Next Article in Journal
Erratum: Raney, R.K. Hybrid Dual-Polarization Synthetic Aperture Radar. Remote Sens. 2019, 11, 1521
Previous Article in Journal
Mapping Human Settlements with Higher Accuracy and Less Volunteer Efforts by Combining Crowdsourcing and Deep Learning
Open AccessArticle

Predicting the Spatial Distribution and Severity of Soil Erosion in the Global Tropics using Satellite Remote Sensing

World Agroforestry Centre (ICRAF), P.O. Box 30677-00100 Nairobi, Kenya
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Remote Sens. 2019, 11(15), 1800; https://doi.org/10.3390/rs11151800
Received: 27 May 2019 / Revised: 18 July 2019 / Accepted: 26 July 2019 / Published: 31 July 2019
(This article belongs to the Section Environmental Remote Sensing)
This research paper presents the first consistent spatial assessments of soil erosion prevalence based on Earth observation data and systematic field surveys to train models that predict soil erosion prevalence across the global tropics. The results of the study have major implications for efforts to identify land degradation hotspots and design interventions to restore degraded lands given the importance of soil erosion as a major process of land degradation globally. The paper also presents analysis of changes in soil erosion prevalence over the 15 year period from 2002 to 2017. The results of the study can also be used to better understand ecosystem health and resilience in the global tropics, for assessments of food security, and the implications of land degradation on climate change.
Soil erosion has long been recognized as a major process of land degradation globally, affecting millions of hectares of land in the tropics and resulting in losses in productivity and biodiversity, decreased resilience of both marine and terrestrial ecosystems, and increased vulnerability to climate change. This paper presents an assessment of the extent of soil erosion in the global tropics at a moderate spatial resolution (500 m) based on a combination of systematic field surveys using the Land Degradation Surveillance Framework (LDSF) methodology and Earth observation data from the Moderate Resolution Imaging Spectroradiometer (MODIS) platform. The highest erosion prevalence was observed in wooded grassland, bushland, and shrubland systems in semi-arid areas, while the lowest occurrence was observed in forests. Observed erosion decreased with increasing fractional vegetation cover, but with high rates of erosion even at 50–60% fractional cover. These findings indicate that methods to assess soil erosion need to be able to detect erosion under relatively dense vegetation cover. Model performance was good for prediction of erosion based on MODIS, with high accuracy (~89% for detection) and high overall precision (AUC = 0.97). The spatial predictions from this study will allow for better targeting of interventions to restore degraded land and are also important for assessing the dynamics of land health indicators such as soil organic carbon. Given the importance of soil erosion for land degradation and that the methodology gives robust results that can be rapidly replicated at scale, we would argue that soil erosion should be included as a key indicator in international conventions such as the United Nations Convention to Combat Desertification. View Full-Text
Keywords: soil erosion; land degradation; global tropics; food security; remote sensing; Earth observation; ecosystem health; resilience soil erosion; land degradation; global tropics; food security; remote sensing; Earth observation; ecosystem health; resilience
Show Figures

Figure 1

MDPI and ACS Style

Vågen, T.-G.; Winowiecki, L.A. Predicting the Spatial Distribution and Severity of Soil Erosion in the Global Tropics using Satellite Remote Sensing. Remote Sens. 2019, 11, 1800.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop