Geodetic Model of the 2017 Mw 6.5 Mainling Earthquake Inferred from GPS and InSAR Data
Abstract
:1. Introduction
2. Seismological Background
3. Geodetic Data
3.1. GPS Data
3.2. InSAR Data
4. Finite Fault Modeling
4.1. Fault Geometry
4.2. Checkerboard Test
4.3. Modeling Results for the 2017 Mw 6.5 Mainling Earthquake
5. Discussion
5.1. Single-Plane Rupture or Double-Plane Rupture
5.2. Stress/Strain State before and after the Mainling Earthquake
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Shan, X.; Zhang, Y.; Zhao, D.; Qu, C. Use of seismic waveforms and InSAR data for determination of the seismotectonics of the mainling Ms 6.9 earthquake on NOV.18, 2017. Seismol. Geol. 2018, 40, 79–100. [Google Scholar]
- Bai, L.; Li, G.; Song, B. The source parameters of the M 6.9 Mainling, Tibet earthquake and its tectonic implications. Chin. J. Geophys. 2017, 60, 4956–4963. (In Chinese) [Google Scholar]
- Yin, X.; Zhou, B.; Chen, J.; Wei, W.; Xie, C.; Guo, Z. Spatial-temporal distribution characteristics of early aftershocks following the M6.9 Mainling earthquake in Tibet, China. Chin. J. Geophys. 2018, 61, 2322–2331. (In Chinese) [Google Scholar]
- Han, J.; Yang, J.; Wang, W. Relocation of the aftershock sequence of Mainling Ms 6.9 earthquake in 2017 and spatio-temporal variation characteristics of b-value. Acta Seismol. Sin. 2019, 41, 169–180. [Google Scholar]
- Wei, W.; Xie, C.; Zhou, B.; Guo, Z.; Yin, X.; Li, B.; Wang, P. Location of the mainshock and aftershock sequences of the M 6.9 Mainling earthquake, Tibet. Chin. Sci. Bull. 2018, 63, 1493–1501. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Chen, W.; Wen, Y.; Liu, G.; Nie, Z.; Qiao, X.; Xu, C. Insight into the 2017 Mainling Mw 6.5 earthquake: A complicated thrust event beneath the Namche Barwa syntaxis. Earth Planets Space 2019, 71, 71. [Google Scholar] [CrossRef]
- Hu, S.; Yao, H. Crustal velocity structure around the eastern Himalayan syntaxis: Implications for the nucleation mechanism of the 2017 Ms 6.9 Mainling earthquake and regional tectonics. Tectonophys 2018, 744, 1–9. [Google Scholar] [CrossRef]
- Wang, W.; Yang, J.; Wang, Y.; Jiang, X.; Zheng, Y. Imaging velocity structures and aftershock distributions in the source region of the 2017 Mainling M 6.9 earthquake. Chin. J. Geophys. 2019, 62, 2048–2058. (In Chinese) [Google Scholar]
- Li, W.; Xu, C.; Yi, L.; Wen, Y.; Zhang, X. Source parameters and seismogenic structure of the 2017 Mw 6.5 Mainling earthquake in the Eastern Himalayan Syntaxis (Tibet, China). J. Asian Earth Sci. 2019, 169, 130–138. [Google Scholar] [CrossRef]
- China Earthquake Datacenter. Available online: http://data.earthquake.cn/index.html (accessed on 6 October 2017).
- Xie, C. A Study on Tectonic Geomorphology of Namche Barwa and Activity of the Faults. Ph.D. Thesis, Institute of Geology, China Earthquake Adminstration, Beijing, China, 2019. (In Chinese). [Google Scholar]
- The 1:250000 Geological Map of Tibet Autonomous Region. Chengdu Inst. Geol. Miner. Resour. China 2003, 1. (In Chinese)
- Bai, L.; Li, G.; Khan, N.; Zhao, J.; Ding, L. Focal depths and mechanisms of shallow earthquakes in the Himalayan–Tibetan region. Gondwana Res. 2017, 41, 390–399. [Google Scholar] [CrossRef]
- Xu, Z.; Ji, S.; Cai, Z.; Zeng, L.; Geng, Q.; Cao, H. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: Constraints from deformation, fabrics and geochronology. Gondwana Res. 2012, 21, 19–36. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.; Freymueller, J.; Bilham, R.; Larson, K.; Lai, X.; Liu, J. Present-day crustal deformation in China constrained by Global Positioning System Measurements. Science 2001, 294, 574–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Shen, Z.; Wang, M.; Gan, W.; Bürgmann, R.; Molnar, P.; Hanrong, S. Continuous deformation of the Tibetan Plateau from Global Positioning System data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Gan, W.; Zhang, P.; Shen, Z.; Niu, Z.; Wang, M.; Wan, Y.; Cheng, J. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. 2007, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Gan, W.; Shen, C.; Xiao, G.; Liu, J.; Chen, W.; Zhou, D. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res. 2013, 118, 5722–5732. [Google Scholar] [CrossRef]
- Burg, J.; Nievergelt, P.; Oberli, F.; Seward, D.; Davy, P.; Maurin, J.; Diao, Z.; Meier, M. The Namche Barwa syntaxis: Evidence for exhumation related to compressional crustal folding. J. Asian Earth Sci. 1998, 16, 239–252. [Google Scholar] [CrossRef]
- Ding, L.; Kapp, P.; Wan, X. Paleocene–Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics 2005, 24, TC3001. [Google Scholar] [CrossRef] [Green Version]
- Tapponnier, P.; X, Z.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Yang, J. Oblique stepwise rise and growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Wang, P.; Scherler, D.; Liu-Zeng, J.; Mey, J.; Avouac, J.; Zhang, Y.; Shi, D. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet. Science 2014, 346, 978–981. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Molnar, P. Seismic moments of major earthquakes and the average rate of slip in central Asia. J. Geophys. Res. 1977, 82, 2945–2969. [Google Scholar] [CrossRef]
- Herring, T.; King, R.; Floyd, M.; McClusky, S. GAMIT Reference Manual. GPS Analysis at MIT GLOBK, Release 10.6. Available online: http://www-gpsg.mit.edu/~simon/gtgk/GAMIT_Ref.pdf (accessed on 6 October 2017).
- Saastamoinen, J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites. Geophys. Monogr. Ser. 2013, 247–251. [Google Scholar]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. In Proceedings of the Ers-Envisat Symposium, Gothenburg, Sweden, 16–20 October 2000; p. 1620. [Google Scholar]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Processing strategies for phase unwrapping for INSAR applications. In Proceedings of the European Conference on Synthetic Aperture Radar, Cologne, Germany, 4–6 June 2002; pp. 353–356. [Google Scholar]
- Shen, Z.; Sun, J.; Zhang, P.; Wan, Y.; Wang, M.; Bürgmann, R.; Zeng, Y.; Gan, W.; Liao, H.; Wang, Q. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nat. Geosci. 2009, 2, 718. [Google Scholar] [CrossRef]
- Ben-Menahem, A.; Singh, S. Multipolar elastic fields in a layered half space. Bull. Seismol. Soc. Am. 1968, 58, 1519–1572. [Google Scholar]
- Singh, S. Static deformation of a multilayered half-space by internal sources. J. Geophys. Res. 1970, 75, 3257–3263. [Google Scholar] [CrossRef]
- Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar]
- Wang, R.; Diao, F.; Hoechner, A. SDM—A geodetic inversion code incorporating with layered crust structure and curved fault geometry. In Proceedings of the General Assembly European Geosciences Union, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Wang, L.; Hainzl, S.; Zöller, G.; Holschneider, M. Stress-and aftershock-constrained joint inversions for coseismic and postseismic slip applied to the 2004 M 6.0 Parkfield earthquake. J. Geophys. Res. 2012, 117, B07406. [Google Scholar] [CrossRef] [Green Version]
- Scholz, C. The Mechanics of Earthquakes and Faulting; Cambridge University Press: New York, NY, USA, 1990. [Google Scholar]
- King, G.; Stein, R.; Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 1994, 84. [Google Scholar]
- Yin, F.; Han, L.; Jiang, C.; Shi, Y. Interaction between the 2017 M 6.9 Mainling earthquake and the 1950 M 8.6 Zayu earthquake and their impacts on surrounding major active faults. Chin. J. Geophys. 2018, 61, 3185–3197. (In Chinese) [Google Scholar]
- Scholz, C. On the stress dependence of the earthquake b value. Geophys. Res. Lett. 2015, 42, 1399–1402. [Google Scholar] [CrossRef] [Green Version]
- Guha, S. Premonitory crustal deformations, strains and seismotectonic features (b-values) preceding Koyna earthquakes. Tectonophysics 1979, 52, 549–559. [Google Scholar] [CrossRef]
- Imoto, M. Changes in the magnitude—Frequency b-value prior to large (M ≥ 6.0) earthquakes in Japan. Tectonophysics 1991, 193, 311–325. [Google Scholar] [CrossRef]
- Molchan, G.; Kronrod, T.; Nekrasova, A. Immediate foreshocks: Time variation of the b-value. Phys. Earth Planet Inter. 1999, 111, 229–240. [Google Scholar] [CrossRef]
- Molchan, G.; Dmitrieva, O. Dynamics of the magnitude—frequency relation for foreshocks. Phys. Earth Planet Inter. 1990, 61, 99–112. [Google Scholar] [CrossRef]
- Nanjo, K.; Hirata, N.; Obara, K.; Kasahara, K. Decade-scale decrease in b value prior to the M 9-class 2011 Tohoku and 2004 Sumatra quakes. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Shi, H.; Meng, L.; Zhang, X.; Chang, Y.; Yang, Z.; Xie, W.; Katsumi, H.; Han, P. Decrease in b value prior to the Wenchuan earthquake (Ms 8.0). Chin. J. Geophys. 2018, 61, 1874–1882. (In Chinese) [Google Scholar]
- Sreejith, K.; Sunil, P.; Agrawal, R.; Saji, A.; Rajawat, A.; Ramesh, D. Audit of stored strain energy and extent of future earthquake rupture in central Himalaya. Sci. Rep. 2018, 8, 16697. [Google Scholar] [CrossRef]
- Swiss Seismological Service. Available online: http://www.seismo.ethz.ch/en/research-and-teaching/products-software/software/ZMAP/ (accessed on 6 October 2017).
- Li, Y.; Shan, X.; Qu, C.; Liu, Y.; Han, N. Crustal deformation of the Altyn Tagh fault based on GPS. J. Geophys. Res. 2018, 123, 10309–10322. [Google Scholar] [CrossRef]
- Li, Y.; Shan, X.; Song, X.; Jiang, Y.; Gan, W.; Qu, C.; Wang, Z. Fault locking and slip rate deficit on the middle and southern segment of the Tancheng-Lujiang fault inverted from GPS data. Chin. J. Geophys. 2016, 59, 4022–4034. (In Chinese) [Google Scholar]
Source | Dataset | South Dip (°) | North Dip (°) | ||||
---|---|---|---|---|---|---|---|
Strike | Dip | Rake | Strike | Dip | Rake | ||
USGS | Teleseismic | 132 | 55 | 95 | 303 | 36 | 83 |
GCMT | Teleseismic | 109 | 29 | 56 | 328 | 66 | 108 |
CENC [10] | Regional seismic data | 130 | 27 | 90 | 310 | 63 | 90 |
Bai et al. [13] | Regional seismic data | 328 | 66 | 108 | |||
Liu et al. [1] | Teleseismic and InSAR | 308 | 76 | 82.2 | |||
Wei et al. [5] | Aftershock | 319.9 | 61.7 | 101 | |||
Xiong et al. [6] | InSAR and aftershock | 328 | 63 | 104 | |||
328 | 72 | 97 |
Site | Longitude (°E) | Latitude (°N) | East (mm) | North (mm) | Cen a |
---|---|---|---|---|---|
0KSM | 94.48 | 29.56 | 2.68 ± 2.10 | 5.20 ± 1.96 | 0.0742 |
973E | 94.72 | 29.70 | 21.22 ± 2.12 | 4.29 ± 1.70 | 0.0438 |
0YIG | 94.97 | 30.16 | 1.96 ± 2.55 | −2.32 ± 2.73 | −0.0987 |
0BAG | 94.46 | 29.29 | 2.80 ± 3.08 | 0.39 ± 2.77 | 0.0447 |
0MIR | 94.65 | 29.47 | 4.44 ± 4.38 | 6.80 ± 4.38 | −0.1927 |
PAIZ | 94.89 | 29.50 | 3.34 ± 2.50 | 15.26 ± 2.35 | −0.0113 |
973F | 94.79 | 29.94 | 5.37 ± 3.18 | −1.67 ± 2.89 | −0.0786 |
0XWK | 95.38 | 29.93 | −8.06 ± 2.91 | −9.53 ± 2.70 | 0.0610 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, H.; Wang, L.; Gan, W.; Zhang, K.; Li, Y.; Liang, S.; Liu, Y.; Gong, W.; Yin, X. Geodetic Model of the 2017 Mw 6.5 Mainling Earthquake Inferred from GPS and InSAR Data. Remote Sens. 2019, 11, 2940. https://doi.org/10.3390/rs11242940
Jian H, Wang L, Gan W, Zhang K, Li Y, Liang S, Liu Y, Gong W, Yin X. Geodetic Model of the 2017 Mw 6.5 Mainling Earthquake Inferred from GPS and InSAR Data. Remote Sensing. 2019; 11(24):2940. https://doi.org/10.3390/rs11242940
Chicago/Turabian StyleJian, Huizi, Lifeng Wang, Weijun Gan, Keliang Zhang, Yanchuan Li, Shiming Liang, Yunhua Liu, Wenyu Gong, and Xinzhong Yin. 2019. "Geodetic Model of the 2017 Mw 6.5 Mainling Earthquake Inferred from GPS and InSAR Data" Remote Sensing 11, no. 24: 2940. https://doi.org/10.3390/rs11242940
APA StyleJian, H., Wang, L., Gan, W., Zhang, K., Li, Y., Liang, S., Liu, Y., Gong, W., & Yin, X. (2019). Geodetic Model of the 2017 Mw 6.5 Mainling Earthquake Inferred from GPS and InSAR Data. Remote Sensing, 11(24), 2940. https://doi.org/10.3390/rs11242940