Google Scholar] [CrossRef]
- Baptista, S.R.; Rudel, T.K. A re-emerging Atlantic forest? Urbanization, industrialization and the forest transition in Santa Catarina, southern Brazil. Environ. Conserv. 2006, 33, 195–202. [Google Scholar] [CrossRef]
- Alberto, J.A.; Alberto, J.A. Procesos de ocupación formal e informal del suelo con fines urbanos del Área Metropolitana del Gran Resistencia (AMGR), República Argentina. Rev. Geogr. 2007, 142, 7–35. [Google Scholar]
- Izquierdo, A.E.; Grau, H.R.; Aide, T.M. Implications of Rural–Urban Migration for Conservation of the Atlantic Forest and Urban Growth in Misiones, Argentina (1970–2030). Ambio 2010, 40, 298–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martine, G.; McGranahan, G. Brazil’s Early Urban Transition: What Can It Teach Urbanizing Countries; IIED: London, UK, 2010. [Google Scholar]
- Oyarzún, J.; Oyarzún, R. Sustainable Development Threats, Inter-sector Conflicts and Environmental Policy Requirements in the Arid, Mining Rich, Northern Chile Territory. Sustain. Dev. 2011, 19, 263–274. [Google Scholar] [CrossRef]
- Sánchez-Cuervo, A.M.; Aide, T.M. Consequences of the Armed Conflict, Forced Human Displacement, and Land Abandonment on Forest Cover Change in Colombia: A Multi-scaled Analysis. Ecosystems 2013, 16, 1052–1070. [Google Scholar] [CrossRef]
- Arelovich, H.M.; Bravo, R.D.; Martinez, M.F. Development, characteristics, and trends for beef cattle production in Argentina. Anim. Front. 2011, 1, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Berríos, N.L.; Parés-Ramos, I.K.; Aide, T.M. Contrasting patterns of urban expansion in Colombia, Ecuador, Peru, and Bolivia between 1992 and 2009. Ambio 2012, 42, 29–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, A. Afforestation Projects in Highland Ecuador: Patterns of Success and Failure. Mt. Res. Dev. 1997, 17, 31–42. [Google Scholar] [CrossRef]
- Calero, C.; Bedi, A.S.; Sparrow, R. Remittances, Liquidity Constraints and Human Capital Investments in Ecuador. World Dev. 2009, 37, 1143–1154. [Google Scholar] [CrossRef] [Green Version]
- Bolay, J.-C.; Rabinovich, A.; de la Porte, C.A.; Ruiz, L.; Unda, M.; Vivero, M.; Serrano, T.; Nieves, G. Interfase Urbano-Rural en Ecuador, Hacia un Desarrollo Territorial Integrado; LaSUR-INTER-ENAC/EPFL: Lausanne, Switzerland, 2004. [Google Scholar]
- Jokisch, B.D. Migration and Agricultural Change: The Case of Smallholders Agriculture in Highland Ecuador. Hum. Ecol. 2002, 30, 523–550. [Google Scholar] [CrossRef]
- Reyes-Bueno, F.; Sánchez, J.T.; Samaniego, J.G.; Barrós, D.M.; Maseda, R.C.; Sánchez-Rodríguez, A. Factors influencing land fractioning in the context of land market deregulation in Ecuador. Land Use Policy 2016, 52, 144–150. [Google Scholar] [CrossRef]
- Meloni Nassar, A.; Moreira, M. Evidences on Sugarcane Expansion and Agricultural Land Use Changes in Brazil; Institute for the International Trade Negotiation: Brighton, UK, 2013. [Google Scholar]
- Wilkinson, J.; Reydon, B.; Di Sabbato, A. Concentration and foreign ownership of land in Brazil in the context of global land grabbing. Can. J. Dev. Stud. 2012, 33, 417–438. [Google Scholar] [CrossRef]
- Ojima, R.; Hogan, D.J. Mobility, Urban Sprawl and Environmental Risks in Brazilian Urban Agglomerations: Challenges for Urban Sustainability. In Urban Population-Environment Dynamics in the Developing World: Case Studies and Lessons Learned; de Sherbiniin, A., Rahman, A., Barbieri, A., Fotso, J.C., Zhu, Y., Eds.; Committee for International Cooperation in National Research in Demography: Paris, France, 2009; pp. 281–316. ISBN 2-910053-35-0. [Google Scholar]
- Mira de Espindola, G.; Neves da Costa Carneiro, E.L.; Cardoso Façanha, A. Four decades of urban sprawl and population growth in Teresina, Brazil. Appl. Geogr. 2017, 79, 73–83. [Google Scholar] [CrossRef]
- Inostroza, L.; Baur, R.; Csaplovics, E. Urban Sprawl and Fragmentation in Latin America: A Comparision with European Cities. The Myth of the Diffuse Latin American City; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2010. [Google Scholar]
- Pulido, N. Bordes urbanos metropolitanos en Venezuela ante nuevas leyes y proyectos inmobiliarios. Cuad. Geogr. Rev. Colomb. Geogr. 2014, 23, 15–38. [Google Scholar] [CrossRef]
- Baynard, C.W.; Ellis, J.M.; Davis, H. Roads, petroleum and accessibility: The case of eastern Ecuador. GeoJournal 2013, 78, 675–695. [Google Scholar] [CrossRef]
- da Silva, W.V.; Ferreira, N.C.; de Araujo Boggione, G. Análise de vetores de crescimento para a quantificação das transaformações urbanas no município de Goiânia. In Proceedings of the Anais XII Simpósio Brasileiro de Sensoriamento Remoto, Goiania, Brasil, 16–21 April 2005; pp. 681–688. [Google Scholar]
- Inostroza, L.; Baur, R.; Csaplovics, E. Urban sprawl and fragmentation in Latin America: A dynamic quantification and characterization of spatial patterns. J. Environ. Manag. 2013, 115, 87–97. [Google Scholar] [CrossRef]
- ONU-HABITAT. Estado de Las Ciudades de Améria Latina y el Caribe 2012. Rumbo a Una Nueva Transición Urbana; ONU-HABITAT: Nairobi, Kenia, 2012; ISBN 9789211333978. [Google Scholar]
- Aide, T.M.; Grau, R.H. Globalization, Migration, and Latin American Ecosystems. Science 2004, 305, 1915–1916. [Google Scholar] [CrossRef]
- Bebbington, A. Latin America: Contesting extraction, producing geographies. Singap. J. Trop. Geogr. 2009, 30, 7–12. [Google Scholar] [CrossRef]
- Steel, G. Mining and tourism: Urban transformations in the intermediate cities of Cajamarca and Cusco, Peru. Lat. Am. Perspect. 2013, 40, 237–249. [Google Scholar] [CrossRef]
- Castiblanco, C.; Etter, A.; Aide, T.M. Oil palm plantations in Colombia: A model of future expansion. Environ. Sci. Policy 2013, 27, 172–183. [Google Scholar] [CrossRef]
- May, P.H.; Anderson, A.B.; Frazão, J.M.F.; Balick, M.J. Babassu palm in the agroforestry systems in Brazil’s Mid-North region. Agrofor. Syst. 1985, 3, 275–295. [Google Scholar] [CrossRef] [Green Version]
- Vergara Córdoba, C.A.; Cardona Ayala, C.E.; Murillo Gamboa, O.; Jarma Orozco, A.D.; Araméndiz Tatis, H. Valor de mercado de plantaciones de Teca (Tectona grandis Linn.) en el departamento de Córdoba. Temas Agrar. 2013, 18, 9–22. [Google Scholar] [CrossRef] [Green Version]
- van der Gelder, J.W.; van der Valk, F.; Dros, J.M.; Worm, J. The Impacts and Financing of Large Dams; AIDEnvironment: Amsterdam, The Netherlands, 2002; p. 218. [Google Scholar]
- Kröger, M. Grievances, agency and the absence of conflict: The new Suzano pulp investment in the Eastern Amazon. For. Policy Econ. 2013, 33, 28–35. [Google Scholar] [CrossRef]
- Finer, M.; Jenkins, C.N.; Pimm, S.L.; Keane, B.; Ross, C. Oil and gas projects in the Western Amazon: Threats to wilderness, biodiversity, and indigenous peoples. PLoS ONE 2008, 3, e2932. [Google Scholar] [CrossRef]
- Alexander, N. The Emerging Multi-Polar World Order: Its Unprecedented Consensus on a New Model for Financing Infrastructure Investment and Development. Novemb. 2014 G20 Summit Part II 2014. Available online: http://us. boell. org/sites/default/files/alexander_multipolar_world_order_1 pdf (accessed on 9 November 2019).
Variable | Unit | Source Spatial Scale | Temporal Scale | Source |
---|---|---|---|---|
Agriculture change | km2 | MODIS 250-mts | 2001–2011 | Clark et al. [43], Graesser et al. [27] |
Pasture change | km2 | MODIS 250-mts | 2001–2011 | Clark et al. [43], Graesser et al. [27] |
Woody change | km2 | MODIS 250-mts | 2001–2011 | Clark et al. [43], Graesser et al. [27] |
Mean elevation | mts | 90-mts | NA | CGIAR CSI (Consortium for Spatial Information) |
Road density | km/km2 | km | 1980 to 2010 | Center for International Earth Science Information Network (CIESIN) and Information Technology Outreach Services (ITOS) |
Purchasing power parity change | Billions of US dollars | 1 degree | 2000–2005 | Nordhaus [46] |
Urban population change | Number of people | Municipality | 2001–2011 | Andrade-Núñez; Aide [9] |
Rural population change | Number of people | Municipality | 2001–2011 | Andrade-Núñez; Aide [9] |
Variable | Hotspots | South America |
---|---|---|
Total area (km2) | 2,328,484 | 17,700,186 |
Infrastructure expansion area (km2) | 337,310 | 479,914 |
Agriculture net change (km2) | 63,798 | 259,587 |
Pasture net change (km2) | −77,013 | 121,306 |
Woody net change (km2) | 11,708 | −353,130 |
Mean road density (km/km2) | 0.086 | 0.046 |
Mean purchasing power parity change (U.S. billion dollars) | 1.04 | 0.25 |
Urban population net change | 25,771,844 | 48,064,394 |
Rural population net change | −576,836 | −8178 |
Variable | NMDS1 | NMDS2 | NMDS3 | r2 | Pr (>r) |
---|---|---|---|---|---|
Agriculture net change | −0.05175 | 0.98103 | 0.18681 | 0.3489 | 0.001 |
Pasture net change | −0.37733 | −0.77478 | 0.50728 | 0.1042 | 0.003 |
Woody net change | 0.1838 | −0.86232 | −0.47184 | 0.2047 | 0.001 |
Mean elevation | 0.95727 | 0.07904 | 0.2782 | 0.9492 | 0.001 |
Mean road density | 0.29263 | 0.0821 | −0.95269 | 0.9366 | 0.001 |
Mean purchasing power parity change | 0.16574 | −0.97019 | −0.17682 | 0.4673 | 0.001 |
Urban population change | 0.22689 | −0.97329 | 0.03509 | 0.5268 | 0.001 |
Rural population change | −0.02136 | −0.99743 | 0.06842 | 0.3418 | 0.001 |
Cluster Name | Area (km2) | Infrastructure Expansion (km2) | Woody Change (km2) | Pasture Change (km2) | Agriculture Change (km2) | Urban Population Change | Rural Population Change | Mean Road Density (km/km2) | Mean Elevation (m) | Mean Economic Change (U.S. Billion Dollars) |
---|---|---|---|---|---|---|---|---|---|---|
Brazil megalopolis region | 771,141 | 118,935 | 11,235 | −59,124 | 44,203 | 9,460,190 | −1,249,899 | 0.08 | 529 | 1.55 |
Agriculture expansion | 510,954 | 62,319 | −12,841 | −9315 | 19,295 | 3,753,095 | −168,643 | 0.10 | 480 | 0.33 |
Caatinga | 355,226 | 62,158 | 15,978 | −14,265 | −854 | 2,855,132 | −270,618 | 0.09 | 295 | 0.38 |
Urban sprawl | 295,857 | 43,078 | 10,021 | 1693 | −8260 | 6,328,442 | 481,716 | 0.09 | 870 | 2.57 |
Ecuador Coastal and Mountain region | 114,510 | 17,446 | −3733 | 4543 | −984 | 1,552,182 | 594,422 | 0.07 | 1229 | 1.38 |
Lowland rural development | 108,936 | 13,326 | −6290 | 5097 | 1486 | 429,866 | 58,937 | 0.03 | 333 | 0.30 |
Argentina Humid Pampas region | 104,962 | 12,381 | −2644 | −6629 | 9043 | 465,402 | −1591 | 0.10 | 184 | 0.55 |
Highland mining | 66,899 | 7667 | −18 | 988 | −131 | 927,533 | −21,160 | 0.10 | 3491 | 0.21 |
Total | 2,328,484 | 337,310 | 11,708 | −77,013 | 63,798 | 25,771,844 | −576,836 | 0.08 | 926 | 0.91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Núñez, M.J.; Aide, T.M. The Socio-Economic and Environmental Variables Associated with Hotspots of Infrastructure Expansion in South America. Remote Sens. 2020, 12, 116. https://doi.org/10.3390/rs12010116
Andrade-Núñez MJ, Aide TM. The Socio-Economic and Environmental Variables Associated with Hotspots of Infrastructure Expansion in South America. Remote Sensing. 2020; 12(1):116. https://doi.org/10.3390/rs12010116
Chicago/Turabian StyleAndrade-Núñez, María José, and T. Mitchell Aide. 2020. "The Socio-Economic and Environmental Variables Associated with Hotspots of Infrastructure Expansion in South America" Remote Sensing 12, no. 1: 116. https://doi.org/10.3390/rs12010116
APA StyleAndrade-Núñez, M. J., & Aide, T. M. (2020). The Socio-Economic and Environmental Variables Associated with Hotspots of Infrastructure Expansion in South America. Remote Sensing, 12(1), 116. https://doi.org/10.3390/rs12010116