Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange
Abstract
1. Introduction
2. Materials and Methods
2.1. Typhoon Data
2.2. Remote Sensing Data and Model Data
2.3. In Situ Data
2.4. Methods
3. Results
3.1. Distribution of the Surface Chl-a
3.2. Remote Sensing Data of Rainfall, SST, and geo-SSCs
3.3. Distribution of the Wind and Wind Stress
3.4. Daily Distribution of the Chl-a, EPV, and SLA
3.5. Distribution of the In Situ Temperature and Salinity Profiles
4. Discussion
4.1. The Increase of the Surface and Euphotic Layer-Integrated Chl-a
4.2. Effect of the Typhoon Intensity and Translation Speed on the Chl-a
4.3. Effect of the Typhoon Wind Pump Induced Upper Ocean Physical Processes on the Surface Chl-a
4.3.1. Effect of the Typhoon-Induced Cyclonic Eddy on the Surface Chl-a
4.3.2. Effect of the Ekman Transport on the Surface Chl-a after the Typhoon
4.3.3. Effect of the SST on the Surface Chl-a after the Typhoon
4.4. Influence of Biochemical Processes on the Chl-a Variability
5. Conclusions
- (1)
- The growth of the surface and euphotic layer-integrated phytoplankton (Chl-a) were affected by the Chl-a entrainment in the MLD through typhoon-induced vertical mixing and entrainment, while the eddy-pumping play a much important role in the Chl-a entrainment after the typhoon;
- (2)
- The eddy-pumping caused by the typhoon-induced cyclonic eddy played the major role in the surface Chl-a increasing rather than other upper ocean physical processes (such as the EPV, the wind-stirring mixing, and the Rossby wave) after typhoon;
- (3)
- The spatial shift between the surface Chl-a and the typhoon-induced cyclonic eddy should be due to the Ekman transport, and the movement of the cyclonic eddy was mainly due to the typhoon wind stress rather than the Rossby wave;
- (4)
- The Net Heat Flux (air–sea exchange) played a key role in indirectly increasing the surface Chl-a rather than the marine physical processes through cooling the SST until two weeks after the typhoon;
- (5)
- Nutrient (nitrate) uplifting, rather than light, was the main biochemical factor restricting the growth of surface and euphotic-integrated phytoplankton over the study area in the NSCS after the typhoon Linfa.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Falkowski, P.G. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth. Res. 1994, 39, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, Y.Q. Phytoplankton increases induced by tropical cyclones in the South China Sea during 1998–2015. J. Geophys. Res. 2018, 123. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef]
- Pan, G.; Chai, F.; Tang, D.L.; Wang, D.X. Marine phytoplankton biomass responses to typhoon events in the South China Sea based on physical-biogeochemical model. Ecol. Model. 2017, 356, 38–47. [Google Scholar] [CrossRef]
- Lin, I.; Liu, W.T.; Wu, C.C.; Wong, G.T.F.; Hu, C.M.; Chen, Z.Q.; Liang, W.D.; Yang, Y.; Liu, K.K. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Babin, S.M.; Carton, J.A.; Dickey, T.D.; Wiggert, J.D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Ye, H.J.; Sui, Y.; Tang, D.L.; Afanasyev, Y.D. A subsurface chlorophyll a bloom induced by typhoon in the South China Sea. J. Mar. Syst. 2013, 128, 138–145. [Google Scholar] [CrossRef]
- Lin, J.R.; Tang, D.L.; Alpers, W.; Wang, S.F. Response of dissolved oxygen and related marine ecological parameters to a tropical cyclone in the South China Sea. Adv. Space Res. 2014, 53, 1081–1091. [Google Scholar] [CrossRef]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Tang, D.L.; Legendre, L.; Shi, P. Enhanced sea-air CO2 exchange influenced by a tropical depression in the South China Sea. J. Geophys. Res. 2015, 119, 6792–6804. [Google Scholar] [CrossRef]
- Zhao, H.; Han, G.Q.; Zhang, S.W.; Wang, D.X. Two phytoplankton blooms near Luzon Strait generated by lingering Typhoon Parma. J. Geophys. Res. 2013, 118, 412–421. [Google Scholar] [CrossRef]
- He, Q.Y.; Zhan, H.G.; Cai, S.Q.; Li, Z.M. Eddy effects on surface chlorophyll in the northern South China Sea: Mechanism investigation and temporal variability analysis. Deep-Sea Res. Part I 2016, 112, 25–36. [Google Scholar] [CrossRef]
- Liang, W.Z.; Tang, D.L.; Luo, X. Phytoplankton size structure in the western South China Sea under the influence of a ‘jet-eddy system’. J. Mar. Syst. 2018, 187, 82–95. [Google Scholar] [CrossRef]
- Dugdale, R.C. Nutrient limitation in sea - dynamics identification and significance. Limnol. Oceanogr. 1967, 12, 685–695. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Tang, D.L. Eddy-feature phytoplankton bloom induced by a tropical cyclone in the South China Sea. Int. J. Remote Sens. 2012, 33, 7444–7457. [Google Scholar] [CrossRef]
- Wu, L.G.; Wang, B.; Braun, S.A. Impacts of Air-Sea Interaction on Tropical Cyclone Track and Intensity. Mon. Weather Rev. 2004, 133, 3299–3314. [Google Scholar] [CrossRef]
- Liu, S.S.; Zhang, L.F.; Zhang, X.H. Characteristics analysis on rapid intensification of typhoon Mujigae (1522) over the offshore area of China. J. Meteor. Sci. 2017. [Google Scholar] [CrossRef]
- Shay, L.K.; Elsberry, R.L.; Black, P.G. Vertical structure of the ocean current response to a hurricane. J. Phys. Oceanogr. 1989, 19, 649–669. [Google Scholar] [CrossRef]
- Pan, J.Y.; Huang, L.; Devlin, A.T.; Lin, H. Quantification of typhoon-induced phytoplankton blooms using satellite multi-sensor data. Remote Sens. 2018, 10, 318. [Google Scholar] [CrossRef]
- Ye, H.J.; Sheng, J.Y.; Tang, D.L.; Siswanto, E.; Kalhoro, M.A.; Sui, Y. Storm-induced changes in pCO2 at the sea surface over the northern South China Sea during Typhoon Wutip. J. Geophys. Res. 2017, 122, 4761–4778. [Google Scholar] [CrossRef]
- Wijesekera, H.W.; Gregg, M.C. Surface layer response to weak winds, westerly bursts, and rain squalls in the western Pacific Warm Pool. J. Geophys. Res. 1996, 101, 977–997. [Google Scholar] [CrossRef]
- Cao, W.X.; Yang, Y.Z. A bio-optical model for ocean photosynthetic available radiation. J. Trop. Oceanogr. 2002, 21, 47–54. [Google Scholar]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Lin, I.I. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Liu, Z.L.; Chen, Z.Y.; Zhou, B.F.; Zhang, T.; Ding, T. The seasonal distribution of the standing stock of phytoplankton in the source area of the kuroshio and adjacent areas. Tran. Oceanol. Limnol. 2006, 58–63. [Google Scholar] [CrossRef]
- Shay, L.K.; Goni, G.J.; Black, P.G. Effects of a warm oceanic feature on hurricane Opal. Mon. Weather Rev. 2000, 128, 1366–1383. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.K.; Zhou, L.; Liu, X.H.; Ding, T.; Zhou, B.F. Upper ocean response to typhoon Kalmaegi (2014). J. Geophys. Res. 2016, 121, 6520–6535. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, H.; Pan, J.Y.; Devlin, A. Remote sensing observations of phytoplankton increases triggered by successive typhoons. Front. Earth Sci. 2017, 11, 601–608. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Chapter 5–Mass, Salt, and Heat Budgets and Wind Forcing. In Descriptive Physical Oceanography: An Introduction; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Liu, F.F.; Tang, S.L. Influence of the interaction between typhoons and oceanic mesoscale eddies on phytoplankton blooms. J. Geophys. Res. 2018, 123, 2785–2794. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Strutton, P.G.; Behrenfeld, M.J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. 2013, 118, 6349–6370. [Google Scholar] [CrossRef]
- Jin, X.; Kwon, Y.-O.; Ummenhofer, C.C.; Seo, H.; Schwarzkopf, F.U.; Biastoch, A.; Boening, C.W.; Wright, J.S. Influences of Pacific Climate Variability on Decadal Subsurface Ocean Heat Content Variations in the Indian Ocean. J. Clim. 2018, 31, 4157–4174. [Google Scholar] [CrossRef]
- Wang, J.J.; Tang, D.L.; Sui, Y. Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait. J. Mar. Syst. 2010, 83, 141–149. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Tang, D.L. Remote sensing analysis of impact of typhoon on environment in the sea area south of Hainan Island. Procedia Environ. Sci. 2011, 10, 1621–1629. [Google Scholar] [CrossRef]
- Fu, D.Y.; Pan, D.L.; Mao, Z.H.; Ding, Y.Z.; Chen, J.Y. The effects of chlorophyll-a and SST in the South China Sea area by typhoon near last decade. SPIE Remote Sens. 2009. [Google Scholar] [CrossRef]
- Chin, T.G.; Chen, C.F.; Liu, C.S.; Wu, S.S. Influence of temperature and salinity on the growth of three species of planktonic diatoms. Oceanol. Limnol. Sin. 1965, 7, 373. [Google Scholar]
- Veeranjaneyulu, C.; Deo, A.A. Study of upper ocean parameters during passage of tropical cyclones over Indian seas. Int. J. Remote Sens. 2019, 40, 4683–4723. [Google Scholar] [CrossRef]
- Son, S.; Platt, T.; Fuentes-Yaco, C.; Bouman, H.; Devred, E.; Wu, Y.; Sathyendranath, S. Possible biogeochemical response to the passage of Hurricane Fabian observed by satellites. J. Plankton Res. 2007, 29, 687–697. [Google Scholar] [CrossRef]
- Liu, C.; Kang, J.C.; Wang, G.D.; Zhu, W.W.; Sun, W.Z.; Li, Y. Monthly spatial variation of nutrients and nutrient limitation in kuroshio of East China Sea. Resour. Sci. 2012, 34, 1375–1381. [Google Scholar]
- Xu, H.B.; Tang, D.L.; Liu, Y.P.; Li, Y. Dissolved oxygen responses to tropical cyclones" Wind Pump" on pre-existing cyclonic and anticyclonic eddies in the Bay of Bengal. Mar. Pollut. Bull. 2019, 146, 838–847. [Google Scholar] [CrossRef]
Areas | Recording Periods of the Typhoon | Surface Chl-a (mg/m3) | Euphotic Layer-Integrated Chl-a (mg/m2) | MLD(m) | Euphotic Layer depth (m) | Chl-a Entrainment (mg/m3) |
---|---|---|---|---|---|---|
Study area average | −1 week | 0.08 | 10.90 | 8.0 | 84.7 | 0.13 |
1 week | 0.21 | 18.33 | 9.3 | 60.4 | 0.30 | |
2 weeks | 0.14 | 14.86 | 5.0 | 69.7 | 0.21 | |
Eddy center (Station 7) | −1 week | 0.08 | 10.64 | 7.3 | 84.7 | 0.13 |
1 week | 0.46 | 27.79 | 8.7 | 45.9 | 0.61 | |
2 weeks | 0.12 | 13.57 | 5.0 | 60.4 | 0.22 |
Period | Factors | Chl-a | SLA | EPV | Pw | SST | rain | EMT_dir |
---|---|---|---|---|---|---|---|---|
Partial correlation (R) before typhoon (2–15 June) | Chl-a | 1.00 | −0.16 | 0.23 | 0.57 | 0.08 | 0.23 | −0.07 |
SLA | - | 1.00 | 0.04 | −0.02 | −0.72 | 0.13 | 0.07 | |
EPV | - | - | 1.00 | 0.35 | −0.34 | 0.16 | −0.04 | |
Pw | - | - | - | 1.00 | −0.37 | 0.03 | −0.05 | |
SST | - | - | - | - | 1.00 | −0.41 | −0.02 | |
rain | - | - | - | - | - | 1.00 | −0.48 | |
EMT_dir | - | - | - | - | - | - | 1.00 | |
Partial correlation (R) after typhoon (16 June–19 July) | Chl-a | 1.00 | −0.62 | 0.09 | 0.09 | −0.73 | −0.01 | −0.39 |
SLA | - | 1.00 | −0.12 | −0.18 | 0.65 | −0.06 | 0.40 | |
EPV | - | - | 1.00 | −0.41 | 0.14 | −0.48 | 0.30 | |
Pw | - | - | - | 1.00 | −0.60 | 0.96 | −0.31 | |
SST | - | - | - | - | 1.00 | −0.48 | 0.55 | |
rain | - | - | - | - | - | 1.00 | −0.27 | |
EMT_dir | - | - | - | - | - | - | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Tang, D.; Evgeny, M. Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange. Remote Sens. 2019, 11, 1825. https://doi.org/10.3390/rs11151825
Liu Y, Tang D, Evgeny M. Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange. Remote Sensing. 2019; 11(15):1825. https://doi.org/10.3390/rs11151825
Chicago/Turabian StyleLiu, Yupeng, Danling Tang, and Morozov Evgeny. 2019. "Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange" Remote Sensing 11, no. 15: 1825. https://doi.org/10.3390/rs11151825
APA StyleLiu, Y., Tang, D., & Evgeny, M. (2019). Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange. Remote Sensing, 11(15), 1825. https://doi.org/10.3390/rs11151825