Scratching Beneath the Surface: A Model to Predict the Vertical Distribution of Prochlorococcus Using Remote Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Parameterization
2.2. Prochlorococcus Abundance Predicted Using Ocean Observables
3. Results
3.1. Two-Component Model Validation
3.2. Two-Component Model Output
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hirata, T.; Aiken, J.; Hardman-mountford, N.; Smyth, T.J.; Barlow, R.G. Remote Sensing of Environment an absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens. Environ. 2008, 112, 3153–3159. [Google Scholar] [CrossRef]
- Karl, D.M. Minireviews: A Sea of Change: Biogeochemical Variability in the North Pacific Subtropical Gyre. Ecosystems 1999, 2, 181–214. [Google Scholar] [CrossRef]
- Longhurst, A. Ecological Geography of the Sea; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; O’Malley, R.T.; Boss, E.S.; Westberry, T.K.; Graff, J.R.; Halsey, K.H.; Milligan, A.J.; Siegel, D.A.; Brown, M.B. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Chang. 2015, 6, 323–330. [Google Scholar] [CrossRef]
- Westberry, T.; Behrenfeld, M.J.; Siegel, D.A.; Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Aiken, J.; Brewin, R.J.W.; Dufois, F.; Polimene, L.; Hardman-Mountford, N.J.; Jackson, T.; Loveday, B.; Hoya, S.M.; Dall’Olmo, G.; Stephens, J.; et al. A synthesis of the environmental response of the North and South Atlantic Sub-Tropical Gyres during two decades of AMT. Prog. Oceanogr. 2016. [Google Scholar] [CrossRef]
- Cullen, J.J. The deep chlorophyll maximum: Comparing vertical profiles of chlorophyll a. Can. J. Fish. Aquat. Sci. 1982, 39, 791–803. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011; ISBN 978-0-521-15175-7. [Google Scholar]
- Grace, J.; San Jose, J.; Meir, P.; Miranda, H.S.; Montes, R.A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 2006, 33, 387–400. [Google Scholar] [CrossRef]
- Chisholm, S.W.; Olson, R.J.; Zettler, E.R.; Goericke, R.; Waterbury, J.B. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 1988, 334, 340–343. [Google Scholar] [CrossRef]
- Bouman, H.A.; Ulloa, O.; Barlow, R.; Li, W.K.W.; Platt, T.; Zwirglmaier, K.; Scanlan, D.J.; Sathyendranath, S. Water-column stratification governs the community structure of subtropical marine picophytoplankton. Environ. Microbiol. Rep. 2011, 3, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Heywood, J.L.; Zubkov, M.V.; Tarran, G.A.; Fuchs, B.M.; Holligan, P.M. Prokaryoplankton standing stocks in oligotrophic gyre and equatorial provinces of the Atlantic Ocean: Evaluation of inter-annual variability. Deep Sea Res. II Top. Stud. Oceanogr. 2006, 53, 1530–1547. [Google Scholar] [CrossRef]
- Malmstrom, R.R.; Coe, A.; Kettler, G.C.; Martiny, A.C.; Frias-Lopez, J.; Zinser, E.R.; Chisholm, S.W. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans. ISME J. 2010, 4, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Rabouille, S.; Edwards, C.A.; Zehr, J.P. Modelling the vertical distribution of Prochlorococcus and Synechococcus in the North Pacific Subtropical Ocean. Environ. Microbiol. 2007, 9, 2588–2602. [Google Scholar] [CrossRef] [PubMed]
- Zubkov, M.V.; Sleigh, M.A.; Burkill, P.H.; Leakey, R.J.G. Picoplankton community structure on the Atlantic Meridional Transect: A comparison between seasons. Prog. Oceanogr. 2000, 45, 369–386. [Google Scholar] [CrossRef]
- Zubkov, M.V.; Sleigh, M.A.; Tarran, G.A.; Burkill, P.H.; Leakey, R.J.G. Picoplanktonic community structure on an Atlantic transect from 50 degrees N to 50 degrees S. Deep Sea Res. I Oceanogr. Res. Pap. 1998, 45, 1339–1355. [Google Scholar] [CrossRef]
- Smayda, T.J. Bloom dynamics: Physiology, behavior, trophice: Ffects. Limonaology Oceanogr. 1997, 42, 1132–1136. [Google Scholar] [CrossRef]
- Bertilsson, S.; Berglund, O.; Karl, D.M.; Chisholm, S.W. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnol. Oceanogr. 2003, 48, 1721–1731. [Google Scholar] [CrossRef]
- Flombaum, P.; Gallegos, J.L.; Gordillo, R.A.; Rincon, J.; Zabala, L.L.; Jiao, N.; Karl, D.M.; Li, W.K.W.; Lomas, M.W.; Veneziano, D.; et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. USA 2013, 110, 9824–9829. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.G.; Follows, M.J. Biological Fundamentals. In Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms; Williams, R.G., Follows, M.J., Eds.; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- NASA Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) Ocean Color Data; Goddard Space Flight Center Ocean Biology Processing Group: Greenbelt, MD, USA, 2014.
- Gordon, H.R.; Morel, A.Y. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery; Springer-Verlag New York: New York, USA, 1983. [Google Scholar]
- Hosoda, S.; Ohira, T.; Nakamura, T. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev. 2008, 8, 47–59. [Google Scholar] [CrossRef]
- Johnson, Z.I.; Zinser, E.R.; Coe, A.; McNulty, N.P.; Woodward, E.M.; Chisholm, S.W. Niche Partitioning Among Prochlorococcus Ecotypes Along Ocean-Scale Environmental Gradients. Science 2006, 311, 1737–1740. [Google Scholar] [CrossRef] [PubMed]
- Zinser, E.R.; Johnson, Z.I.; Coe, A.; Karaca, E.; Veneziano, D.; Chisholm, S.W. Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean. Limnol. Oceanogr. 2007, 52, 2205–2220. [Google Scholar] [CrossRef]
- Platt, T.; Gallegos, C.L.; Harrison, W.G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 1980, 38, 687–701. [Google Scholar]
- De Boyer Montégut, C.; Madec, G.; Fischer, A.S.; Lazar, A.; Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. Oceans 2004, 109, 1–20. [Google Scholar] [CrossRef]
- Morel, A.; Berthon, J.-F. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. 1989, 34, 1545–1562. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; Volume 53, ISBN 0387954570. [Google Scholar]
- Brewin, R.J.W.; Sathyendranath, S.; Müller, D.; Brockmann, C.; Deschamps, P.Y.; Devred, E.; Doerffer, R.; Fomferra, N.; Franz, B.; Grant, M.; et al. The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms. Remote Sens. Environ. 2015, 162, 271–294. [Google Scholar] [CrossRef]
- Forsythe, W.C.; Rykiel, E.J.; Stahl, R.S.; Wu, H.I.; Schoolfield, R.M. A model comparison for daylength as a function of latitude and day of year. Ecol. Model. 1995, 80, 87–95. [Google Scholar] [CrossRef]
- Cooper, P.I. The absorption of radiation in solar stills. Sol. Energy 1969, 12, 333–346. [Google Scholar] [CrossRef]
- Biller, S.J.; Berube, P.M.; Lindell, D.; Chisholm, S.W. Prochlorococcus: The structure and function of collective diversity. Nat. Rev. Microbiol. 2014, 13, 13–27. [Google Scholar] [CrossRef] [PubMed]
- McClain, C.R.; Signorini, S.R.; Christian, J.R. Subtropical gyre variability observed by ocean-color satellites. Deep Sea Res. II Top. Stud. Oceanogr. 2004, 51, 281–301. [Google Scholar] [CrossRef]
- Brew, H.S.; Moran, S.B.; Lomas, M.W.; Burd, A.B. Plankton community composition, organic carbon and thorium-234 particle size distributions, and particle export in the Sargasso Sea. J. Mar. Res. 2009, 67, 845–868. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 1997, 42, 1–20. [Google Scholar] [CrossRef]
- Babin, M.; Therriault, J.C.; Legendre, L.; Nieke, B.; Reuter, R.; Condal, A. Relationship between the maximum quantum yield of carbon fixation and the minimum quantum yield of chlorophyll a in vivo fluorescence in the Gulf of St. Lawrence. Limnol. Oceanogr. 1995, 40, 956–968. [Google Scholar] [CrossRef]
- Tsubouchi, T.; Suga, T.; Hanawa, K. Comparison study of subtropical mode waters in the world ocean. Front. Mar. Sci. 2016, 3, 270. [Google Scholar] [CrossRef]
- Boggs, S.W. This Hemisphere. J. Geol. 1945, 44, 345–355. [Google Scholar] [CrossRef]
- Dave, A.C.; Barton, A.D.; Lozier, M.S.; McKinley, G.A. What drives seasonal change in oligotrophic area in the subtropical North Atlantic? J. Geophys. Res. Oceans 2015, 120, 3958–3969. [Google Scholar] [CrossRef]
- Polovina, J.J.; Howell, E.A.; Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 2008, 35, L03618. [Google Scholar] [CrossRef]
- Durand, M.D.; Olson, R.J.; Chisholm, S.W. Phytoplankton population dynamics at the Bermuda Atlantic Time-series station in the Sargasso Sea. Deep Sea Res. II Top. Stud. Oceanogr. 2001, 48, 1983–2003. [Google Scholar] [CrossRef]
- Barton, A.D.; Ward, B.A.; Williams, R.G.; Follows, M.J. The impact of fine-scale turbulence on phytoplankton community structure. Limnol. Oceanogr. Fluids Environ. 2014, 4, 34–49. [Google Scholar] [CrossRef]
- Buitenhuis, E.T.; Li, W.K.W.; Vaulot, D.; Lomas, M.W.; Landry, M.R.; Partensky, F.; Karl, D.M.; Ulloa, O.; Campbell, L.; Jacquet, S.; et al. Picophytoplankton biomass distribution in the global ocean. Earth Syst. Sci. Data 2012, 4, 37–46. [Google Scholar] [CrossRef]
- Mella-Flores, D.; Six, C.; Ratin, M.; Partensky, F.; Boutte, C.; Le Corguillé, G.; Marie, D.; Blot, N.; Gourvil, P.; Kolowrat, C.; Garczarek, L. Prochlorococcus and synechococcus have evolved different adaptive mechanisms to cope with light and uv stress. Front. Microbiol. 2012, 3, 285. [Google Scholar] [CrossRef] [PubMed]
- Partensky, F.; Hess, W.R.; Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 1999, 63, 106–127. [Google Scholar] [PubMed]
Symbol | Variable | Units | Source |
---|---|---|---|
SST | Sea surface temperature | °C | a |
Rrs(443) | Remote-sensing reflectance at 443 nm | sr−1 | a |
Rrs(488) | Remote-sensing reflectance at 488 nm | sr−1 | a |
T200 | Temperature at the depth of 200 m | °C | b |
DL | Day length | hours | c |
θs | Solar zenith angle at noon | degrees | d |
KdPAR | Calculated attenuation coefficient for the photo-synthetically available radiation | m−1 | f |
KdPAR | Measured attenuation coefficient for the photo-synthetically available radiation | m−1 | e |
DCM | Deep chlorophyll maximum | ||
DPM | Deep Prochlorococcus maximum | ||
ZDCM | Calculated depth of the deep chlorophyll maximum | metres | f |
ZDCM | In situ depth of the deep chlorophyll maximum | metres | f |
fPAR(z) | Fractional PAR (proportion of surface PAR) at depth z | % | f |
Prosurf | Calculated Prochlorococcus cell abundance at the surface | cells mL−1 | f |
Prosurf | In situ Prochlorococcus cell abundance at the surface | cells mL−1 | f |
Promax | Prochlorococcus cell abundance at the DPM | cells mL−1 | f |
ProI | Calculated cell abundance of Prochlorococcus distributed over depth near the surface | cells mL−1 | f |
ProII | Calculated cell abundance of Prochlorococcus distributed over depth near the DPM | cells mL−1 | f |
Prototal(z) | Calculated total Prochlorococcus cell abundance distributed over depth | cells mL−1 | f |
Proint | Calculated cell abundance of Prochlorococcus integrated in the surface 200 m of the water column | cells m−2 | f |
Output | Input (s) | Equation | Parameter | Parameter Value | Parameter σ |
---|---|---|---|---|---|
KdPAR | (1) | intercept | 0.776 × 10−1 | 0.020 × 10−1 | |
Rrs(443) | (1) | slope | −3.1673 × 100 | 0.195 × 100 | |
ZDCM | (8) | intercept | 1.241 × 101 | 0.786 × 101 | |
Rrs(443) | (8) | slope1 | 1.021 × 104 | 0.066 × 104 | |
θs | (8) | slope2 | 2.227 × 10−1 | 2.381 × 10−1 | |
Prosurf | SST | (3)–(5) | a3 | 3.254 × 104 | 0.030 × 104 |
Rrs(488) | (3)–(5) | b3 | 9.762 × 107 | 0.104 × 107 | |
DL | (3)–(5) | c3 | −2.080 × 104 | 0.043 × 104 | |
T200 | (3)–(5) | d3 | −2.117 × 104 | 0.029 × 104 | |
SST, Rrs(488) | (3)–(5) | e3 | −4.421 × 106 | 0.041 × 106 | |
Promax | (7) | a7 | −1.153 × 105 | 0.194 × 105 | |
ZDCM | (7) | b7 | 1.837 × 103 | 0.014 × 103 | |
Prosurf | (7) | c7 | 2.951 × 10−1 | 0.087 × 10−1 |
Variable | Equation | Ψ | δ | ∆ | r2 |
---|---|---|---|---|---|
KdPAR | (1) | 5.136 × 10−3 | −0.321 × 10−3 | 0.512 × 10−3 | 0.75 |
ZDCM | (8) | 2.084 × 101 | −0.101 × 101 | 2.081 × 101 | 0.73 |
Promax1 | (7) | 5.872 × 104 | −0.054 × 104 | 5.872 × 104 | 0.44 |
Prototal(z)1 | (9) | 3.775 × 104 | −0.361 × 104 | 3.758 × 104 | 0.84 |
Proint1 | (10) | 3.682 × 1012 | −1.047 × 1012 | 3.529 × 1012 | 0.85 |
Promax2 | (7) | 5.805 × 104 | −0.349 × 104 | 5.794 × 104 | 0.40 |
Prototal(z)2 | (9) | 4.038 × 104 | −0.479 × 104 | 4.010 × 104 | 0.82 |
Proint2 | (10) | 4.146 × 1012 | −1.214 × 1012 | 3.964 × 1012 | 0.81 |
Prosurf3 | (3)–(5) | 6.551 × 104 | 1.237 × 104 | 6.434 × 104 | 0.50 |
Promax3 | (7) | 6.210 × 104 | 0.297 × 104 | 6.203 × 104 | 0.32 |
Prototal(z)3 | (9) | 6.176 × 104 | 0.466 × 104 | 6.159 × 104 | 0.58 |
Proint3 | (10) | 6.651 × 1012 | −0.572 × 1012 | 6.651 × 1012 | 0.48 |
Standing Stock (Cells) | Total Carbon * (Megatonnes C) | Proint3 (Cells m−2) | Prosurf3 (Cells mL−1) | Promax3 (Cells mL−1) | |
---|---|---|---|---|---|
Global | 3.4 × 1027 | 171 | |||
Atlantic Ocean | 7.4 × 1026 | 37 | |||
Equatorial Convergence Zone | 2.2 × 1026 | 11 | |||
ECZ: 2 °S, 22 °W | 1.7 × 1013 | 2.2 × 105 | 0.7 × 105 | ||
North Atlantic Gyre | 1.0 × 1026 | 5.1 | |||
NAG: 26° N, 50° W | 1.6 × 1013 | 0.7 × 105 | 1.3 × 105 | ||
South Atlantic Gyre | 1.6 × 1026 | 8.2 | |||
SAG: 20° S, 20° W | 2.2 × 1013 | 1.0 × 105 | 1.7 × 105 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lange, P.K.; Brewin, R.J.W.; Dall’Olmo, G.; Tarran, G.A.; Sathyendranath, S.; Zubkov, M.; Bouman, H.A. Scratching Beneath the Surface: A Model to Predict the Vertical Distribution of Prochlorococcus Using Remote Sensing. Remote Sens. 2018, 10, 847. https://doi.org/10.3390/rs10060847
Lange PK, Brewin RJW, Dall’Olmo G, Tarran GA, Sathyendranath S, Zubkov M, Bouman HA. Scratching Beneath the Surface: A Model to Predict the Vertical Distribution of Prochlorococcus Using Remote Sensing. Remote Sensing. 2018; 10(6):847. https://doi.org/10.3390/rs10060847
Chicago/Turabian StyleLange, Priscila K., Robert J. W. Brewin, Giorgio Dall’Olmo, Glen A. Tarran, Shubha Sathyendranath, Mikhail Zubkov, and Heather A. Bouman. 2018. "Scratching Beneath the Surface: A Model to Predict the Vertical Distribution of Prochlorococcus Using Remote Sensing" Remote Sensing 10, no. 6: 847. https://doi.org/10.3390/rs10060847
APA StyleLange, P. K., Brewin, R. J. W., Dall’Olmo, G., Tarran, G. A., Sathyendranath, S., Zubkov, M., & Bouman, H. A. (2018). Scratching Beneath the Surface: A Model to Predict the Vertical Distribution of Prochlorococcus Using Remote Sensing. Remote Sensing, 10(6), 847. https://doi.org/10.3390/rs10060847