Agroforestry—The Next Step in Sustainable and Resilient Agriculture
Abstract
:1. Introduction
2. The Rise of Organic Farming
3. Challenges in Organic Agriculture
4. Agroforestry as a Transformative Solution
4.1. Agroforestry Practices and Products
4.1.1. Alley Cropping
4.1.2. Silvopasture
4.1.3. Riparian Buffers
4.1.4. Windbreaks
4.1.5. Forest farming
4.2. Benefits of Agroforestry
5. Challenges to Agroforestry Adoption
Moving Forward—Policy and Research Needs
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
USDA | United States Department of Agriculture |
NRCS | National Resources Conservation Service |
FSA | Farm Service Agency |
EQIP | Environmental Quality Incentive Program |
CRP | Conservation Reserve Program |
LER | Land equivalency ratio |
GMO | Genetically modified organism |
Yield-SAFE | Yield Estimator for Long- term Design of Silvoarable AgroForestry in Europe |
References
- Foley, J.A. Can We Feed the World and Sustain the Planet? Sci. Am. 2011, 305, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Norris, K. Agriculture and biodiversity conservation: Opportunity knocks. Conserv. Lett. 2008, 1, 2–11. [Google Scholar] [CrossRef]
- Jacobson, M.; Kar, S. Extent of Agroforestry Extension Programs in the United States. J. Ext. 2013, 51, Article 4. [Google Scholar]
- Johnson, R.J.; Jedlicka, J.A.; Quinn, J.E.; Brandle, J.R. Global Perspectives on Birds in Agricultural Landscapes. In Integrating Agriculture, Conservation and Ecotourism: Examples from the Field; Campbell, W.B., Ortiz, S.L., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 55–140. [Google Scholar]
- Thomas, J.A.; Telfer, M.G.; Roy, D.B.; Preston, C.D.; Greenwood, J.J.D.; Asher, J.; Fox, R.; Clarke, R.T.; Lawton, J.H. Comparative Losses of British Butterflies, Birds, and Plants and the Global Extinction Crisis. Science 2004, 303, 1879–1881. [Google Scholar] [CrossRef] [PubMed]
- Daleszczyk, K.; Eycott, A.E.; Tillmann, J.E. Mammal Species Extinction and Decline: Some Current and Past Case Studies of the Detrimental Influence of Man. In Problematic Wildlife; Angelici, F.M., Ed.; Springer International Publishing: New York, NY, USA, 2016; pp. 21–44. [Google Scholar]
- Boesch, D.; Brinsfield, R. Coastal Eutrophication and Agriculture: Contributions and Solutions. In Biological Resource Management Connecting Science and Policy; Balázs, E., Galante, E., Lynch, J.M., Schepers, J.S., Toutant, J.-P., Werner, D., Werry, P.A.T.J., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2000; pp. 93–115. [Google Scholar]
- McIsaac, G.F.; David, M.B.; Gertner, G.Z.; Goolsby, D.A. Eutrophication: Nitrate flux in the Mississippi River. Nature 2001, 414, 166–167. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.P.; Paul, E.A.; Harwood, R.R. Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [PubMed]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Bonny, S. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact. Environ. Manag. 2015, 57, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Burgess, M. Environmental and Economic Costs of the Application of Pesticides Primarily in the United States. In Integrated Pest Management; Pimentel, D., Peshin, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 47–71. [Google Scholar]
- Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutr. Cycl. Agroecosystems 2002, 64, 237–256. [Google Scholar] [CrossRef]
- Neider, R.; Benbi, D.K. Leaching Losses and Groundwater Pollution. In Carbon and Nitrogen in the Terrestrial Environment; Springer: Dordrecht, The Netherlands, 2008; pp. 219–233. [Google Scholar]
- US EPA Clean Water Rule Litigation Statement. Available online: http://www.epa.gov/cleanwaterrule/clean-water-rule-litigation-statement (accessed on 11 March 2016).
- Foley, J. It’s Time to Rethink America’s Corn System. Available online: http://www.scientificamerican.com/article/time-to-rethink-corn/ (accessed on 24 April 2016).
- FAO Dimensions of Need—Staple Foods: What do People Eat? Available online: http://www.fao.org/docrep/u8480e/u8480e07.htm (accessed on 12 April 2016).
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef]
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; de Tourdonnet, S.; Valantin-Morison, M. Mixing plant species in cropping systems: Concepts, tools and models—A review. Agron. Sustain. Dev. 2009, 29, 43–62. [Google Scholar]
- O’Boyle, E.J. Classical economics and the Great Irish Famine: A study in limits. Forum Soc. Econ. 2006, 35, 21–53. [Google Scholar] [CrossRef]
- Davis, A.S.; Hill, J.D.; Chase, C.A.; Johanns, A.M.; Liebman, M. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health. PLoS ONE 2012, 7, e47149. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.-E.; Sørensen, M.; Pedersen, S.M.; Weiner, J. Feeding the world: Genetically modified crops versus agricultural biodiversity. Agron. Sustain. Dev. 2013, 33, 651–662. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed]
- Hertel, T.W. The challenges of sustainably feeding a growing planet. Food Secur. 2015, 7, 185–198. [Google Scholar] [CrossRef]
- FAO. Energy-Smart Food at FAO: An Overview. Available online: http://www.fao.org/docrep/015/an913e/an913e00.htm (accessed on 27 April 2016).
- Elser, J.; Bennett, E. Phosphorus cycle: A broken biogeochemical cycle. Nature 2011, 478, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Cordell, D.; White, S. Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security. Sustainability 2011, 3, 2027–2049. [Google Scholar] [CrossRef]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef]
- Beddington, J.; Asaduzzaman, M.; Clark, M. (Eds.) Achieving Food Security in the Face of Climate Change: Final report from the Commission on Sustainable Agriculture and Climate Change. AGRIS: Rome, Italy, 2012.
- Verchot, L.V.; Noordwijk, M.V.; Kandji, S.; Tomich, T.; Ong, C.; Albrecht, A.; Mackensen, J.; Bantilan, C.; Anupama, K.V.; Palm, C. Climate change: Linking adaptation and mitigation through agroforestry. Mitig. Adapt. Strateg. Glob. Change 2007, 12, 901–918. [Google Scholar] [CrossRef]
- Muschler, R.G. Agroforestry: Essential for Sustainable and Climate-Smart Land Use? In Tropical Forestry Handbook; Springer: Berlin, Germany; Heidelberg, Germany, 2015. [Google Scholar]
- Brewbaker, J.L. Diseases of maize in the wet lowland tropics and the collapse of the Classic Maya civilization. Econ. Bot. 1979, 33, 101–118. [Google Scholar] [CrossRef]
- Wilkinson, T.J. Environmental Fluctuations, Agricultural Production and Collapse: A View from Bronze Age Upper Mesopotamia. In Third Millennium BC Climate Change and Old World Collapse; Dalfes, H.N., Kukla, G., Weiss, H., Eds.; NATO ASI Series; Springer: Berlin, Germany; Heidelberg, Germany, 1997; pp. 67–106. [Google Scholar]
- Nandwani, D.; Nwosisi, S. Global Trends in Organic Agriculture. In Organic Farming for Sustainable Agriculture; Nandwani, D., Ed.; Sustainable Development and Biodiversity; Springer International Publishing: New York, NY, USA, 2016; pp. 1–35. [Google Scholar]
- McGee, J.A. Does certified organic farming reduce greenhouse gas emissions from agricultural production? Agric. Hum. Values 2014, 32, 255–263. [Google Scholar] [CrossRef]
- USDA. Introduction to Organic Practices 2015. Available online: https://www.ams.usda.gov/publications/content/introduction-organic-practices (accessed on 29 April 2016).
- Gallandt, E. Weed Management in Organic Farming. In Recent Advances in Weed Management; Chauhan, B.S., Mahajan, G., Eds.; Springer: New York, NY, USA, 2014; pp. 63–85. [Google Scholar]
- Maeder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil Fertility and Biodiversity in Organic Farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts?—A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does organic farming benefit biodiversity? Biol. Conserv. 2005, 122, 113–130. [Google Scholar] [CrossRef]
- Mondelaers, K.; Aertsens, J.; van Huylenbroeck, G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br. Food J. 2009, 111, 1098–1119. [Google Scholar]
- Kirchmann, H.; Bergström, L.; Kätterer, T.; Andrén, O.; Andersson, R. Can Organic Crop Production Feed the World? In Organic Crop Production—Ambitions and Limitations; Kirchmann, H., Bergström, L., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 39–72. [Google Scholar]
- Letter, D.W.; Seidel, R.; Liebhardt, W. The performance of organic and conventional cropping systems in an extreme climate year. Am. J. Altern. Agric. 2003, 18, 146–154. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, Energetic, and Economic Comparisons of Organic and Conventional Farming Systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Clark, S.; Khoshnevisan, B.; Sefeedpari, P. Energy efficiency and greenhouse gas emissions during transition to organic and reduced-input practices: Student farm case study. Ecol. Eng. 2016, 88, 186–194. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Coffman, C.B.; Mangum, R.W. Potential Long-Term Benefits of No-Tillage and Organic Cropping Systems for Grain Production and Soil Improvement. Agron. J. 2007, 99, 1297–1305. [Google Scholar] [CrossRef]
- Reganold, J.P.; Elliott, L.F.; Unger, Y.L. Long-term effects of organic and conventional farming on soil erosion. Nature 1987, 330, 370–372. [Google Scholar] [CrossRef]
- Muller, A.; Aubert, C. The Potential of Organic Agriculture to Mitigate the Influence of Agriculture on Global Warming—A Review. In Organic Farming, Prototype for Sustainable Agricultures; Bellon, S., Penvern, S., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 239–259. [Google Scholar]
- Dimitri, C. Organic Agriculture: An Agrarian or Industrial Revolution? Agric. Resour. Econ. Rev. 2010, 39, 384–395. [Google Scholar]
- Bergström, L.; Kirchmann, H.; Aronsson, H.; Torstensson, G.; Mattsson, L. Use Efficiency and Leaching of Nutrients in Organic and Conventional Cropping Systems in Sweden. In Organic Crop Production—Ambitions and Limitations; Kirchmann, H., Bergström, L., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 143–159. [Google Scholar]
- Marriott, E.E.; Wander, M.M. Total and Labile Soil Organic Matter in Organic and Conventional Farming Systems. Soil Sci. Soc. Am. J. 2006, 70, 950–959. [Google Scholar] [CrossRef]
- Ismail, I.; Blevins, R.L.; Frye, W.W. Long-Term No-tillage Effects on Soil Properties and Continuous Corn Yields. Soil Sci. Soc. Am. J. 1994, 58, 193–198. [Google Scholar] [CrossRef]
- Zuber, S.M.; Villamil, M.B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol. Biochem. 2016, 97, 176–187. [Google Scholar] [CrossRef]
- Arnhold, S.; Lindner, S.; Lee, B.; Martin, E.; Kettering, J.; Nguyen, T.T.; Koellner, T.; Ok, Y.S.; Huwe, B. Conventional and organic farming: Soil erosion and conservation potential for row crop cultivation. Geoderma 2014, 219–220, 89–105. [Google Scholar] [CrossRef]
- Schonbeck, M. What Is “Organic No-Till”, and Is It Practical? Available online: http://articles.extension.org/pages/18526/what-is-organic-no-till-and-is-it-practical (accessed on 28 April 2016).
- Bos, J.F.F.P.; de Haan, J.; Sukkel, W.; Schils, R.L.M. Energy use and greenhouse gas emissions in organic and conventional farming systems in The Netherlands. NJAS Wagening J. Life Sci. 2014, 68, 61–70. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Trewavas, A. Urban myths of organic farming. Nature 2001, 410, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Lovell, S.T.; DeSantis, S.; Nathan, C.A.; Olson, M.B.; Ernesto Méndez, V.; Kominami, H.C.; Erickson, D.L.; Morris, K.S.; Morris, W.B. Integrating agroecology and landscape multifunctionality in Vermont: An evolving framework to evaluate the design of agroecosystems. Agric. Syst. 2010, 103, 327–341. [Google Scholar] [CrossRef]
- Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995–6000. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.K.R.; Garrity, D. Agroforestry—The Future of Global Land Use, Advances in Agroforestry; Springer: Dordrecht, The Netherlands, 2012; Volume 9. [Google Scholar]
- Winans, K.S.; Tardif, A.-S.; Lteif, A.E.; Whalen, J.K. Carbon sequestration potential and cost-benefit analysis of hybrid poplar, grain corn and hay cultivation in southern Quebec, Canada. Agrofor. Syst. 2015, 89, 421–433. [Google Scholar] [CrossRef]
- Dixon, R.K.; Winjum, J.K.; Andrasko, K.J.; Lee, J.J.; Schroeder, P.E. Integrated land-use systems: Assessment of promising agroforest and alternative land-use practices to enhance carbon conservation and sequestration. Clim. Change 1994, 27, 71–92. [Google Scholar] [CrossRef]
- Jordan, N.R.; Davis, A.S. Middle-way strategies for sustainable intensification of agriculture. BioScience 2015, 65, 513–519. [Google Scholar] [CrossRef]
- Baah-Acheamfour, M.; Carlyle, C.N.; Bork, E.W.; Chang, S.X. Trees increase soil carbon and its stability in three agroforestry systems in central Alberta, Canada. For. Ecol. Manag. 2014, 328, 131–139. [Google Scholar] [CrossRef]
- Caudill, S.A.; DeClerck, F.J.A.; Husband, T.P. Connecting sustainable agriculture and wildlife conservation: Does shade coffee provide habitat for mammals? Agric. Ecosyst. Environ. 2015, 199, 85–93. [Google Scholar] [CrossRef]
- Brandle, J.R.; Schoeneberger, M.M. Working Trees: Supporting Agriculture and Healthy Landscapes. J. Trop. For. Sci. 2014, 26, 305–308. [Google Scholar]
- Jose, S.; Gold, M.A.; Garrett, H.E. The Future of Temperate Agroforestry in the United States. In Agroforestry—The Future of Global Land Use; Nair, P.K.R., Garrity, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 217–245. [Google Scholar]
- Training Manual for Applied Agroforestry Practices, 2015 ed.; Gold, M.; Cernusca, M.; Hall, M. (Eds.) University of Missouri Center for Agroforestry: New Franklin, MO, USA, 2006.
- Jha, S.; Bacon, C.M.; Philpott, S.M.; Rice, R.A.; Méndez, V.E.; Läderach, P. A Review of Ecosystem Services, Farmer Livelihoods, and Value Chains in Shade Coffee Agroecosystems. In Integrating Agriculture, Conservation and Ecotourism: Examples from the Field; Campbell, W.B., Ortiz, S.L., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 141–208. [Google Scholar]
- Fagerholm, N.; Torralba, M.; Burgess, P.J.; Plieninger, T. A systematic map of ecosystem services assessments around European agroforestry. Ecol. Indic. 2016, 62, 47–65. [Google Scholar] [CrossRef]
- Campbell, G.E.; Lottes, G.J.; Dawson, J.O. Design and development of agroforestry systems for Illinois, USA: Silvicultural and economic considerations. Agrofor. Syst. 1991, 13, 203–224. [Google Scholar] [CrossRef]
- Cardinael, R.; Mao, Z.; Prieto, I.; Stokes, A.; Dupraz, C.; Kim, J.H.; Jourdan, C. Competition with winter crops induces deeper rooting of walnut trees in a Mediterranean alley cropping agroforestry system. Plant Soil 2015, 391, 219–235. [Google Scholar] [CrossRef]
- Dupraz, C.; Talbot, G.; Marrou, H.; Wery, J.; Roux, S.; Liagre, F.; Ferard, Y.; Nogier, A. To Mix or Not to Mix: Evidences for the Unexpected High Productivity of New Complex Agrivoltaic and Agroforestry Systems. 2011, pp. 202–203. Available online: https://www.researchgate.net/publication/230675951_To_mix_or_not_to_mix__evidences_for_the_unexpected_high_productivity_of_new_complex_agrivoltaic_and_agroforestry_systems (accessed on 9 December 2015).
- Brandle, J.R.; Hodges, L.; Zhou, X.H. Windbreaks in North American agricultural systems. Agrofor. Syst. 2004, 61–62, 65–78. [Google Scholar]
- Kallenbach, R.L.; Kerley, M.S.; Bishop-Hurley, G.J. Cumulative Forage Production, Forage Quality and Livestock Performance from an Annual Ryegrass and Cereal Rye Mixture in a Pine Walnut Silvopasture. Agrofor. Syst. 2006, 66, 43–53. [Google Scholar] [CrossRef]
- Buergler, A.L.; Fike, J.H.; Burger, J.A.; Feldhake, C.M.; McKenna, J.R.; Teutsch, C.D. Forage Nutritive Value in an Emulated Silvopasture. Agron. J. 2006, 98, 1265–1273. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Buffer Strips. In Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2010; pp. 223–257. [Google Scholar]
- Skelton, P.; Josiah, S.J.; King, J.W.; Brandle, J.R.; Helmers, G.A.; Francis, C.A. Adoption of riparian forest buffers on private lands in Nebraska, USA. Small-Scale For. Econ. Manag. Policy 2005, 4, 185–203. [Google Scholar]
- Kort, J. Benefits of windbreaks to field and forage crops. Agric. Ecosyst. Environ. 1988, 22, 165–190. [Google Scholar] [CrossRef]
- Mize, C.W.; Brandle, J.R.; Schoeneberger, M.M.; Bentrup, G. Ecological Development and function of Shelterbelts in Temperate North America. In Toward Agroforestry Design; Jose, S., Gordon, A.M., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 27–54. [Google Scholar]
- Zheng, X.; Zhu, J.; Xing, Z. Assessment of the effects of shelterbelts on crop yields at the regional scale in Northeast China. Agric. Syst. 2016, 143, 49–60. [Google Scholar] [CrossRef]
- Nuberg, I.K. Effect of shelter on temperate crops: A review to define research for Australian conditions. Agrofor. Syst. 1998, 41, 3–34. [Google Scholar] [CrossRef]
- Valdivia, C.; Poulos, C. Factors affecting farm operators’ interest in incorporating riparian buffers and forest farming practices in northeast and southeast Missouri. Agrofor. Syst. 2008, 75, 61–71. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Jose, S. Carbon Sequestration Potential of Agroforestry Practices in Temperate North America. In Carbon Sequestration Potential of Agroforestry Systems; Kumar, B.M., Nair, P.K.R., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 8, pp. 17–42. [Google Scholar]
- Udawatta, R.P.; Kremer, R.J.; Nelson, K.A.; Jose, S.; Bardhan, S. Soil Quality of a Mature Alley Cropping Agroforestry System in Temperate North America. Commun. Soil Sci. Plant Anal. 2014, 45, 2531–2551. [Google Scholar] [CrossRef]
- Rivest, D.; Lorente, M.; Olivier, A.; Messier, C. Soil biochemical properties and microbial resilience in agroforestry systems: Effects on wheat growth under controlled drought and flooding conditions. Sci. Total Environ. 2013, 463–464, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Udawatta, R.P.; Krstansky, J.J.; Henderson, G.S.; Garrett, H.E. Agroforestry practices, runoff, and nutrient loss: A paired watershed comparison. J. Environ. Qual. 2002, 31, 1214–1225. [Google Scholar] [CrossRef] [PubMed]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Garrett, H.E.; McGraw, R.L.; Walter, W.D. Alley Cropping Practices. North Am. Agrofor. Integr. Sci. Pract. 2nd Ed. 2009, 133–162. [Google Scholar] [CrossRef]
- Schultz, R.C.; Isenhart, T.M.; Colletti, J.P.; Simpkins, W.W.; Udawatta, R.P.; Schultz, P.L.; Garrett, H.E.G. Riparian and Upland Buffer Practices. In ACSESS Publications; American Society of Agronomy: Madison, WI, USA, 2009. [Google Scholar]
- Udawatta, R.P.; Garrett, H.E.; Kallenbach, R.L. Agroforestry and grass buffer effects on water quality in grazed pastures. In Agroforestry Systems; Springer: Dordrecht, The Netherlands, 2010; Volume 79, pp. 81–87. [Google Scholar]
- Jose, S.; Holzmueller, E.J.; Gillespie, A.R.; Garrett, H.E.G. Tree–Crop Interactions in Temperate Agroforestry. In ACSESS Publications; American Society of Agronomy: Madison, WI, USA, 2009. [Google Scholar]
- Kim, D.-G.; Kirschbaum, M.U.F.; Beedy, T.L. Carbon sequestration and net emissions of CH4 and N2O under agroforestry: Synthesizing available data and suggestions for future studies. Agric. Ecosyst. Environ. 2016, 226, 65–78. [Google Scholar] [CrossRef]
- Reddy, P.P. Impacts of Climate Change on Agriculture. In Climate Resilient Agriculture for Ensuring Food Security; Springer: New Delhi, India, 2015; pp. 43–90. [Google Scholar]
- Jose, S.; Bardhan, S. Agroforestry for biomass production and carbon sequestration: An overview. Agrofor. Syst. 2012, 86, 105–111. [Google Scholar] [CrossRef]
- Holzmueller, E.J.; Jose, S. Biomass production for biofuels using agroforestry: Potential for the North Central Region of the United States. Agrofor. Syst. 2012, 85, 305–314. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R.W. The Concept of a “Land Equivalent Ratio” and Advantages in Yields from Intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef]
- Haile, S.; Palmer, M.; Otey, A. Potential of loblolly pine: Switchgrass alley cropping for provision of biofuel feedstock. Agrofor. Syst. 2016. [Google Scholar] [CrossRef]
- Graves, A.R.; Burgess, P.J.; Palma, J.H.N.; Herzog, F.; Moreno, G.; Bertomeu, M.; Dupraz, C.; Liagre, F.; Keesman, K.; van der Werf, W.; et al. Development and application of bio-economic modelling to compare silvoarable, arable, and forestry systems in three European countries. Ecol. Eng. 2007, 29, 434–449. [Google Scholar] [CrossRef] [Green Version]
- Sereke, F.; Graves, A.R.; Dux, D.; Palma, J.H.N.; Herzog, F. Innovative agroecosystem goods and services: Key profitability drivers in Swiss agroforestry. Agron. Sustain. Dev. 2014, 35, 759–770. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.; Booij, C.J.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Hanley, N.; Breeze, T.D.; Ellis, C.; Goulson, D. Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosyst. Serv. 2015, 14, 124–132. [Google Scholar] [CrossRef]
- Civitello, D.J.; Cohen, J.; Fatima, H.; Halstead, N.T.; Liriano, J.; McMahon, T.A.; Ortega, C.N.; Sauer, E.L.; Sehgal, T.; Young, S.; et al. Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc. Natl. Acad. Sci. USA 2015, 112, 8667–8671. [Google Scholar] [CrossRef] [PubMed]
- Keesing, F.; Ostfeld, R.S. Is biodiversity good for your health? Science 2015, 349, 235–236. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.R. Tree Crops: A Permanent Agriculture; Island Press: Washington, DC, USA, 1950. [Google Scholar]
- Acha, A.; Newing, H.S. Cork Oak Landscapes, Promised or Compromised Lands? A Case Study of a Traditional Cultural Landscape in Southern Spain. Hum. Ecol. 2015, 43, 601–611. [Google Scholar] [CrossRef]
- Strong, N.; Jacobson, M.G. A case for consumer-driven extension programming: Agroforestry adoption potential in Pennsylvania. Agrofor. Syst. 2006, 68, 43–52. [Google Scholar] [CrossRef]
- Sullivan, W.C.; Anderson, O.M.; Lovell, S.T. Agricultural buffers at the rural–urban fringe: An examination of approval by farmers, residents, and academics in the Midwestern United States. Landsc. Urban Plan. 2004, 69, 299–313. [Google Scholar] [CrossRef]
- Valdivia, C.; Gold, M.; Zabek, L.; Arbuckle, J.; Flora, C. Human and Institutional Dimensions of Agroforestry. North Am. Agrofor. Integr. Sci. Pract. 2009. [Google Scholar] [CrossRef]
- Trozzo, K.E.; Munsell, J.F.; Chamberlain, J.L. Landowner interest in multifunctional agroforestry Riparian buffers. In Agroforestry Systems; Springer: Dordrecht, The Netherlands, 2014; Volume 88, pp. 619–629. [Google Scholar]
- Sereke, F.; Dobricki, M.; Wilkes, J.; Kaeser, A.; Graves, A.R.; Szerencsits, E.; Herzog, F. Swiss farmers don’t adopt agroforestry because they fear for their reputation. Agrofor. Syst. 2015. [Google Scholar] [CrossRef]
- Faulkner, P.E.; Owooh, B.; Idassi, J. Assessment of the Adoption of Agroforestry Technologies by Limited-Resource Farmers in North Carolina. J. Ext. 2014, 52, Article 5. Available online: http://www.joe.org/joe/2014october/rb7.php (accessed on 16 October 2015). [Google Scholar]
- Thevathasan, N.V.; Gordon, A.M.; Bradley, R.; Cogliastro, A.; Folkard, P.; Grant, R.; Kort, J.; Liggins, L.; Njenga, F.; Olivier, A.; et al. Agroforestry Research and Development in Canada: The Way Forward. In Agroforestry—The Future of Global Land Use; Nair, P.K.R., Garrity, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 247–283. [Google Scholar]
- Valdivia, C.; Barbieri, C.; Gold, M.A. Between Forestry and Farming: Policy and Environmental Implications of the Barriers to Agroforestry Adoption. Can. J. Agric. Econ. 2012, 60, 155–175. [Google Scholar] [CrossRef]
- Current, D.A.; Brooks, K.N.; Ffolliott, P.F.; Keefe, M. Moving agroforestry into the mainstream. Agrofor. Syst. 2008, 75, 1–3. [Google Scholar] [CrossRef]
- Quinn, C.E.; Quinn, J.E.; Halfacre, A.C. Digging Deeper: A Case Study of Farmer Conceptualization of Ecosystem Services in the American South. Environ. Manag. 2015, 56, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Chestnuts—Harvesting. Available online: http://msue.anr.msu.edu/topic/chestnuts/harvest_storage/harvesting (accessed on 6 June 2016).
- Grado, S.C.; Husak, A.L. Economic Analyses of a Sustainable Agroforestry System in the Southeastern United States. In Valuing Agroforestry Systems; Advances in Agroforestry; Springer: Dordrecht, The Netherlands, 2004; pp. 39–57. [Google Scholar]
- Prokopy, L.S.; Floress, K.; Klotthor-weinkauf, D.; Baumgart-getz, A. Determinants of agricultural best management practice adoption: Evidence from the Literature. J. Soil Water Conserv. 2008, 63, 300–311. [Google Scholar] [CrossRef]
- Gold, M.A.; Godsey, L.D.; Josiah, S.J. Markets and marketing strategies for agroforestry specialty products in North America. In New Vistas in Agroforestry; Nair, P.K.R., Rao, M.R., Buck, L.E., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 371–382. [Google Scholar]
- The Savanna Institute. What Is Savannah-Based Restoration Agriculture? Available online: http://www.savannainstitute.org/about (accessed on 9 December 2015).
- Multifunctional Landscape Analysis and Design. Available online: http://multifunctionallandscape.com/Home_Page.html (accessed on 29 April 2016).
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, M.H.; Lovell, S.T. Agroforestry—The Next Step in Sustainable and Resilient Agriculture. Sustainability 2016, 8, 574. https://doi.org/10.3390/su8060574
Wilson MH, Lovell ST. Agroforestry—The Next Step in Sustainable and Resilient Agriculture. Sustainability. 2016; 8(6):574. https://doi.org/10.3390/su8060574
Chicago/Turabian StyleWilson, Matthew Heron, and Sarah Taylor Lovell. 2016. "Agroforestry—The Next Step in Sustainable and Resilient Agriculture" Sustainability 8, no. 6: 574. https://doi.org/10.3390/su8060574
APA StyleWilson, M. H., & Lovell, S. T. (2016). Agroforestry—The Next Step in Sustainable and Resilient Agriculture. Sustainability, 8(6), 574. https://doi.org/10.3390/su8060574