Next Article in Journal
Autonomous Airborne 3D SAR Imaging System for Subsurface Sensing: UWB-GPR on Board a UAV for Landmine and IED Detection
Previous Article in Journal
High-Frequency Electromagnetic Induction (HFEMI) Sensor Results from IED Constituent Parts
remotesensing-logo
Article Menu

Article Menu

Open AccessFeature PaperReview

Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics

1
Department Computational Landscape Ecology, Helmholtz Centre for Environmental Research–UFZ, Permoserstr. 15, D-04318 Leipzig, Germany
2
Geography Department, Humboldt University Berlin, Unter den Linden 6, D-10099 Berlin, Germany
3
Institut of Geography, Department of Remote Sensing, Friedrich Schiller University Jena, Loebdergraben 32, D-07743 Jena, Germany
4
Department of Architecture, Facility Management and Geoinformation, Institut for Geoinformation and Surveying, Bauhausstraße 8, D-06846 Dessau, Germany
5
German Aerospace Center-DLR, German Remote Sensing Data Center–DFD, Kalkhorstweg 53, D-17235 Neustrelitz, Germany
6
University of Applied Sciences Neubrandenburg, Brodaer Strasse 2, D-17033 Neubrandenburg, Germany
7
Department Monitoring and Exploration Technology, Helmholtz Centre for Environmental Research–UFZ, Permoserstr. 15, D-04318 Leipzig, Germany
8
Helmholtz Center Potsdam, German Research Center for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany
9
Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Julius Kühn-Institut (JKI), Bundesallee 69, D-38116 Braunschweig, Germany
10
Department of Remote Sensing, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 4, D-06120 Halle, Germany
11
Airborne Research Australia, Parafield Airport, SA 5106 and Flinders University, College of Science and Engineering, Adelaide, SA 5000, Australia
12
German Aerospace Center (DLR) Microwaves and Radar Institute, Oberpfaffenhofen, D-82234 Wessling, Germany
13
MILAN Geoservice GmbH, Zum Tower 4, D-01917 Kamenz, Germany
14
Technical Department, Szent István University, Villányi út 29-43, 1118 Budapest, Hungary
15
The Remote Sensing Laboratory, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede-Boker Campus, Sede Boger 83990, Israel
16
Federal Research Centre for Cultivated Plants, Institute for Strategies and Technology Assessment, Julius Kühn Institute (JKI), Stahnsdorfer Damm 81, D-14532 Kleinmachnow, Germany
17
Forschungszentrum Jülich GmbH, Institute of Bio- and Geoscience, Agrosphere (IBG-3), Wilhelm-Johnen-Str., D-52428 Jülich, Germany
18
Institut of Photogrammetry and Remote Sensing, Technical University Dresden, Helmholtzstr. 10, D-01061 Dresden, Germany
19
Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, HaMaccabim Road, P.O.B 15159, Rishon LeTsiyon 7528809, Israel
20
University of Nottingham, School of Geography, University Park, Nottingham NG7 2RD, UK
21
Institute for Hydrology and Water Management, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
22
Computational Hydrosystems Helmholtz Centre for Environmental Research–UFZ, Permoserstr. 15, D-04318 Leipzig, Germany
23
German Environment Agency, Wörlitzer Platz 1, D-06844 Dessau Roßlau, Germany
24
Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, AE 7500 Enschede, The Netherlands
25
Department of Earth and Environmental Science, Macquarie University, Sydney, NSW 2109, Australia
26
DLR Institute of Data Science, Mälzerstraße 3, D-07743 Jena, Germany
27
Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, Johannisallee 19a, D-04103 Leipzig, Germany
28
Faculty of Mechanical Engineering and Marine Technology, Chair of Ocean Engineering, University of Rostock, Albert-Einstein-Straße 2, D-18059 Rostock, Germany
29
Department Soil System Science, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Str. 4, D-06120 Halle, Germany
30
Remote Sensing Laboratories, Department of Geography, and University Research Priority Program on Global Change and Biodiversity, University of Zurich–Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
*
Author to whom correspondence should be addressed.
Remote Sens. 2019, 11(20), 2356; https://doi.org/10.3390/rs11202356
Received: 29 August 2019 / Revised: 30 September 2019 / Accepted: 1 October 2019 / Published: 11 October 2019
In the face of rapid global change it is imperative to preserve geodiversity for the overall conservation of biodiversity. Geodiversity is important for understanding complex biogeochemical and physical processes and is directly and indirectly linked to biodiversity on all scales of ecosystem organization. Despite the great importance of geodiversity, there is a lack of suitable monitoring methods. Compared to conventional in-situ techniques, remote sensing (RS) techniques provide a pathway towards cost-effective, increasingly more available, comprehensive, and repeatable, as well as standardized monitoring of continuous geodiversity on the local to global scale. This paper gives an overview of the state-of-the-art approaches for monitoring soil characteristics and soil moisture with unmanned aerial vehicles (UAV) and air- and spaceborne remote sensing techniques. Initially, the definitions for geodiversity along with its five essential characteristics are provided, with an explanation for the latter. Then, the approaches of spectral traits (ST) and spectral trait variations (STV) to record geodiversity using RS are defined. LiDAR (light detection and ranging), thermal and microwave sensors, multispectral, and hyperspectral RS technologies to monitor soil characteristics and soil moisture are also presented. Furthermore, the paper discusses current and future satellite-borne sensors and missions as well as existing data products. Due to the prospects and limitations of the characteristics of different RS sensors, only specific geotraits and geodiversity characteristics can be recorded. The paper provides an overview of those geotraits. View Full-Text
Keywords: geodiversity; geotraits; abiotic diversity; abiotic spectral traits; remote sensing; earth observation; soil characteristic; soil moisture; land surface temperature geodiversity; geotraits; abiotic diversity; abiotic spectral traits; remote sensing; earth observation; soil characteristic; soil moisture; land surface temperature
Show Figures

Graphical abstract

MDPI and ACS Style

Lausch, A.; Baade, J.; Bannehr, L.; Borg, E.; Bumberger, J.; Chabrilliat, S.; Dietrich, P.; Gerighausen, H.; Glässer, C.; Hacker, J.M.; Haase, D.; Jagdhuber, T.; Jany, S.; Jung, A.; Karnieli, A.; Kraemer, R.; Makki, M.; Mielke, C.; Möller, M.; Mollenhauer, H.; Montzka, C.; Pause, M.; Rogass, C.; Rozenstein, O.; Schmullius, C.; Schrodt, F.; Schrön, M.; Schulz, K.; Schütze, C.; Schweitzer, C.; Selsam, P.; Skidmore, A.K.; Spengler, D.; Thiel, C.; Truckenbrodt, S.C.; Vohland, M.; Wagner, R.; Weber, U.; Werban, U.; Wollschläger, U.; Zacharias, S.; Schaepman, M.E. Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sens. 2019, 11, 2356.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop