Next Article in Journal
Simulation of Sedimentation in Lake Taihu with Geostationary Satellite Ocean Color Data
Previous Article in Journal
How Groundwater Level Fluctuations and Geotechnical Properties Lead to Asymmetric Subsidence: A PSInSAR Analysis of Land Deformation over a Transit Corridor in the Los Angeles Metropolitan Area
Article Menu
Issue 4 (February-2) cover image

Export Article

Open AccessArticle

Monitoring Drought Effects on Vegetation Productivity Using Satellite Solar-Induced Chlorophyll Fluorescence

The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing 100049, China
Author to whom correspondence should be addressed.
Remote Sens. 2019, 11(4), 378;
Received: 11 January 2019 / Revised: 1 February 2019 / Accepted: 7 February 2019 / Published: 13 February 2019
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
PDF [3715 KB, uploaded 13 February 2019]


Around the world, the increasing drought, which is exacerbated by climate change, has significant impacts on vegetation carbon assimilation. Identifying how short-term climate anomalies influence vegetation productivity in a timely and accurate manner at the satellite scale is crucial to monitoring drought. Satellite solar-induced chlorophyll fluorescence (SIF) has recently been reported as a direct proxy of actual vegetation photosynthesis and has more advantages than traditional vegetation indices (e.g., the Normalized Difference Vegetation Index, NDVI and the Enhanced Vegetation Index, EVI) in monitoring vegetation vitality. This study aims to evaluate the feasibility of SIF in interpreting drought effects on vegetation productivity in Victoria, Australia, where heat stress and drought are often reported. Drought-induced variations in SIF and absorbed photosynthetically active radiation (APAR) estimations based on NDVI and EVI were investigated and validated against results indicated by gross primary production (GPP). We first compared drought responses of GPP and vegetation proxies (SIF and APAR) during the 2009 drought event, considering potential biome-dependency. Results showed that SIF exhibited more consistent declines with GPP losses induced by drought than did APAR estimations during the 2009 drought period in space and time, where APAR had obvious lagged responses compared with SIF, especially in evergreen broadleaf forest land. We then estimated the sensitivities of the aforementioned variables to meteorology anomalies using the ARx model, where memory effects were considered, and compared the correlations of GPP anomaly with the anomalies of vegetation proxies during a relatively long period (2007–2013). Compared with APAR, GPP and SIF are more sensitive to temperature anomalies for the general Victoria region. For crop land, GPP and vegetation proxies showed similar sensitivities to temperature and water availability. For evergreen broadleaf forest land, SIF anomaly was explained better by meteorology anomalies than APAR anomalies. GPP anomaly showed a stronger linear relationship with SIF anomaly than with APAR anomalies, especially for evergreen broadleaf forest land. We showed that SIF might be a promising tool for effectively evaluating short-term drought impacts on vegetation productivity, especially in drought-vulnerable areas, such as Victoria. View Full-Text
Keywords: drought; satellite solar-induced chlorophyll fluorescence (SIF); gross primary production (GPP); climate change drought; satellite solar-induced chlorophyll fluorescence (SIF); gross primary production (GPP); climate change

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Zhang, L.; Qiao, N.; Huang, C.; Wang, S. Monitoring Drought Effects on Vegetation Productivity Using Satellite Solar-Induced Chlorophyll Fluorescence. Remote Sens. 2019, 11, 378.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top