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Abstract: Around the world, the increasing drought, which is exacerbated by climate change,
has significant impacts on vegetation carbon assimilation. Identifying how short-term climate
anomalies influence vegetation productivity in a timely and accurate manner at the satellite scale
is crucial to monitoring drought. Satellite solar-induced chlorophyll fluorescence (SIF) has recently
been reported as a direct proxy of actual vegetation photosynthesis and has more advantages than
traditional vegetation indices (e.g., the Normalized Difference Vegetation Index, NDVI and the
Enhanced Vegetation Index, EVI) in monitoring vegetation vitality. This study aims to evaluate the
feasibility of SIF in interpreting drought effects on vegetation productivity in Victoria, Australia,
where heat stress and drought are often reported. Drought-induced variations in SIF and absorbed
photosynthetically active radiation (APAR) estimations based on NDVI and EVI were investigated
and validated against results indicated by gross primary production (GPP). We first compared
drought responses of GPP and vegetation proxies (SIF and APAR) during the 2009 drought event,
considering potential biome-dependency. Results showed that SIF exhibited more consistent declines
with GPP losses induced by drought than did APAR estimations during the 2009 drought period
in space and time, where APAR had obvious lagged responses compared with SIF, especially in
evergreen broadleaf forest land. We then estimated the sensitivities of the aforementioned variables to
meteorology anomalies using the ARx model, where memory effects were considered, and compared
the correlations of GPP anomaly with the anomalies of vegetation proxies during a relatively long
period (2007–2013). Compared with APAR, GPP and SIF are more sensitive to temperature anomalies
for the general Victoria region. For crop land, GPP and vegetation proxies showed similar sensitivities
to temperature and water availability. For evergreen broadleaf forest land, SIF anomaly was explained
better by meteorology anomalies than APAR anomalies. GPP anomaly showed a stronger linear
relationship with SIF anomaly than with APAR anomalies, especially for evergreen broadleaf forest
land. We showed that SIF might be a promising tool for effectively evaluating short-term drought
impacts on vegetation productivity, especially in drought-vulnerable areas, such as Victoria.

Keywords: drought; satellite solar-induced chlorophyll fluorescence (SIF); gross primary production
(GPP); climate change

1. Introduction

Droughts have significant adverse impacts on vegetation carbon assimilation by increasing
vegetation mortality rate and changing the species composition of local ecosystems [1–3]. Australia
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is particularly vulnerable to drought, as evident by the drought events in the 1980s, droughts in
Victoria [4], 1990s Queensland drought [5], as well as the ‘Millennium drought’ between 2001 and
2009 [6]. Particularly, in 2009, southeastern Australia suffered high temperatures, in excess of 40◦C,
for several days in February [7]. The continuous high temperatures, combined with the drier conditions,
further triggered bushfires which burned nearly 450,000 hectares of forest in Victoria [8]. Australia’s
high vulnerability to drought threatens regional carbon balance in the terrestrial ecosystem. Moreover,
droughts are predicted to become more frequent and more intense, due to ongoing increases in the
concentration of greenhouse gases [9,10]. Hence, an accurate assessment of the impacts of drought on
vegetation activity is crucial for understanding the response of terrestrial plants to climate anomalies,
especially for drought-vulnerable regions, such as Australia.

Among all the techniques, remote sensing plays an irreplaceable role in monitoring drought in a
spatiotemporally-continuous manner. Traditional remotely sensed vegetation indices (VIs), including
the Normalized Differences Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI),
have been used to monitor and analyze the spatiotemporal variation in drought-related vegetation
activities [11–13]. For example, NDVI has been used as an indicator of drought-induced damage
for terrestrial plants in southwest Australia [14]. NDVI has also been applied to build various
extended indices to monitor drought, such as the vegetation condition index (VCI) [15] and the scaled
drought condition index (SDCI) [16]. EVI, developed to improve the sensitivity over dense vegetation
conditions [17], has been used to assess the drought impacts on Amazon forest canopies [18,19].
VIs have always been used to indicate vegetation greenness and canopy structure [20]. In terms of
reflecting impacts of environmental stress on vegetation, however, VIs are often reported to show
delayed responses [21,22]. This delay is because plant canopy and leaf greenness respond slowly to
ambient stress that decreases the photosynthetic activity, especially in evergreen forest regions [22,23].

During the process of photosynthesis, a part of the absorbed photosynthetically active radiation
(APAR) by chlorophyll a pigments at 400–700 nm wavelengths is reemitted at longer wavelengths
(660–800 nm) as fluorescence, which is referred to as solar-induced chlorophyll fluorescence (SIF) [24].
Since SIF is directly related to the photosynthesis, SIF is likely to respond rapidly to vegetation
functioning changes induced by environmental stresses, such as water or heat stress [25–29]. Light use
efficiency (LUE) model helps illustrate the relationship between gross primary production and SIF [30].
GPP is conceptually described by the LUE model as:

GPP = FPAR× PAR× εP= APAR× εP (1)

where FPAR represents the fraction of APAR versus photosynthetically active radiation (PAR), and εP

is the LUE that APAR is used for carbon assimilation by photosynthesis. In Equation (1), FPAR
can be approximated from VIs [31], and εP is assumed to be related to plant functional type and
environmental stress conditions [32,33]. Because SIF is also originated from APAR, correspondingly,
SIF can be expressed as:

SIF = FPAR× PAR× εF×fesc= APAR× εF×fesc (2)

where εF refers to the quantum yield for fluorescence and fesc accounts for the fraction of SIF photons
escaping from the canopy [34,35]. fesc can be assumed to be relatively constant for a given vegetation
type [30]. Therefore, εF gives SIF more potential to represent GPP beyond APAR.

The drought has two direct impacts on vegetation photosynthesis process [36]. On one hand,
drought affects plant physiological functions, such as reductions in enzyme activity and stomatal
conductance, which can in turn slow down εP and εF [37,38]. On the other hand, severe drought results
in changes in vegetation greenness and canopy structure (e.g., loss of chlorophyll and leaf wilting),
which can be reflected by changes in VIs [11]. These changes cause a reduction in FPAR and therefore
may induce a suppression in APAR. These two drought impacts take effects at different time scales:
plant physiological functions respond at the scale of minutes to days, while vegetation greenness and
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canopy structure respond at the scale of days to weeks [11]. Thus, there may be a lagged response
of greenness-related VIs, which can only be used to estimate APAR, to changes in GPP induced by
drought stress [22]. For SIF, the consequence of these two drought impacts on carbon assimilation can
be reductions in εF and the amount of APAR and therefore a decline in SIF. SIF is therefore expected
to respond rapidly to drought and indicate drought-induced reductions of vegetation production.
For example, Wang et al. [39] found SIF was more sensitive to short-term standard precipitation
index (SPI) than was NDVI. Yoshida et al. [26] reported that SIF and GPP reductions, due to droughts
in croplands and grasslands resulted from declines in FPAR, εF and εP. However, compared with
APAR, the superiority of SIF to monitor drought-induced variations in GPP is still uncertain, because
the relationship between εF and εP remains unclear [40,41]. Besides, the spatiotemporal patterns of
drought monitored by SIF and APAR estimations based on VIs have not been fully investigated and
discussed among different vegetation types. In addition, the comprehensive quantification of the
susceptibility of SIF to meteorology anomalies is unclear in drought vulnerable area. Last but not least,
spatiotemporal aggregation is often needed for satellite SIF retrievals prior to analyses, due to retrieval
noise [27,42]. Whether there is an earlier manifestation of SIF losses, due to drought compared to
APAR at a relatively coarse temporal resolution still remains a question.

In this study, we evaluate the feasibility of SIF to monitor drought effects on vegetation
productivity and compare the results with APAR estimations based on VIs for the main vegetation
types (crop and evergreen broadleaf forest) in Victoria. The major objectives of this study are to (1)
explore whether SIF possesses obvious superiority to monitor drought-induced variations in GPP
compared with APAR, (2) better understand the potential advantage of SIF over APAR for monitoring
drought-related GPP dynamics regarding different vegetation types, and (3) investigate the sensitivities
of GPP and vegetation proxies (SIF and APAR) to different meteorology anomalies.

2. Data Used in this Study

2.1. Raster Data

2.1.1. Vegetation Proxies

Satellite SIF data used in this study were based on SIF retrievals from Global Ozone Monitoring
Experiment-2 (GOME-2) satellite measurements using a linear statistical approach [42,43] (website:
ftp://ftp.gfz-potsdam.de/home/mefe/GlobFluo/GOME-2/gridded/). Single SIF retrievals were
gridded to monthly means at a spatial resolution of 0.5◦. In this study, GOME-2 SIF data covering
Victoria from 2007 to 2013 were used.

The NDVI and EVI data were derived from the moderate-resolution imaging spectroradiometer
(MODIS) vegetation index product (MOD13C2, monthly 0.05◦) (website: https://lpdaac.usgs.gov/).
The NDVI and EVI data were quality filtered by good quality flags according to the quality control
(QC) layer. Original 0.05◦ data were aggregated to 0.5◦ by regional (10 × 10 window) averaging.

According to Equations (1) and (2), GPP anomaly could be partly driven by PAR changes, which
is the same case for SIF. As VIs carry no information on radiation, in order to make VIs and SIF
comparable, we used APAR calculations based on VIs. This conversion was accomplished by assuming
a linear relationship between VIs and FPAR [31]. NDVI and EVI data multiplied by PAR are denoted
as APARNDVI and APAREVI, respectively.

2.1.2. FLUXCOM GPP

In this study, we used the FLUXCOM GPP product (website: https://www.bgc-jena.mpg.
de/geodb/projects/DataDnld.php) to derive vegetation productivity variation information during
drought conditions. FLUXCOM GPP, which is spatially-upscaled from GPP estimations by
eddy-covariance flux tower measurements using three machine learning (ML) methods [44,45], is one
of the state-of-the-art GPP products at regional to global scales [45,46]. Spatially-continuous GPP is

ftp://ftp.gfz-potsdam.de/home/mefe/GlobFluo/GOME-2/gridded/
https://lpdaac.usgs.gov/
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estimated using established relationships between flux tower GPP and a variety of variables, including
remotely sensed VIs and climate and meteorological variables. GPP estimations based on the three ML
approaches were averaged prior to analyses. In this study, FLUXCOM GPP data covering Victoria
from 1982 to 2013 were used. The spatiotemporal resolution of the mean GPP data is identical to that
of the SIF data.

2.1.3. Meteorological Data

We used temperature and solar radiation data derived from the European Centre for Medium
Range Weather Forecasts (ECMWF). PAR was calculated from the ECMWF shortwave solar radiation
by multiplying by a coefficient of 0.48 [47]. Original ECMWF data with 0.25◦ and 10-day spatiotemporal
resolution were aggregated to 0.5◦ monthly data by nearest-neighbor sampling and temporal averaging
assuming each month consists 30 days.

The ratio of actual evapotranspiration to potential evapotranspiration (ET/PET) was used as an
indicator of water availability [48]. ET and PET were derived from the MOD16A2 product (8-day
interval, 500 m), which estimates ET and PET by the Penman–Monteith equation [49]. The MODIS
ET/PET data were quality filtered by good quality flags using a QC layer. Maximum ET/PET value of
the 8-day interval estimates within the month of interest was used to indicate water availability during
the period and 500 m pixels within the 0.5◦ grid were averaged to match the coarse resolution datasets.

2.1.4. Land Cover Data

To analyze the potential biome-dependency of vegetation response to drought, we used land cover
information derived from MODIS land cover product (MCD12C1, 2011, 0.05◦). The land cover map in
Victoria is shown in Figure 1. Crop and evergreen broadleaf forest consist of main land cover types in
Victoria. 0.5◦ pixels were determined as crop land or evergreen broadleaf forest land if over 50% of
the 0.05◦ pixels (i.e., more than 50 pixels) within the grid were identified as crop land or evergreen
broadleaf forest land.
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month, which include all forms of precipitation that reach the ground, such as rain, drizzle, hail, and 
snow. To represent the overall status of the meteorology in Victoria, we used data from 21 
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quality flags and were relatively uninterrupted. 

Figure 1. Land cover map of the studied area (Victoria, Australia). The slant line area enclosed by the
blue box is crop land. The crossed line area enclosed by the red box is evergreen broadleaf forest land.

2.2. Meteorological Station Data

We used monthly mean maximum temperature (from 1982–2013) and monthly precipitation data
(from 2007 to 2013), which were provided by the Australian Bureau of Meteorology, to represent
drought-related environmental stress. Monthly mean maximum temperature was calculated as the
average of all available daily maxima for the month. The highest observed temperature for the
24 hours before 09:00 local time was recorded as the daily maximum air temperature for the previous
day. Monthly precipitation was calculated by summing all available daily rainfall records within the
month, which include all forms of precipitation that reach the ground, such as rain, drizzle, hail, and
snow. To represent the overall status of the meteorology in Victoria, we used data from 21 temperature
stations and 32 precipitation stations. Detailed information of these stations is illustrated in Figure 2
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and Tables A1 and A2 in Appendix A. The measured data were quality controlled using quality flags
and were relatively uninterrupted.Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 19 
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Figure 2. Spatial pattern of temperature and rainfall stations in Victoria.

3. Methods

We first analyzed the temporal and spatial dynamics of GPP, SIF, APARNDVI and APAREVI for
the 2009 drought event and compared the drought responses of vegetation proxies for the main
vegetation types in Victoria. We applied monthly relative anomalies and the normalized anomaly of
all the aforementioned variables to assess drought stress-related signals. The relative anomaly (∆) and
normalized anomaly (δ) can be calculated as below:

∆(i, k) = (P (i, k)− P(i)mean) / P(i)mean (3)

δ(i, k) = (P (i, k)− P(i)mean) / P(i)std (4)

where P(i, k) stands for different variables (e.g., GPP, SIF, APAR and other meteorological variables)
for month i of year k, and the multiyear mean P(i)mean and standard deviation P(i)std are established
from 2007 to 2013 for all data sets.

To further explore the feasibility of SIF in interpreting drought effects on vegetation
productivity in Victoria, we estimated the response of vegetation to drought-related meteorology
anomalies in a relatively long period (2007–2013). Because the sensitivity of vegetation
productivity to high temperature is variable in different seasons [50], we first analyzed the
relationship between the temperature from stations and GPP over 1982-2013 and obtained the
annual-temperature-sensitive period when GPP decreased with increasing temperature. Based on
the determined annual-temperature-sensitive period, we applied the autoregressive with exogenous
terms (ARx) model [48,51] to estimate the sensitivities of GPP and vegetation proxies to meteorology
anomalies and examined the correlations of the GPP anomaly with the anomalies of vegetation proxies.
The ARx model is an auto-regressive model with exogenous inputs [51]. We used the GPP as an
example to illustrate the ARx model:

δGPPt = aT × δTt + aW × δWt + aP × δPt + aM × δGPPt−1 + ε (5)

where δGPPt, δTt, δWt and δPt represent the normalized anomalies of GPP, ECMWF temperature,
water availability and PAR, respectively, at month t; δGPPt−1 is the normalized GPP anomaly at month
t-1. The one-month-lagged normalized GPP anomaly was used to investigate potential memory effects.
Time series were normalized to assure comparability of the coefficients. aT, aW and aP represent the
estimated sensitivity of GPP changes to the respective meteorology-forcing factors while aM is related
to memory effects and ε is the residual error term. The coefficient of determination (R2) value of
model result and the significance of the model’s coefficients were used to assess the quality of the
fitting. We used the partial least squares method (PLS) to solve the parameters in Equation (5) to avoid
multicollinearity of the forcing factors.

Note that all the analyses were made for general Victoria region, crop land and evergreen
broadleaf forest land to consider potential different behaviors of different vegetation types during
drought conditions.
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4. Results

4.1. Monitoring and Assessing the 2009 Drought in Victoria

Figure 3 shows the temporal dynamics of all the studied variables during the 2009 drought
period (from January to March) for general Victoria region (Figure 3a), crop land (Figure 3b)
and evergreen broadleaf forest land (Figure 3c). According to Figure 3a, Victoria experienced a
fairly higher temperature and a lower rainfall than the historical mean values in January 2009.
The inter-annual precipitation variation is strong (large standard deviations), which indicates the extent
of rainfall variation changes dramatically in Victoria. High temperatures and drops in precipitation
rapidly depleted soil moisture through evapotranspiration, causing a severe reduction in vegetation
productivity [27]. GPP, SIF, APARNDVI and APAREVI showed a decreasing tendency from January 2009
to March 2009. GPP and SIF from January to March for 2009 were lower than their historical averages
for 2007–2013. On the contrary, both APARNDVI and APAREVI were slightly higher in January 2009
relative to their multiyear means. SIF decreased by approximately 17.2% in February 2009, which
was much higher than the declines in APARNDVI (6.9%) and APAREVI (5.9%). The relative SIF and
GPP anomalies decreased more sharply from January 2009 to February 2009 than did the relative
APARNDVI and APAREVI anomalies from January to February for general Victoria region. For crop land
(Figure 3b), SIF, APARNDVI and APAREVI showed similar relative anomalies in January 2009. Yet SIF
decreased by approximately 20.1% in February 2009, which was higher than the observed decreases
for APARNDVI (9.7%) and APAREVI (7.5%). Regarding evergreen broadleaf forest land (Figure 3c),
APARNDVI and APAREVI exhibited positive relative anomalies in February 2009, while SIF decreased
by approximately 11.3% and GPP decreased by approximately 8.5%. These results indicate that the
relative GPP anomaly had a more consistent change with the relative SIF anomaly than with the
relative APARNDVI and APAREVI anomalies, especially for evergreen broadleaf forest land.

The spatial and temporal variations of the normalized anomalies of all the considered variables
in Victoria from January to March 2009 are shown in Figure 4. It is seen that Victoria was struck by
extremely high temperature in January 2009, and part of the Victoria area showed drought stress which
was indicated by the normalized anomalies of vegetation proxies. In February 2009, the temperature
was lower than the multiyear mean temperature while the water availability was still deficient, which
indicates the persistence of drought stress in Victoria. Both GPP and SIF showed drought-induced
anomalies in most areas of Victoria. In southeastern Victoria, where evergreen broadleaf forest consists
of the main vegetation type (Figure 1), the normalized APARNDVI and APAREVI anomalies exhibited
more positive anomalies than did SIF anomaly in February 2009. These results indicate that during
the studied 2009 drought event, APARNDVI and APAREVI are less sensitive to meteorological drought
stress compared with SIF in evergreen broadleaf forest land. In March 2009, drought stress was not
completely alleviated. The normalized APARNDVI and APAREVI anomalies indicated that drought still
persisted in Victoria except for most evergreen broadleaf forest areas.

Figure 5 shows the statistics of anomalous areas calculated by the normalized GPP, SIF, APARNDVI

and APAREVI anomalies based on the results, shown in Figure 4. Figure 5a shows the percentages of
negative and positive anomaly areas calculated by all pixels located in the general region of Victoria.
For moderate drought stress (< -0.5σ), the area percentage indicated by SIF (28.1%) was similar to those
indicated by APARNDVI (22.5%) and APAREVI (20.2%) in January 2009. For severe positive anomaly
(>1σ), however, the area percentage shown by APARNDVI was 15.6% and the value for APAREVI was
11.2%, while the values shown by SIF and GPP were 0%. For severe drought stress (<−1σ) in February
2009, the area percentage indicated by GPP was 24.7%, and the value for SIF was 27%. On the other
hand, the values for APARNDVI (18.0%) and APAREVI (11.2%) were much smaller than those revealed
by SIF and GPP. SIF showed more similarity to APARNDVI and APAREVI than to GPP for the drought
stress of [-1σ, 0) in February. The area percentages for severe drought stress shown by APARNDVI and
APAREVI were lower than those shown by SIF and GPP in February. In March, the area percentages of
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extreme drought stress (<−1.5σ) shown by APARNDVI (7.8%) and APAREVI (8.9%) were much higher
than those shown by GPP and SIF.Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 19 
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Figure 3. The dynamics of the averaged GPP, SIF, APARNDVI, APAREVI, temperature, precipitation and
PAR during the 2009 drought event (from January to March). The changes of all the aforementioned
variables for general Victoria region, crop land and evergreen broadleaf forest land are shown in (a),
(b) and (c), respectively. The spatial averages of GPP, SIF, APARNDVI, APAREVI and PAR are taken from
all 0.5º pixels for each studied region. The blue lines represent the mean level covering the period of
2007–2013. The error bars are the ±1 standard deviation, which was obtained from the zonal average of
the pixel-wise standard deviation. The spatial averages of temperature and precipitation are obtained
from these stations located in each studied region, and the ±1 standard deviations of temperature and
precipitation were calculated by the spatial averages over 2007–2013 across these stations located in
each studied region.
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Figure 5. Monthly dynamics of the anomaly area percentages of vegetation activity revealed by GPP, SIF,
APARNDVI and APAREVI; σ is the standard deviation of monthly GPP, SIF, APARNDVI and APAREVI

over 2007–2013. Red and green columns represent negative and positive anomalies, respectively.
The results of general Victoria region, crop land and evergreen broadleaf forest land are shown in (a),
(b) and (c), respectively.

Figure 5b,c show the percentages of negative and positive anomaly areas calculated by the pixels
located in crop land and evergreen broadleaf forest land, respectively. For crop land, results for SIF,
APARNDVI and APAREVI were overall consistent. In February, the area percentage of severe drought
stress (<−1σ) shown by SIF was higher than those shown by APARNDVI and APAREVI. In March,
the area percentages of extreme drought stress (<−1.5σ) shown by APARNDVI and APAREVI were
7.8% and 8.9%, respectively, while no extreme drought-stressed area was indicated by GPP or SIF.
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Regarding evergreen broadleaf forest land, APARNDVI and APAREVI showed positive anomalies and
SIF exhibited a high area percentage for the weak positive anomaly of [0, 1σ) in January. In February,
the area percentage of the drought stress (<0) shown by SIF was higher than those shown by APARNDVI

and APAREVI. In March, APARNDVI and APAREVI showed more severe drought losses (<−1σ) than
did SIF and GPP.

4.2. General Analyses of the Responses of FLUXCOM GPP, SIF, APARNDVI and APAREVI to Drought

In this section, we explored the sensitivities of GPP and vegetation proxies to drought-related
meteorology anomalies using the ARx model. Since the sensitivity of vegetation productivity to
high temperature is variable in different seasons [50], we first analyzed the relationships between
GPP and temperature based on data from 1982 to 2013 to obtain the annual-temperature-sensitive
period. Figure 6 shows distinct seasonal features between the temperature and GPP for the general
region of Victoria (Figure 6a), crop land (Figure 6b) and evergreen broadleaf forest land (Figure 6c).
It is shown that the distribution of data points in GPP-temperature space is similar to a triangle,
and GPP showed contrasting responses to temperature in different seasons. For the general area of
Victoria, GPP decreases with increasing temperature in late spring (i.e., October and November) and
summer. The vegetation productivity is slightly enhanced in autumn and barely changes in winter by
increased temperature. The period with the highest GPP-temperature sensitivity is from October to
February. The feature of crop land is similar to the result generated for the general region of Victoria.
For evergreen broadleaf forest land, the annual-temperature-sensitive period when GPP decreased by
increased temperature is from November to February.
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Figure 6. Relationships between GPP and temperature according to different seasons based on data
from 1982 to 2013 in Victoria. Results for the general Victoria region, crop land and evergreen broadleaf
forest land are shown in (a), (b) and (c), respectively. The data point denotes the monthly zonal average
of FLUXCOM GPP and temperature from meteorology stations for each studied region.

Based on the annual-temperature-sensitive period, we explored the impacts of temperature,
water availability and PAR on vegetation activity indicated by GPP and vegetation proxies using the
ARx model regarding memory effects. The sensitivities of these vegetation variables (e.g., GPP, SIF,
APARNDVI and APAREVI) anomalies to temperature, water availability, PAR and the one-month-lagged
vegetation activity are respectively represented by aT, aW, aP and aM, respectively. The ARx model
output results for general Victoria region, crop land and evergreen broadleaf forest land are shown in
Table 1. The aforementioned variables anomalies have been standardized using z-score standardization
to assure comparability between the coefficients in the ARx model.

Both GPP and SIF exhibit high levels of confidence, and the low root mean square error (RMSE)
for general Victoria region. SIF gains the highest model precision (R2 = 0.72) compared with APARNDVI

(R2 = 0.29) and APAREVI (R2 = 0.20). It is interpreted that both GPP and SIF anomalies can be explained
by meteorology anomalies and memory effects. aT estimated by SIF is more significant than those
estimated by APARNDVI and APAREVI. aP exhibits negative effects on vegetation activity. aW estimated
by all the vegetation variables are similar in the ARx model. aM indicated by GPP, SIF and APARNDVI

are significant. It is interpreted that memory effects also have important impacts on vegetation
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productivity compared with other meteorology factors. The sensitivities of theses vegetation variables
anomalies to water availability anomalies are stronger than those to temperature and PAR anomalies.
Therefore, water availability is regarded as an important meteorology-forcing factor for plant activity
during October-February in the studied area. These results agree well with the previous study that
investigated water limitation and vegetation memory effects in Victoria [48].

Table 1. Parameters of the ARx models for general Victoria region, crop land and evergreen broadleaf
forest land in Victoria. Results are only based on data only for the annual-temperature-sensitive period
(i.e., from October to February for the general Victoria region and crop land and from November to
February for evergreen broadleaf forest land) from 2007 to 2013. “*”, “**” and “***” represent 0.1, 0.05
and 0.01 significant levels, respectively.

Vegetation
variables

Parameters of the ARx Model for General Victoria Region

aT aW aP aM R2 RMSE p Value

GPP −0.24 *** 0.29 *** −0.25 *** 0.23 *** 0.75 0.51 0.00
SIF −0.22 ** 0.28 *** −0.25 * 0.24 * 0.72 0.35 0.00

APARNDVI −0.16 0.26 * −0.13 * 0.16 ** 0.29 0.78 0.01
APAREVI −0.11 0.24 ** −0.08 * 0.11 0.20 0.83 0.21

Vegetation
variables

Parameters of the ARx Model for Crop Land in Victoria

aT aW aP aM R2 RMSE p Value

GPP −0.19 *** 0.32 *** −0.26 *** 0.27 *** 0.77 0.48 0.00
SIF −0.17 *** 0.32 *** −0.24 *** 0.23 *** 0.61 0.63 0.00

APARNDVI −0.16 ** 0.31 *** −0.15 * 0.16 * 0.38 0.77 0.01
APAREVI −0.13 * 0.26 ** −0.08 0.12 0.20 0.79 0.34

Vegetation
variables

Parameters of the ARx Model for Evergreen Broadleaf Forest Land in Victoria

aT aW aP aM R2 RMSE p Value

GPP −0.17 * 0.27 *** −0.28 *** 0.18 ** 0.48 0.71 0.01
SIF −0.10 0.22 * −0.23 * 0.22 0.36 0.50 0.01

APARNDVI 0.17 0.70 0.60 0.53 0.19 0.64 0.07
APAREVI 0.24 0.97 0.62 0.44 0.33 0.45 0.46

Regarding crop land, GPP and SIF exhibit similar results (high levels of confidence and low RMSE)
to those generated for general Victoria region. It is interpreted that both GPP and SIF variations can be
explained by meteorology anomalies in crop land. aT and aW indicated by APARNDVI and APAREVI

are significant (p < 0.1) in crop land. In contrast, none of the coefficients for APARNDVI and APAREVI

are significant for evergreen broadleaf forest land. Thus, APARNDVI and APAREVI anomalies cannot
be estimated by meteorology anomalies in evergreen broadleaf forest land. For evergreen broadleaf
forest land, the coefficients aT and aM indicated by SIF are not significant. aW and aP generated by SIF
are more significant than those indicated by APARNDVI and APAREVI. This result indicates that SIF
can be explained by water availability and PAR to some degree in evergreen broadleaf forest land.

To further explore the consistency of GPP and vegetation proxies under drought conditions,
we compared the correlations between the normalized GPP anomaly and the normalized anomalies of
vegetation proxies for general Victoria and different land types (Figure 7). It is shown by Figure 7 that
strong correlations between the normalized SIF anomaly and the normalized GPP anomaly can be
found for general Victoria, crop land area and evergreen broadleaf forest land area. Compared with
SIF anomaly, APARNDVI and APAREVI anomalies not only show worse correlations to GPP anomaly,
but also exhibit lower slopes of regressions to GPP anomaly. These results indicate that SIF anomaly is
more sensitive to changes in GPP anomaly than are APARNDVI and APAREVI. In general, anomalies
of vegetation proxies exhibit stronger correlation with GPP anomaly in crop land than in evergreen
broadleaf forest land.
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Figure 7. Relationships between the normalized GPP anomaly and the normalized anomalies of SIF,
APARNDVI, and APAREVI from 2007 to 2013. Only data within the annual-temperature-sensitive
period are included here: results for the general Victoria region (a) and crop land (b) are based on
multi-year data from October to February and results for evergreen broadleaf forest land (c) are based
on multi-year data from November to February. The data point denotes the monthly zonal average of
the pixel-wise anomaly for each studied region.

5. Discussion

SIF showed a much larger decrease, which was consistent with GPP declines, than did APARNDVI

and APAREVI during the 2009 drought event (Figure 3). According to Equation (2), SIF decrease is
expected to be induced by both APAR (or FPAR) and εF losses [27], while changes in APARNDVI and
APAREVI are induced by PAR and FPAR estimated by VIs. For the 2009 drought event, PAR showed
positive anomalies in January and February. It is interpreted that negative precipitation anomalies
are often accompanied by positive PAR anomalies during the drought period, due to less cloud [52].
Besides, greenness-related VIs have no direct link to photosynthetic function beyond their sensitivity
to canopy structure and pigment concentration [20]. The responses of VIs to drought may be different,
because changes in vegetation canopy vary across different biomes under drought conditions [11].
In February 2009 (Figure 4), APARNDVI and APAREVI anomalies did not reflect the drought-induced
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vegetation productivity losses in southeastern Victoria, where evergreen broadleaf forest consists of
the main land cover type. For evergreen broadleaf forest ecosystems, canopy changes are minor and
GPP anomalies mainly come from the εP limitations on the photosynthetic activities during drought
conditions [11]. However, canopy changes are dominant for non-forest ecosystems under drought
stress [11,53]. Previous studies have shown that the leaf area index (LAI) has a good correlation with
GPP under drought conditions in non-forest ecosystems [11,53]. Thus, VIs related to the properties
of vegetation canopy and leaf greenness can better reflect the vegetation productivity anomalies of
crops than those of evergreen broadleaf forest [54]. The ARx model provides an indication of the
short-term impacts of meteorology anomalies on vegetation productivity, including memory effects.
In Table 1, memory effects to GPP and SIF cannot be ignored compared to meteorology stress. It is
interpreted that anomalies in vegetation productivity might result from either past meteorology
anomalies or current stress conditions [51]. The values of aM and aT induced by APARNDVI are similar
for general Victoria region and crop land. These results are consistent with the results of GPP and
SIF. aW estimated by GPP and SIF in crop land are higher than in evergreen broadleaf forest land.
It indicates that the sensitivity of crops to water availability is stronger than that of evergreen broadleaf
forest. This result might be related to the different resistances to water availability between crop and
forest ecosystems. Forest ecosystems have deeper roots and a higher capability to utilize soil water
compared with crop ecosystems [11]. Therefore, forest ecosystems are more resistant to water stress
than are crop ecosystems. In general, SIF anomaly can be explained by the combined stress from
temperature, water availability and PAR for general Victoria region and crop land. The sensitivity of
SIF to meteorology anomalies provides its potential superiority for monitoring vegetation productivity
variations accurately under drought conditions.

SIF anomaly showed a stronger linear relationship with GPP anomaly than did APAR anomalies
(Figure 7). This result may be related to the relationship between εP and εF. Verma et al. [41] reported
a strong linear relationship between εF and εP. According to Equations (1) and (2), although both SIF
and APAR are responsive to FPAR, which is related to chlorophyll content and LAI, SIF, but not APAR,
is sensitive to variations in εF. Therefore, GPP anomaly has a better consistency with SIF anomaly than
with APAR anomalies.

SIF was retrieved using a simplified radiative transfer model together with a principal component
(PC) analysis to disentangle the spectral signatures of atmospheric absorption, surface reflectance
and fluorescence emission. [42,43]. Previous studies have discussed the effect of the fit window,
the numbers of PCs, and the reference area for PC determination on the retrieval outcome [42,43,55].
Köhler et al. depicted the standard error of the mean of GOME-2 SIF composites for January 2011,
and the results showed that the standard error of the mean was generally low (<0.15 mW/m2/sr/nm)
for GOME-2 SIF in Australia [42]. The coarse-spatial- and low-temporal-resolution data source for
SIF can constrain its potential. The feasibility of SIF should be further investigated using data with a
higher spatio-temporal resolution in the future [56].

It has been reported that FLUXCOM GPP data contain uncertainty regarding the evergreen
broadleaf forest land (especially in the Amazon and Indonesia) [44]. To evaluate the quality of the
regional GPP product used in this study, especially for evergreen broadleaf forest land in Victoria,
we validated FLUXCOM GPP against eddy-covariance-based GPP estimations (Appendix B Figure A1).
The results indicate that the change tendency of FLUXCOM GPP is similar to that of flux tower-derived
GPP. Overall, FLUXCOM GPP can be used to investigate the effects of meteorology anomalies on
vegetation productivity [45] and capture the considerable drawdown of vegetation activities during
the 2009 drought event in Victoria.

6. Conclusions

In this study, we analyzed the responses of GPP, SIF, APARNDVI and APAREVI to drought during
the 2009 drought event in Victoria. For general Victoria region, satellite SIF had a more consistent
decline with GPP losses induced by drought stress than did APARNDVI and APAREVI. We also analyzed
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and compared the responses of these vegetation variables to drought for the main vegetation types
in Victoria. APARNDVI and APAREVI had obvious lagged responses compared with SIF in evergreen
broadleaf forest land. The spatial and temporal pattern results indicate that the sensitivity of SIF to
drought is stronger than those of APARNDVI and APAREVI for this 2009 drought event in Victoria.

To better illustrate the applicability of SIF for monitoring drought effects, we estimated the
sensitivities of vegetation variables to meteorology anomalies using the ARx model, and analyzed
the consistency of GPP anomaly and vegetation proxies anomalies for the main ecosystem types
in Victoria. The ARx model results indicate that GPP and SIF are more sensitive to temperature
stress for general Victoria region than are APAR anomalies. Compared with APAR anomalies,
SIF anomaly can be explained better by meteorology anomalies for evergreen broadleaf forest land.
In addition, GPP anomaly has a more significant relationship with SIF anomaly than with APARNDVI

and APAREVI anomalies, especially in evergreen broadleaf forest land. Thus, SIF can accurately track
and evaluate vegetation productivity variations under meteorology stress. SIF provides a powerful
tool for accurately monitoring and assessing the response of plant productivity to drought.
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Appendix A

Table A1. Temperature Stations.

Number Site Name Site Number Latitude Longitude

1 Mildura Airport 76031 142.0867 −34.2358
2 Ouyen (Post Office) 76047 142.3125 −35.0682
3 Swan Hill Post Office 77042 143.5533 −35.3406
4 Echuca Aerodrome 80015 144.7642 −36.1647
5 Tatura Institute of Sustainable Agriculture 81049 145.2672 −36.4378
6 Rutherglen Research 82039 146.5100 −36.1000
7 Wangaratta Aero 82138 146.3056 −36.4206
8 Gabo Island Lighthouse 84016 149.9200 −37.5700
9 East Sale Airport 85072 147.1322 −38.1156
10 Bairnsdale Airport 85279 147.5700 −37.8800
11 Moorabbin Airport 86077 145.0962 −37.9800
12 Melbourne Airport 86282 144.8321 −37.6655
13 Laverton Raaf 87031 144.7566 −37.8565
14 Lake Eildon 88023 145.9124 −37.2313
15 Maryborough 88043 143.7300 −37.0600
16 Mangalore Airport 88109 145.1900 −36.8900
17 Ararat Prison 89085 142.9786 −37.2769
18 Cape Otway Lighthouse 90015 143.5128 −38.8556
19 Portland (Cashmore Airport) 90171 141.4705 −38.3148
20 Hamilton Airport 90173 142.0600 −37.6500
21 Mortlake Racecourse 90176 142.7744 −38.0737
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Table A2. Precipitation Stations.

Number Site Name Site Number Latitude Longitude

1 Kaniva 78078 141.2427 −36.3725
2 Mildura Airport 76031 142.0867 −34.2358
3 Nulkwyne Kiamal 76043 142.1800 −34.9300
4 Ouyen (Post Office) 76047 142.3100 −35.0700
5 Dimboola 78010 142.0327 −36.4644
6 Warranooke (Glenorchy) 79016 142.7303 −36.7281
7 St. Arnaud 79040 143.2644 −36.6175
8 Kerang 80023 143.9197 −35.7236
9 Wedderburn (Post Office) 80061 143.6123 −36.4183
10 Avoca (Post Office) 81000 143.4747 −37.0887
11 Dookie Agricultural College 81013 145.7048 −36.3717
12 Dunolly 81085 143.7295 −36.8593
13 Beechworth Composite 82001 146.7132 −36.3702
14 Chiltern (Post Office) 82010 146.6106 −36.1491
15 Tallangatta Dcnr 82045 147.1764 −36.2161
16 Bruthen (Post Office) 84003 147.8314 −37.7073
17 Gabo Island Lighthouse 84016 149.9158 −37.5679
18 Foster (Post Office) 85029 146.1997 −38.6520
19 Yan Yean 86131 145.1259 −37.5552
20 Ballan 87006 144.2295 −37.6018
21 Bungaree (Kirks Reservoir) 87014 143.9322 −37.5512
22 Meredith (Darra) 87043 144.1492 −37.8197
23 Alexandra (Post Office) 88001 145.7116 −37.1916
24 Clunes 88015 143.7776 −37.3049
25 Daylesford 88020 144.1575 −37.3432
26 Maryborough 88043 143.7320 −37.0560
27 Kinglake West (Wallaby Creek) 88060 145.2143 −37.4475
28 Cavendish (Post Office) 89009 142.0414 −37.5267
29 Wickliffe 89033 142.7253 −37.6901
30 Cape Bridgewater 90013 141.4060 −38.3215
31 Cape Otway Lighthouse 90015 143.5128 −38.8556
32 Penshurst (Post Office) 90063 142.2895 −37.8750

Appendix B

To evaluate the quality of regional GPP product used in this study, especially for evergreen
broadleaf forest land in Victoria, we validated FLUXCOM GPP against eddy-covariance-based GPP
estimations. GPP data for AU-Wom flux tower site were obtained from the FLUXNET 2015 (website:
http://fluxnet.fluxdata.org/data/download-data/). Compared to other towers covering evergreen
broadleaf forest in Victoria, AU-Wom flux tower (37◦25′20”S, 144◦05′40”E) has longer temporal
coverage and falls into the FLUXCOM GPP gird containing more pixels flagged as evergreen broadleaf
forest. The analysis was conducted from 2010 to 2013, when both FLUXNET GPP and FLUXCOM GPP
data were available.

http://fluxnet.fluxdata.org/data/download-data/
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