Characterization of the Kinematics of Three Bears Landslide in Northern California Using L-band InSAR Observations
Abstract
:1. Introduction
2. Data
3. Methodology
3.1. Interferometric Point Target Analysis (IPTA)
3.2. Small Baseline Subsets (SBAS)
3.3. Two-Dimensional Time-Series Inversion with Multi-Track SAR Datasets
3.4. Deformation in the Down-Slope Direction
4. Results
4.1. Line of Sight (LOS) Deformation Maps
4.2. Two-Dimensional Deformation Estimation by Integrating Ascending and Descending ALOS PALSAR-2 Images
5. Discussions
5.1. Verification of Deformation Results from Multi-Track Satellite Datasets
5.2. Correlation between Landslide Motion and Seasonal Precipitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Sidle, R.; Ochiai, H. Landslides: Processes, Prediction, and Land Use. Water Resources Monograph; American Geophysical Union: Washington, DC, USA, 2006. [Google Scholar]
- Pinyol, N.M.; Alonso, E.E.; Corominas, J.; Moya, J. Canelles landslide: Modelling rapid drawdown and fast potential sliding. Landslides 2012, 9, 33–51. [Google Scholar] [CrossRef]
- Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J. Assessment of ground-based monitoring techniques applied to landslide investigations. Geomorphology 2016, 253, 438–451. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, H.; Li, C.; Lu, G.; Cai, Y.; Zhang, J.; Tan, F. Design and Testing of a Flexible Inclinometer Probe for Model Tests of Landslide Deep Displacement Measurement. Sensors 2018, 18, 224. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, S.; Cesi, C.; Di Maio, C.; Gambino, P.; Merli, K.; Vallario, M.; Vassallo, R. Surface displacements of two landslides evaluated by GPS and inclinometer systems: A case study in Southern Apennines, Italy. Nat. Hazards 2012, 61, 257–266. [Google Scholar] [CrossRef]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Disasters 2017, 4, 9. [Google Scholar] [CrossRef]
- Cignetti, M.; Manconi, A.; Manunta, M.; Giordan, D.; De Luca, C.; Allasia, P.; Ardizzone, F. Taking advantage of the ESA G-POD service to study ground deformation processes in high mountain areas: A Valle d’Aosta case study, northern Italy. Remote Sens. 2016, 8, 852. [Google Scholar] [CrossRef]
- Solari, L.; Del Soldato, M.; Montalti, R.; Bianchini, S.; Raspini, F.; Thuegaz, P.; Bertolo, D.; Tofani, V.; Casagli, N. A Sentinel-1 based hot-spot analysis: Landslide mapping in north-western Italy. Int. J. Remote Sens. 2019, 40, 7898–7921. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Lu, Z.; Zhang, Q.; Fuente, J.D.L. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Pierson, T.C.; Lu, Z.; Kim, J.; Cecere, T.H. Detecting seasonal landslide movement within the Cascade landslide complex (Washington) using time-series SAR imagery. Remote. Sens. Environ. 2016, 187, 49–61. [Google Scholar] [CrossRef]
- Kang, Y.; Zhao, C.Y.; Zhang, Q.; Lu, Z.; Li, B. Application of InSAR techniques to an analysis of the Guanling landslide. Remote Sens. 2017, 9, 1046. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Kang, Y.; Zhang, Q.; Lu, Z.; Li, B. Landslide identification and monitoring along the Jinsha River catchment (Wudongde reservoir area), China, using the InSAR method. Remote Sens. 2018, 10, 993. [Google Scholar] [CrossRef]
- Kang, Y.; Lu, Z.; Zhao, C.Y.; Zhang, Q.; Kim, J.; Niu, Y.F. Diagnosis of Xinmo (China) landslide based on Interferometric Synthetic Aperture Radar observation and modeling. Remote Sens. 2019, 11, 1846. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Forest Service. Three Bears Landslide at Cedar Grove Ranch Lower South Fork Trinity River. Summary Report of a Reconnaissance Field Investigation; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2014.
- California Department of Water Resources, Northern District. South Fork Trinity Watershed Erosion Investigation; California Department of Water Resources, Northern District: Red Bluff, CA, USA, 1979; pp. 1–83.
- Berardino, F.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 4362–4364. [Google Scholar]
- Samsonov, S.V.; d’Oreye, N. Multidimensional small baseline subset (MSBAS) for two-dimensional deformation analysis: Case study Mexico City. Can. J. Remote Sens. 2017, 43, 318–329. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 33. [Google Scholar] [CrossRef]
- Lu, Z.; Dzurisin, D. InSAR Imaging of Aleutian Volcanoes: Monitoring a Volcanic Arc from Space: Springer Praxis Books, Geophysical Sciences; Springer: Berlin/Heidelberg, Germany, 2014; 390p, ISBN 978-3-642-00347-9. [Google Scholar]
- Handwerger, A.L.; Roering, J.J.; Schmidt, D.A.; Rempel, A.W. Kinematics of earthflows in the Northern California Coast Ranges using satellite interferometry. Geomorphology 2015, 246, 321–333. [Google Scholar] [CrossRef]
- Wegmuller, U.; Walter, D.; Spreckels, V.; Werner, C.L. Nonuniform ground motion monitoring with TerraSAR-X persistent scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 2010, 48, 895–904. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Mununta, M.; Mallorqui, J.; Berardino, P.; Sansonsti, E. A small baseline approach for investigating deformation on full resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Sansosti, E.; Casu, F.; Manzo, M.; Lanari, R. Space borne radar interferometry techniques for the generation of deformation time series: An advanced tool for Earth’s surface displacement analysis. Geophys. Res. Lett. 2010, 37, L20305. [Google Scholar] [CrossRef]
- Lee, C.W.; Lu, Z.; Jung, H.S.; Won, J.S.; Dzurisin, D. Surface deformation of Augustine Volcano (Alaska), 1992–2005, from multiple-interferogram processing using a refined SBAS InSAR approach. In The 2006 eruption of Augustine Volcano, Alaska: U.S. Geological Survey Professional Paper 1769; Power, J.A., Coombs, M.L., Freymueller, J.T., Eds.; U.S. Geological Survey: Reston, VA, USA, 2010; Chapter 18; pp. 453–465. Available online: http://pubs.usgs.gov/pp/1769/chapters/p1769_chapter18.pdf (accessed on 4 November 2019).
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with the use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Samsonov, S.; d’Oreye, N. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province. Geophys. J. Int. 2012, 191, 1095–1108. [Google Scholar]
- Hu, X.; Lu, Z.; Pierson, T.C.; Kramer, R.; George, D.L. Combining InSAR and GPS to Determine Transient Movement and Thickness of a Seasonally Active Low-Gradient Translational Landslide. Geophys. Res. Lett. 2018, 45, 1453–1462. [Google Scholar] [CrossRef]
- Hilley, G.E.; Bürgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of slow-moving landslides from permanent scatterer analysis. Science 2004, 304, 1952–1955. [Google Scholar] [CrossRef] [PubMed]
- Drought in California. Available online: https://www.drought.gov/drought/states/california (accessed on 4 November 2019).
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Montalti, R.; Solari, L.; Tofani, V.; Casagli, N. Persistent Scatterers continuous streaming for landslide monitoring and mapping: The case of the Tuscany region (Italy). Landslides 2019, 16, 2033–2044. [Google Scholar] [CrossRef]
- Rosi, A.; Lagomarsino, D.; Rossi, G.; Segoni, S.; Battistini, A.; Casagli, N. Updating EWS rainfall thresholds for the triggering of landslides. Nat. Hazards 2015, 78, 297–308. [Google Scholar] [CrossRef]
- Calabro, M.D.; Schmidt, D.A.; Roering, J.J. An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef]
- Stevens, M. Analyzing the Preliminary Movement of the East Branch of East Weaver Creek Landslide Prior to the Catastrophic Failure in Spring 2011 as Detected by InSAR. Master’s Thesis, Humboldt State University, Arcata, CA, USA, 2014. [Google Scholar]
Sensor | ALOS PALSAR-1 | ALOS PALSAR-2 | ||||
---|---|---|---|---|---|---|
Path | 223 | 224 | 68 | 69 | 170 | 171 |
Orbital direction | ascending | ascending | ascending | ascending | descending | descending |
Heading (°) | ‒10.18 | ‒9.83 | ‒10.88 | ‒9.73 | ‒170.17 | –169.01 |
Incidence angle (°) | 37.52 | 40.18 | 30.45 | 40.63 | 39.60 | 29.22 |
Number of scenes | 19 | 21 | 6 | 6 | 7 | 7 |
Acquisition period (yyyymmdd) | 20070314–20110325 | 20070213–20110109 | 20150210–20171114 | 20140914–20171105 | 20150525–20171023 | 20150307–20171111 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lu, Z.; Zhao, C.; Kim, J.; Zhang, Q.; de la Fuente, J. Characterization of the Kinematics of Three Bears Landslide in Northern California Using L-band InSAR Observations. Remote Sens. 2019, 11, 2726. https://doi.org/10.3390/rs11232726
Liu Y, Lu Z, Zhao C, Kim J, Zhang Q, de la Fuente J. Characterization of the Kinematics of Three Bears Landslide in Northern California Using L-band InSAR Observations. Remote Sensing. 2019; 11(23):2726. https://doi.org/10.3390/rs11232726
Chicago/Turabian StyleLiu, Yuanyuan, Zhong Lu, Chaoying Zhao, Jinwoo Kim, Qin Zhang, and Juan de la Fuente. 2019. "Characterization of the Kinematics of Three Bears Landslide in Northern California Using L-band InSAR Observations" Remote Sensing 11, no. 23: 2726. https://doi.org/10.3390/rs11232726
APA StyleLiu, Y., Lu, Z., Zhao, C., Kim, J., Zhang, Q., & de la Fuente, J. (2019). Characterization of the Kinematics of Three Bears Landslide in Northern California Using L-band InSAR Observations. Remote Sensing, 11(23), 2726. https://doi.org/10.3390/rs11232726