Influence of Tillage Practices and Crop Type on Soil CO2 Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
- BF25↑-black fallow, plowing (25 cm) along the slope every year.
- P25↑-sowing and plowing (25 cm) along the slope every year
- NT↑-no-tillage, sowing directly to the mulch along the slope.
- P25→-sowing and plowing (25 cm) across the slope every year
- P50→-plowing (25 cm) every year + very deep plowing (50 cm) every three to four years across the slope (deep plowing was implemented in 2011).
- PS50→-plowing (25 cm) every year + subsoiling (50 cm) every three to four years across the slope (subsoiling was implemented in 2011).
2.2. Soil Type
2.3. Climate
2.4. Studied Cultures
Corn (Zea mays L.) | ||
Date | Field Operation | Application |
16 November 2011 | Fertilization | Urea 46% (200 kg ha−1); NPK 7:20:30 (400 kg ha−1) |
18 November 2011 | Primary tillage * | Ploughing to 25 cm depth |
2 March 2012 | Fertilization | KAN 27% N (250 kg ha−1) |
29 April 2012 | Secondary tillage * | Disk plow; seedbed preparation |
30 April 2012 | Sowing | 65,000 plants ha−1 |
1 May 2012 | Herbicide application | Radazin TZ 50 (2.5 L ha−1); Herbotrof (2.5 L ha−1) |
1 October 2012 | Harvest | |
Winter wheat (Triticum aestivum L.) | ||
Date | Field Operation | Application |
25 October 2012 | Primary tillage * | Ploughing to 25 cm depth |
26 October 2012 | Secondary tillage * | Disk plow; seedbed preparation |
26 October 2012 | Sowing | 7,300,000 plants ha−1 |
6; 8; 25 March 2013 | Fertilization | KAN 27% N (150; 200; 200 kg ha−1) |
21 April 2013 | Herbicide and fungicide application | Grandus (24 g ha−1); Starane (0.6 L ha−1); Axial (0.7 L ha−1); Amistar extra (0.8 L ha−1) |
14 May 2013 | Fungicide and pesticide application | Porto (1.5 L ha−1); Lambda (0.2 L ha−1) |
18 July 2013 | Harvest |
2.5. Measurement of Agroecological Factors and Soil CO2 Concentrations
2.6. Statistical Analysis, Quality Management and Quality Control
3. Results and Discussion
Source | DF | Sum of Squares | Mean Square | F Value | Pr > F |
---|---|---|---|---|---|
Total Model | |||||
Model | 25 | 37,429.3 | 1497.2 | 26.5 | <0.0001 |
Error | 262 | 14,798.1 | 56.5 | ||
Corrected Total | 287 | 52,227.4 | |||
Components of Model | |||||
Tillage | 5 | 9791.1 | 1958.2 | 34.7 | <0.0001 |
Time of measurement | 14 | 17,079.6 | 12,120.0 | 21.6 | <0.0001 |
Vegetation | 1 | 9563.4 | 9563.4 | 169.3 | <0.0001 |
Tillage × vegetation | 5 | 1389.5 | 277.9 | 4.9 | 0.0003 |
3.1. Influence of Vegetation on Soil C-CO2 Emissions
3.2. Seasonal Pattern of Soil C-CO2 Emissions
3.3. Influence of Tillage Treatment on Soil C-CO2 Emissions
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Mielnick, P.C.; Dugas, W.A. Soil CO2 flux in a tallgrass prairie. Soil Biol. Biochem. 1999, 32, 221–228. [Google Scholar] [CrossRef]
- Maier, C.A.; Kress, L.W. Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can. J. For. Res. 2000, 30, 347–359. [Google Scholar] [CrossRef]
- Mesić, M.; Birkas, M.; Zgorelec, Ž.; Kisić, I.; Jurišić, A.; Šestak, I. Carbon content and C/N ratio in Pannonian and Mediterranean soils. In Impact of Tillage and Fertilization on Probable Climate Threats in Hungary and Croatia, Soil Vulnerability and Protection; Birkas, M., Mesić, M., Eds.; Szent Istvan University Press: Godollo, Hungary, 2012; pp. 45–53. [Google Scholar]
- Jensen, L.S.; Mueller, T.; Tate, R.K.; Riss, D.J.; Magid, J.; Nelson, N.E. Soil surface CO2 flux as an index of soil respiration in situ: A comparison of two chamber methods. Soil Biol. Biochem. 1996, 28, 1297–1306. [Google Scholar] [CrossRef]
- Caldeira, K.; Morgan, M.G.; Baldocchi, D.; Brewer, P.G.; Chen, C.T.A.; Nabuurs, G.J.; Nakicenovic, N.; Robertson, G.P. A portfolio of carbon management options. In The Global Carbon Cycle; Field, C.B., Raupach, M.R., Eds.; Island Press: Washington, DC, USA, 2004; pp. 103–109. [Google Scholar]
- Almagro, M.; Querejeta, J.I.; Boix-Fayos, C.; Martínez-Mena, M. Links between vegetation patterns, soil C and N pools and respiration rate under three different land uses in a dry Mediterranean ecosystem. J. Soils Sediments 2013, 13, 641–653. [Google Scholar] [CrossRef]
- Oorts, K.; Merckx, R.; Grehan, E.; Labreuche, J.; Nicolardot, B. Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil Till. Res. 2007, 95, 133–148. [Google Scholar] [CrossRef]
- Duxbury, J.M. The significance of agricultural sources of greenhouse gases. Fert. Res. 1994, 38, 151–163. [Google Scholar] [CrossRef]
- Rastogi, M.; Singh, S.; Pathak, H. Emission of carbon dioxide from soil. Curr. Sci. 2002, 82, 510–517. [Google Scholar]
- Lal, R. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Plant Sci. 2003, 22, 151–184. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, X. Soil Respiration and the Environment; Elsevier: London, UK, 2006; p. 316. [Google Scholar]
- Jarecki, M.K.; Lal, R. Compost and mulch effects on gaseous flux from an alfisol in Ohio. Soil Sci. 2006, 171, 249–260. [Google Scholar] [CrossRef]
- Birkás, M. Environmentally-Sound Adaptable Tillage–Solutions from Hungary; Akademiai Kiado: Budapest, Hungary, 2008; pp. 191–194. [Google Scholar]
- Kessavalou, A.; Mosier, A.R.; Doran, J.W.; Drijber, R.A.; Lyon, D.J.; Heinemeyer, O. Fluxes of Carbon Dioxide, Nitrous Oxide, and Methane in Grass Sod and Winter Wheat-Fallow Tillage Management. J. Environ. Qual. 1998, 27, 1094–1104. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A. Soil surface carbon dioxide fluxes induced by spring, summer, and fall moldboard plowing in a sandy loam. Soil Sci. Soc. Am. J. 1999, 63, 621–628. [Google Scholar] [CrossRef]
- La Scala, A.; Lopes, K.; Bolonhezi, D.; Archer, D.W.; Reicosky, D.C. Short-temporal changes of soil carbon losses after tillage described by a first-order decay model. Soil Till. Res. 2008, 99, 108–118. [Google Scholar]
- Jabro, J.D.; Sainju, U.; Stevens, W.B.; Evans, R.G. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. J. Environ. Manag. 2008, 88, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Curtin, D.; Wang, H.; Selles, F.; Mcconkey, B.G.; Campbell, C.A. Tillage Effects on Carbon Fluxes in Continuous Wheat and Fallow–Wheat Rotations. Soil Sci. Soc. Am. J. 2000, 64, 2080–2086. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Yin, X. Tillage and Crop Residue Effects on Soil Carbon and Carbon Dioxide Emission in Corn–Soybean Rotations. J. Environ. Qual. 2005, 34, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Bauer, P.J.; Frederick, J.R.; Novak, J.M.; Hunt, P.G. Soil CO2 flux from a Norfolk loamy sand after 25 years of conventional and conservation tillage. Soil Till. Res. 2006, 90, 205–211. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Till. Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Paustian, K. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag. 1997, 13, 230–244. [Google Scholar] [CrossRef]
- Ball, B.C.; Scott, A.; Parker, J.P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Till. Res. 1999, 53, 29–39. [Google Scholar] [CrossRef]
- Hendrix, P.F.; Han, C.R.; Groffman, P.M. Soil respiration in conventional and no-tillage agroecosystems under different winter cover crop rotations. Soil Till. Res. 1988, 12, 135–148. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Hons, F.M.; Zuberer, D.A. Tillage induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping. Soil Till. Res. 1995, 34, 41–60. [Google Scholar] [CrossRef]
- Bilandžija, D.; Zgorelec, Ž.; Kisić, I. The Influence of Agroclimatic Factors on Soil CO2 Emissions. Collegium Antropol. 2014, 38, 77–83. [Google Scholar]
- Raich, J.W.; Tufekcioglu, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Amos, B.; Arkebauer, T.J.; Doran, J.W. Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem. Soil Sci. Soc. Am. J. 2005, 69, 387–395. [Google Scholar] [CrossRef]
- Johnson, J.M.; Franzluebbers, A.J.; Lachnicht-Weyers, S.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Bajracharya, R.M.; Lal, R.; Kimble, J.M. Diurnal and seasonal CO2-C flux from soil as reflected to erosion phases in central Ohio. Soil Sci. Soc. Am. J. 2000, 64, 286–293. [Google Scholar] [CrossRef]
- Jacinthe, P.A.; Lal, R.; Kimble, J.M. Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment. Soil Till. Res. 2002, 67, 147–157. [Google Scholar] [CrossRef]
- Wan, S.; Hui, D.; Wallace, L.L.; Luo, Y. Direct and indirect warming effects on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006; World Soil Resources Report; FAO: Rome, Italy, 2010. [Google Scholar]
- Gajić-Čapka, M.; Zaninović, K. Climate. In Climate Atlas of Croatia 1961–1990, 1971–2000; Zaninović, K., Ed.; Meteorological and Hydrological Service: Zagreb, Croatia, 2008; pp. 11–15. [Google Scholar]
- SAS Institute. SAS 9.1.3; Help and Documentation: Cary, NC, USA, 2002–2004. [Google Scholar]
- Lou, Y.; Li, Z.; Zhang, T. Carbon Dioxide Flux in a Subtropical Agricultural Soil of China. Water Air Soil Poll. 2003, 149, 281–293. [Google Scholar] [CrossRef]
- Syp, A.; Faber, A.; Pikula, D. Assessing the impact of management practices on gas emissions and N losses calculated with denitrification-decomposition model. Plant Soil Environ. 2015, 61, 433–437. [Google Scholar] [CrossRef]
- Bilen, S.; Celik, A.; Altikat, S. Effects of strip and full-width tillage on soil carbon IV oxide-carbon (CO2-C) fluxes and on bacterial and fungal populations in sunflower. Afr. J. Biotechnol. 2010, 9, 6312–6319. [Google Scholar]
- Liu, X.J.; Mosier, A.R.; Halvorson, A.D.; Zhang, F.S. The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant Soil 2006, 280, 177–188. [Google Scholar] [CrossRef]
- Vinten, A.J.A.; Ball, B.C.; O’Sullivan, M.F.; Henshall, J.K.; Howard, R.; Wright, F.; Ritchie, R. The effects of cultivation method and timing, previous sward and fertilizer level on subsequent crop yields and nitrate leaching following cultivation of long-term grazed grass and grass-clover swards. J. Agric. Sci. 2002, 139, 245–256. [Google Scholar] [CrossRef]
- Aslam, T.; Choudhary, M.; Saggar, S. Influence of land-use management on CO2 emissions from a silt loam soil in New Zealand. Agric. Ecosyst. Environ. 2000, 77, 257–262. [Google Scholar] [CrossRef]
- Omonode, R.A.; Vyn, T.J.; Smith, D.R.; Hegymegi, P.; Gal, A. Soil carbon dioxide and methane fluxes from long-term tillage systems in continuous corn and corn–soybean rotations. Soil Till. Res. 2007, 95, 182–195. [Google Scholar] [CrossRef]
- Elder, J.W.; Lal, R. Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil Till. Res. 2008, 98, 45–55. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilandžija, D.; Zgorelec, Ž.; Kisić, I. Influence of Tillage Practices and Crop Type on Soil CO2 Emissions. Sustainability 2016, 8, 90. https://doi.org/10.3390/su8010090
Bilandžija D, Zgorelec Ž, Kisić I. Influence of Tillage Practices and Crop Type on Soil CO2 Emissions. Sustainability. 2016; 8(1):90. https://doi.org/10.3390/su8010090
Chicago/Turabian StyleBilandžija, Darija, Željka Zgorelec, and Ivica Kisić. 2016. "Influence of Tillage Practices and Crop Type on Soil CO2 Emissions" Sustainability 8, no. 1: 90. https://doi.org/10.3390/su8010090
APA StyleBilandžija, D., Zgorelec, Ž., & Kisić, I. (2016). Influence of Tillage Practices and Crop Type on Soil CO2 Emissions. Sustainability, 8(1), 90. https://doi.org/10.3390/su8010090