Ocean Response to Successive Typhoons Sarika and Haima (2016) Based on Data Acquired via Multiple Satellites and Moored Array
Abstract
:1. Introduction
2. Data and Method
2.1. Remote Sensing Data Acquired via Multiple Satellites
2.2. Buoy and Mooring Stations
2.3. Typhoons Sarika and Haima
2.4. Typhoons Sarika and Haima
3. Results
3.1. Results of Remote Sensing Using Multiple Satellite
3.1.1. Cloud and Rainfall
3.1.2. Wind and Sea Surface Heights
3.1.3. Sea Surface Temperature and Salinity
3.2. Buoy and Mooring Observation Results at Station 2
3.2.1. Air–Sea Interface
3.2.2. Ocean Current
3.2.3. Ocean Temperature
3.2.4. Ocean Salinity
3.2.5. Mechanisms of Upper Temperature Response at Station 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Observation at Mooring 1
Instruments | Observation Elements | Designed Depth (m) | Resolution (s) |
---|---|---|---|
SBE-37 | T, S, P | 315/330/345/360/375/400/450/500/L160/L140/L120/L80/L40 | 120 |
SBE-39 | T, P | L200/L180/L100/L60 | 120 |
Seaguard | U, V | 450/600/700/800/L100 | 600 |
RDI 75K-ADCP | U, V | location: 500 m, uplooking; first bin: 24.42 m; last bin: 600.42 m; bin size: 16 m | 600 |
RDI 75K-ADCP | U, V | location: L80 m, downlooking; first bin: 6.17 m; last bin: 110.17 m; bin size: 4 m | 600 |
Appendix B. Bottom Temperature
References
- Babin, S.M.; Carton, J.A.; Dickey, T.D.; Wiggert, J.D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. 2004, 109, C03043. [Google Scholar] [CrossRef]
- Lin, I.-I.; Wu, C.; Chiang, J.C.H.; Sui, C.; Lin, I.; Liu, W.T. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett. 2003, 30, 1131. [Google Scholar] [CrossRef]
- Zhao, H.; Pan, J.; Han, G.; Devlin, A.T.; Zhang, S.; Hou, Y. Effect of a fast-moving tropical storm Washi on phytoplankton in the northwestern South China Sea. J. Geophys. Res. Ocean. 2017, 122, 3404–3416. [Google Scholar] [CrossRef]
- Ning, J.; Xu, Q.; Zhang, H.; Wang, T.; Fan, K. Impact of Cyclonic Ocean Eddies on Upper Ocean Thermodynamic Response to Typhoon Soudelor. Remote Sens. 2019, 11, 938. [Google Scholar] [CrossRef]
- Korty, R.L.; Emanuel, K.A.; Scott, J.R. Tropical Cyclone–Induced Upper-Ocean Mixing and Climate: Application to Equable Climates. J. Clim. 2008, 21, 638–654. [Google Scholar] [CrossRef]
- Emanuel, K.A. Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res. 2001, 106, 14771–14781. [Google Scholar] [CrossRef]
- Sriver, R.L.; Huber, M. Observational evidence for an ocean heat pump induced by tropical cyclones. Nature 2007, 447, 577–580. [Google Scholar] [CrossRef]
- Liu, L.L.; Wang, W.; Huang, R.X. The Mechanical Energy Input to the Ocean Induced by Tropical Cyclones. J. Phys. Oceanogr. 2008, 38, 1253–1266. [Google Scholar] [CrossRef]
- Knaff, J.A.; DeMaria, M.; Sampson, C.R.; Peak, J.E.; Cummings, J.; Schubert, W.H. Upper Oceanic Energy Response to Tropical Cyclone Passage. J. Clim. 2013, 26, 2631–2650. [Google Scholar] [CrossRef]
- Nilsson, J. Energy Flux from Traveling Hurricanes to the Oceanic Internal Wave Field. J. Phys. Oceanogr. 1995, 25, 558–573. [Google Scholar] [CrossRef] [Green Version]
- Schade, L.R.; Emanuel, K.A. The Ocean’s Effect on the Intensity of Tropical Cyclones: Results from a Simple Coupled Atmosphere–Ocean Model. J. Atmos. Sci. 1999, 56, 642–651. [Google Scholar] [CrossRef]
- Emanuel, K.; Desautels, C.; Holloway, C.; Korty, R. Environmental Control of Tropical Cyclone Intensity. J. Atmos. Sci. 2004, 61, 843–858. [Google Scholar] [CrossRef]
- Emanuel, K.A. An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Emanuel, K.A. Thermodynamic control of hurricane intensity. Nature 1999, 401, 665–669. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.; Zhou, L.; Liu, X.; Ding, T.; Zhou, B. Upper ocean response to Typhoon Kalmaegi (2014). J. Geophys. Res. Ocean. 2016, 121, 6520–6535. [Google Scholar] [CrossRef]
- Guan, S.; Zhao, W.; Huthnance, J.; Tian, J.; Wang, J. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. J. Geophys. Res. Ocean. 2014, 119, 3134–3157. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Huang, Y.; Chen, Z.; Liu, J.; Liu, T.; Li, J.; Cai, S.; Ning, D. Horizontal variations of typhoon-forced near-inertial oscillations in the south China sea simulated by a numerical model. Cont. Shelf Res. 2019, 180, 24–34. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S.; Qi, Y.; Jing, Z. Upper ocean near-inertial response to the passage of two sequential typhoons in the northwestern South China Sea. Sci. China Earth Sci. 2019, 62, 863–871. [Google Scholar] [CrossRef]
- Mitarai, S.; McWilliams, J.C. Wave glider observations of surface winds and currents in the core of Typhoon Danas. Geophys. Res. Lett. 2016, 43, 11312–11319. [Google Scholar] [CrossRef]
- D’Asaro, E.A. The Energy Flux from the Wind to Near-Inertial Motions in the Surface Mixed Layer. J. Phys. Oceanogr. 1985, 15, 1043–1059. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.H.; MacKinnon, J.A.; Simmons, H.L.; Nash, J.D. Near-Inertial Internal Gravity Waves in the Ocean. Annu. Rev. Mar. Sci. 2016, 8, 95–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wu, R.; Chen, D.; Liu, X.; He, H.; Tang, Y.; Ke, D.; Shen, Z.; Li, J.; Xie, J.; et al. Net modulation of upper ocean thermal structure by Typhoon Kalmaegi. J. Geophys. Res. Ocean. 2018, 123, 7154–7171. [Google Scholar] [CrossRef]
- Greatbatch, R.J. On the Response of the Ocean to a Moving Storm: Parameters and Scales. J. Phys. Oceanogr. 1984, 14, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Greatbatch, R.J. On the Response of the Ocean to a Moving Storm: The Nonlinear Dynamics. J. Phys. Oceanogr. 1983, 13, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.E. On the Behavior of Internal Waves in the Wakes of Storms. J. Phys. Oceanogr. 1984, 14, 1129–1151. [Google Scholar] [CrossRef] [Green Version]
- Kunze, E. Near-Inertial Wave Propagation in Geostrophic Shear. J. Phys. Oceanogr. 1985, 15, 544–565. [Google Scholar] [CrossRef]
- Hibiya, T.; Niwa, Y. Nonlinear processes of energy transfer from traveling hurricanes to the deep ocean internal wave field. J. Geophys. Res. Space Phys. 1997, 102, 12469–12477. [Google Scholar]
- Meroni, A.N.; Miller, M.D.; Tziperman, E.; Pasquero, C. Nonlinear Energy Transfer among Ocean Internal Waves in the Wake of a Moving Cyclone. J. Phys. Oceanogr. 2017, 47, 1961–1980. [Google Scholar] [CrossRef]
- Price, J.F. Upper Ocean Response to a Hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef] [Green Version]
- Samson, G.; Giordani, H.; Caniaux, G.; Roux, F. Numerical investigation of an oceanic resonant regime induced by hurricane winds. Ocean Dyn. 2009, 59, 565–586. [Google Scholar] [CrossRef]
- Yang, Y.J.; Chang, M.H.; Hsieh, C.Y.; Chang, H.I.; Jan, S.; Wei, C.L. The role of enhanced velocity shears in rapid ocean cooling during Super Typhoon Nepartak 2016. Nat. Commun. 2019, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- Black, W.J.; Dickey, T.D. Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda. J. Geophys. Res. 2008, 113, C08009. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, B.; Liu, G.; Li, X.; Zhang, H.; He, Y. Upper Ocean Response to Typhoon Kalmaegi and Sarika in the South China Sea from Multiple-Satellite Observations and Numerical Simulations. Remote Sens. 2018, 10, 348. [Google Scholar] [CrossRef]
- Cheung, H.-F.; Pan, J.; Gu, Y.; Wang, Z. Remote-sensing observation of ocean responses to Typhoon Lupit in the northwest Pacific. Int. J. Remote Sens. 2012, 34, 1478–1491. [Google Scholar] [CrossRef]
- Price, J.F.; Morzel, J.; Niiler, P.P. Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res. 2008, 113, C07010. [Google Scholar] [CrossRef]
- Chiang, T.L.; Wu, C.R.; Oey, L.Y. Typhoon Kai-Tak: An Ocean’s Perfect Storm. J. Phys. Oceanogr. 2011, 41, 221–233. [Google Scholar] [CrossRef]
- Glenn, S.M.; Miles, T.N.; Seroka, G.N.; Xu, Y.; Forney, R.K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J. Stratified coastal ocean interactions with tropical cyclones. Nat. Commun. 2016, 7, 10887. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Zhang, H.; Chen, D.; Li, C.; Lin, J. Impact of Typhoon Kalmaegi on the South China Sea: Simulations using a fully coupled atmosphere-ocean-wave model. Ocean Model. 2018, 131, 132–151. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, W.-Z.; Shang, S.-P.; Hong, H.-S. Ocean response to typhoons in the western North Pacific: Composite results from Argo data. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2017, 123, 62–74. [Google Scholar] [CrossRef]
- Cheng, L.; Zhu, J.; Sriver, R.L. Global representation of tropical cyclone-induced short-term ocean thermal changes using Argo data. Ocean Sci. 2015, 11, 719–741. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Xu, J.; Sun, C.; Wu, X. An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats. Acta Oceanol. Sin. 2014, 33, 90–101. [Google Scholar] [CrossRef]
- Hsu, P.C.; Ho, C.R. Typhoon-induced ocean subsurface variations from glider data in the Kuroshio region adjacent to Taiwan. J. Oceanogr. 2018, 75, 1–21. [Google Scholar] [CrossRef]
- GirishKumar, M.S.; Suprit, K.; Chiranjivi, J.; Bhaskar, T.V.S.U.; Ravichandran, M.; Shesu, R.V.; Rao, E.P.R. Observed oceanic response to tropical cyclone Jal from a moored buoy in the south-western Bay of Bengal. Ocean Dyn. 2014, 64, 325–335. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Foltz, G.R.; Lee, T.; Murty, V.S.N.; Ravichandran, M.; Vecchi, G.A.; Vialard, J.; Wiggert, J.D.; Yu, L. Ocean-Atmosphere Interactions during Cyclone Nargis. Eos 2009, 90, 53–54. [Google Scholar] [CrossRef]
- Maneesha, K.; Murty, V.; Ravichandran, M.; Lee, T.; Yu, W.; McPhaden, M. Upper ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila. Prog. Oceanogr. 2012, 106, 49–61. [Google Scholar] [CrossRef]
- Baranowski, D.B.; Flatau, P.J.; Chen, S.; Black, P.G. Upper ocean response to the passage of two sequential typhoons. Ocean Sci. 2014, 10, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Li, C. Upper ocean response to the passage of two sequential typhoons. Deep. Sea Res. Part I: Oceanogr. Res. Pap. 2018, 132, 68–79. [Google Scholar] [CrossRef]
- Balaguru, K.; Taraphdar, S.; Leung, L.R.; Foltz, G.R.; Knaff, J.A. Cyclone-cyclone interactions through the ocean pathway. Geophys. Res. Lett. 2014, 41, 6855–6862. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications. Bull. Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Meissner, T.; Wentz, F.J. Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1009–1018. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J.; Le Vine, D.M. The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and SMAP Version 3 Releases. Remote Sens. 2018, 10, 1121. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An Overview of the China Meteorological Administration Tropical Cyclone Database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Price, J.F.; Sanford, T.B.; Forristall, G.Z. Forced Stage Response to a Moving Hurricane. J. Phys. Oceanogr. 1994, 24, 233–260. [Google Scholar] [CrossRef]
- Price, J.F.; Weller, R.A.; Pinkel, R. Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. 1986, 91, 8411–8427. [Google Scholar] [CrossRef] [Green Version]
- Pun, I.F.; Lin, I.I.; Lien, C.C.; Wu, C.C. Influence of the size of Supertyphoon Megi (2010) on SST cooling. Mon. Weather Rev. 2018, 146, 661–677. [Google Scholar] [CrossRef]
- Sanford, T.B.; Price, J.F.; Girton, J.B.; Webb, D.C. Highly resolved observations and simulations of the ocean response to a hurricane. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Sanford, T.B.; Price, J.F.; Girton, J.B. Upper-Ocean Response to Hurricane Frances (2004) Observed by Profiling EM-APEX Floats. J. Phys. Oceanogr. 2011, 41, 1041–1056. [Google Scholar] [CrossRef]
- Xie, X.H.; Shang, X.D.; Chen, G.Y.; Zhang, Y.Z.; Xie, X.; Shang, X.; Van Haren, H.; Chen, G.; Zhang, Y. Observations of parametric subharmonic instability-induced near-inertial waves equatorward of the critical diurnal latitude. Geophys. Res. Lett. 2011, 38, L05603. [Google Scholar] [CrossRef]
- Yan, Y.; Li, L.; Wang, C. The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. J. Geophys. Res. Ocean. 2017, 122, 4829–4844. [Google Scholar] [CrossRef]
- Balaguru, K.; Chang, P.; Saravanan, R.; Leung, L.R.; Xu, Z.; Li, M.; Hsieh, J.-S. Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA 2012, 109, 14343–14347. [Google Scholar] [CrossRef] [PubMed]
- Montuori, A.; Ricchi, A.; Benassai, G.; Migliaccio, M. Sea Wave Numerical Simulation and Verification in Tyrrhenian Costal Area with X-Band Cosmo-Skymed Sar Data. In Proceedings of the ESA, SOLAS & EGU Joint Conference ’Earth Observation for Ocean–Atmosphere Interactions Science’, Frascati, Italy, 29 November–2 December 2011. [Google Scholar]
Data | Website |
---|---|
Cloud-top brightness temperature | http://weather.is.kochi-u.ac.jp/sat/GAME/2016/Oct/IR1 |
Surface wind | http://www.remss.com/measurements/ccmp |
Rainfall | https://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html |
Sea surface height anomaly, geostrophic velocity | http://marine.copernicus.eu |
Sea surface temperature | http://data.remss.com/SST/daily/mw_ir/v05.0/netcdf/2016 |
Sea surface salinity | http://data.remss.com/smap/SSS/V04.0/FINAL/L3/8day_running/2016 |
JTWC best track data | http://www.usno.navy.mil/JTWC |
JMA best track data | http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html |
CMA best track data | http://tcdata.typhoon.gov.cn |
Instruments | Measured Elements | Designed Depth (m) | Resolution (s) |
---|---|---|---|
Gill-MetPak | Meteorology | 4 m above from sea surface | 1 (3600) |
JFE-A7CT | T, S | 12\22\52\68.5\90.5\111\131\142\162\182\202\242\282\322\362\402\442\482 | 300 |
ONT7000 | T | 17\27.5\44\49.5\63\74\85\96\106\147\157\302\342\382\422\462\502 | 1 |
SBE-56 | T | 33\38.5\57.5\79.5\101\116\121\126\121\126\137\152\172\192\222\262 | 1 |
RDI 75K-ADCP | U, V | location: 133 m, uplooking; first bin: 24.74 m; last bin: 136.74 m; bin size: 16 m | 300 |
RDI 300K-ADCP | U, V | location: 1385 m, uplooking; first bin: 15.69 m; last bin: 255.69; bin size: 8 m | 600 |
Instrument | Measured Element | Design Installation Depth (m) | Resolution (s) |
---|---|---|---|
SBE-37 | T, S, P | 300/315/330/345/360/375/400/450/500/L160/L140/L120/L100/L80/L60/L40 | 120 |
SBE-39 | T, P | 600/700/800 | 120 |
Seaguard | U, V | 600/700/800/L80 | 600 |
RDI 75K-ADCP | U, V | Location: 500 m, uplooking; first bin: 24.45 m; last bin: 600.45 m; bin size: 16 m | 600 |
RDI 75K-ADCP | U, V | Location: L80 m, downlooking; first bin: 6.15 m; last bin: 110.15 m; bin size: 4 m | 600 |
Sarika-S1 | Sarika-S2 | Haima-S1 | Haima-S2 | |
---|---|---|---|---|
Longitude (°E) | 112.168 | 114.907 | 112.168 | 114.907 |
Latitude (°N) | 18.036 | 19.469 | 18.036 | 19.469 |
Ocean Depth (m) | ~2400 | ~1450 | ~2400 | ~1450 |
Distance to tropical cyclone track (km) | 15.77 | 254.49 | -535.57 | -208.44 |
Closest time | 10/17, 13:00 | 10/17, 00:00 | 10/20, 18:00 | 10/20, 18:00 |
Sarika | Haima | |
---|---|---|
Maximum wind speed (, m/s) | 38.00 | 42.00 |
Translational speed (, m/s) | 6.53 | 7.18 |
Radius of fastest wind (, km) | 120.0 (37.04) | 150.0 (46.3) |
Mixed layer depth (, m) | 45 | 50 |
Nondimensional translational speed, () | 1.161 (3.760) | 1.021 (3.308) |
Rossby number of mixed layer current, | 0.253 | 0.257 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, X.; Wu, R.; Liu, F.; Yu, L.; Shang, X.; Qi, Y.; Wang, Y.; Song, X.; Xie, X.; et al. Ocean Response to Successive Typhoons Sarika and Haima (2016) Based on Data Acquired via Multiple Satellites and Moored Array. Remote Sens. 2019, 11, 2360. https://doi.org/10.3390/rs11202360
Zhang H, Liu X, Wu R, Liu F, Yu L, Shang X, Qi Y, Wang Y, Song X, Xie X, et al. Ocean Response to Successive Typhoons Sarika and Haima (2016) Based on Data Acquired via Multiple Satellites and Moored Array. Remote Sensing. 2019; 11(20):2360. https://doi.org/10.3390/rs11202360
Chicago/Turabian StyleZhang, Han, Xiaohui Liu, Renhao Wu, Fu Liu, Linghui Yu, Xiaodong Shang, Yongfeng Qi, Yuan Wang, Xunshu Song, Xiaohui Xie, and et al. 2019. "Ocean Response to Successive Typhoons Sarika and Haima (2016) Based on Data Acquired via Multiple Satellites and Moored Array" Remote Sensing 11, no. 20: 2360. https://doi.org/10.3390/rs11202360
APA StyleZhang, H., Liu, X., Wu, R., Liu, F., Yu, L., Shang, X., Qi, Y., Wang, Y., Song, X., Xie, X., Yang, C., Tian, D., & Zhang, W. (2019). Ocean Response to Successive Typhoons Sarika and Haima (2016) Based on Data Acquired via Multiple Satellites and Moored Array. Remote Sensing, 11(20), 2360. https://doi.org/10.3390/rs11202360