Exploratory Data Analysis from SAOCOM-1A Polarimetric Images over Forest Attributes of the Semiarid Caldén (Neltuma caldenia) Forest, Argentina
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
- 1.
- Open forest with grasses: it present perennial grasses, few shrubs, 5.6 m2 ha−1 of basal area and about 98 trees per hectare (Figure 2a);
- 2.
- Open forest with shrubs: similar in structure to the previous type, but with greater shrub cover (Figure 2b);
- 3.
- Closed forest: it has a basal area of 18 m2 ha−1 and about 290 trees per hectare (Figure 2c).
2.2. Materials
2.2.1. SAR Data
2.2.2. Vegetation Data
2.3. Methods
2.3.1. Generalised Radar Vegetation Index
2.3.2. Other SAR Image Properties
2.3.3. Aboveground Biomass and Tree Cover
2.4. Statistical Analysis
3. Results
3.1. Generalised Radar Vegetation Index
3.2. Aboveground Biomass and Tree Canopy Cover
3.3. Relationship Between GRVI, Biomass and Canopy Cover
3.4. Other Radar Image Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AGB | Aboveground Biomass |
| DBH | Diameter at Breast Height |
| DEM | Digital Elevation Model |
| EPSG | European Petroleum Survey Group |
| GRVI | Generalised Radar Vegetation Index |
| LiDAR | Light Detection and Ranging |
| PolSAR | Polarimetric Synthetic Aperture Radar |
| RMSE | Root Mean Square Error |
| SAOCOM | Satélite Argentino de Observación COn Microondas |
| SAR | Synthetic Aperture Radar |
| SRTM | Shuttle Radar Topography Mission |
| SU | Sampling Unit (plural = SUs) |
| WGS84 | World Geodetic System 1984 |
Appendix A
| Model | Dependent Variable | Predictor Variable | Equation | p-Value | |
|---|---|---|---|---|---|
| Linear regression | |||||
| AGB | GRVI_pixel | 0.00 | 0.94 | ||
| AGB | GRVI_media | 0.02 | 0.52 | ||
| Closed forest AGB | GRVI_media | 0.05 | 0.51 | ||
| Closed forest AGB (n = 10) | GRVI_media | 0.37 | 0.06 | ||
| Tree cover | GRVI_pixel | 0.07 | 0.11 | ||
| Tree cover (n = 31) | GRVI_media | 0.10 | 0.05 | ||
| AGB | Pauli green component | 0.14 | 0.03 | ||
| AGB | Yamaguchi helix component | 0.21 | 0.01 | ||
| Quantile regressions | |||||
| quantile: 0.1 | AGB | GRVI_media | – | 0.10 | |
| quantile: 0.2 | AGB | GRVI_media | – | 0.42 | |
| quantile: 0.3 | AGB | GRVI_media | – | 0.45 | |
| quantile: 0.4 | AGB | GRVI_media | – | 0.24 | |
| quantile: 0.5 | AGB | GRVI_media | – | 0.06 | |
| quantile: 0.6 | AGB | GRVI_media | – | 0.29 | |
| quantile: 0.7 | AGB | GRVI_media | – | 0.16 | |
| quantile: 0.8 | AGB | GRVI_media | – | 0.49 | |
| quantile: 0.9 | AGB | GRVI_media | – | 0.36 | |
| quantile: 0.1 | Tree cover | GRVI_media | – | 0.87 | |
| quantile: 0.2 | Tree cover | GRVI_media | – | 0.22 | |
| quantile: 0.3 | Tree cover | GRVI_media | – | 0.29 | |
| quantile: 0.4 | Tree cover | GRVI_media | – | 0.13 | |
| quantile: 0.5 | Tree cover | GRVI_media | – | 0.48 | |
| quantile: 0.6 | Tree cover | GRVI_media | – | 0.53 | |
| quantile: 0.7 | Tree cover | GRVI_media | – | 0.23 | |
| quantile: 0.8 | Tree cover | GRVI_media | – | 0.40 | |
| quantile: 0.9 | Tree cover | GRVI_media | – | 0.37 | |
| Polynomial regressions | |||||
| Second order | AGB | GRVI_pixel | 0.08 | 0.29 | |
| Third order | AGB | GRVI_media | 0.10 | 0.39 | |
| Fourth order | AGB | GRVI_media | 0.10 | 0.56 | |
| Second order | Tree cover | GRVI_media | 0.07 | 0.33 | |
| Third order | Tree cover | GRVI_media | 0.12 | 0.26 | |
| Fourth order | Tree cover | GRVI_media | 0.13 | 0.39 | |
| Linear mixed models | |||||
| Factor: SAOCOM orbit (A: ascending, D: descending) | AGB | GRVI_media | 0.01 | 0.79 | |
| Factor: SAOCOM submode (S5, S6, S7, S8) | AGB | GRVI_media | + 11.96 (S6) + 47.40 (S7) + 5.88 (S8) | 0.19 | 0.20 |
| Factor: SAOCOM orbit (A: ascending, D: descending) | Tree cover | GRVI_media | 0.08 | 0.27 | |
| Factor: SAOCOM submode (S5, S6, S7, S8) | Tree cover | GRVI_media | - 8.09 (S6) + 27.06 (S7) + 12.78 (S8) | 0.21 | 0.14 |
References
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef] [PubMed]
- Forster, P.M.; Smith, C.J.; Walsh, T.; Lamb, W.F.; Lamboll, R.; Hauser, M.; Ribes, A.; Rosen, D.; Gillett, N.; Palmer, M.D.; et al. Indicators of Global Climate Change 2022: Annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 2023, 15, 2295–2327. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F.; et al. The Global 2000-2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results. Front. Remote Sens. 2022, 3, 856903. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Wildfires and global change. Front. Ecol. Environ. 2021, 19, 387–395. [Google Scholar] [CrossRef]
- Dang, H.N.; Ba, D.D.; Trung, D.N.; Viet, H.N.H. A Novel Method for Estimating Biomass and Carbon Sequestration in Tropical Rainforest Areas Based on Remote Sensing Imagery: A Case Study in the Kon Ha Nung Plateau, Vietnam. Sustainability 2022, 14, 6857. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Wang, Y. Forest Aboveground Biomass Estimation and Response to Climate Change Based on Remote Sensing Data. Sustainability 2022, 14, 4222. [Google Scholar] [CrossRef]
- Shiney, S.S.A.; Geetha, R.; Seetharaman, R.; Shanmugam, M. Leveraging Deep Learning Models for Targeted Aboveground Biomass Estimation in Specific Regions of Interest. Sustainability 2024, 16, 4864. [Google Scholar] [CrossRef]
- Song, J.; Liu, X.; Adingo, S.; Guo, Y.; Li, Q. A Comparative Analysis of Remote Sensing Estimation of Aboveground Biomass in Boreal Forests Using Machine Learning Modeling and Environmental Data. Sustainability 2024, 16, 7232. [Google Scholar] [CrossRef]
- Naidoo, L.; Mathieu, R.; Main, R.; Kleynhans, W.; Wessels, K.; Asner, G.; Leblon, B. Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data. ISPRS J. Photogramm. Remote Sens. 2015, 105, 234–250. [Google Scholar] [CrossRef]
- Wiederkehr, N.C.; Gama, F.F.; Castro, P.B.N.; Bispo, P.d.C.; Balzter, H.; Sano, E.E.; Liesenberg, V.; Santos, J.R.; Mura, J.C. Discriminating Forest Successional Stages, Forest Degradation, and Land Use in Central Amazon Using ALOS/PALSAR-2 Full-Polarimetric Data. Remote Sens. 2020, 12, 3512. [Google Scholar] [CrossRef]
- Woodhouse, I.H. Introduction to Microwave Remote Sensing; Taylor & Francis Group: Boca Raton, FL, USA, 2006; p. 397. [Google Scholar]
- Wulder, M.A.; Franklin, S.E. Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and GIS Approaches, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006; p. 246. [Google Scholar]
- Schlund, M.; Davidson, M. Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions. Remote Sens. 2018, 10, 1151. [Google Scholar] [CrossRef]
- Ratha, D.; Mandal, D.; Kumar, V.; Mcnairn, H.; Bhattacharya, A.; Frery, A.C. A Generalized Volume Scattering Model-Based Vegetation Index from Polarimetric SAR Data. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1791–1795. [Google Scholar] [CrossRef]
- Hajnsek, I.; Desnos, Y.L. (Eds.) Polarimetric Synthetic Aperture Radar; Remote Sensing and Digital Image Processing; Springer International Publishing: Cham, Switzerland, 2021; Volume 25, pp. 221–253. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Lopez-Sanchez, J.M.; Bhattacharya, A.; McNairn, H.; Rao, Y.S.; Ramana, K.V. Assessment of rice growth conditions in a semi-arid region of India using the Generalized Radar Vegetation Index derived from RADARSAT-2 polarimetric SAR data. Remote Sens. Environ. 2020, 237, 111561. [Google Scholar] [CrossRef]
- Liu, Z.; Michel, O.O.; Wu, G.; Mao, Y.; Hu, Y.; Fan, W. The Potential of Fully Polarized ALOS-2 Data for Estimating Forest Above-Ground Biomass. Remote Sens. 2022, 14, 669. [Google Scholar] [CrossRef]
- Zeng, P.; Zhang, W.; Li, Y.; Shi, J.; Wang, Z. Forest Total and Component Above-Ground Biomass (AGB) Estimation through C-and L-band Polarimetric SAR Data. Forests 2022, 13, 442. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Hame, T. Volume scattering modeling in PolSAR decompositions: Study of ALOS PALSAR data over boreal forest. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3838–3848. [Google Scholar] [CrossRef]
- Seppi, S.; López-Martínez, C.; Joseau, M.J. An Assessment of SAOCOM L -Band PolInSAR Capabilities for Canopy Height Estimation: A Case Study Over Managed Forests in Argentina. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5001–5014. [Google Scholar] [CrossRef]
- INVAP en la Misión SAOCOM. Available online: http://saocom.invap.com.ar/ (accessed on 14 September 2021).
- Flores-Anderson, A.I.; Herndon, K.E.; Thapa, R.B.; Cherrington, E. THE SAR HANDBOOK Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; NASA Marshall Space Flight Center: Huntsville, AL, USA, 2019; pp. 1–307. [CrossRef]
- David, R.M.; Rosser, N.J.; Donoghue, D.N. Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. Remote Sens. Environ. 2022, 282, 113232. [Google Scholar] [CrossRef]
- Frank Buss, M.E.; Leizica, E.; Peinetti, R.; Noellemeyer, E. Relationships between landscape features, soil properties, and vegetation determine ecological sites in a semiarid savanna of central Argentina. J. Arid Environ. 2020, 173, 104038. [Google Scholar] [CrossRef]
- González-Roglich, M.; Swenson, J.J.; Villarreal, D.; Jobbágy, E.G.; Jackson, R.B. Woody Plant-Cover Dynamics in Argentine Savannas from the 1880s to 2000s: The Interplay of Encroachment and Agriculture Conversion at Varying Scales. Ecosystems 2015, 18, 481–492. [Google Scholar] [CrossRef]
- Menéndez, J.; La Rocca, S. Primer Inventario Nacional De Bosques Nativos. Segunda Etapa: Inventario De Campo De La Región Espinal Distritos Caldén Y Ñandubay; Technical Report; Secretaría de Ambiente y Desarrollo Sustentable de la Nación: Buenos Aires, Argentina, 2007.
- Cabrera, A.L. Regiones Fitogeográficas Argentinas; Editorial ACME S.A.C.I: Buenos Aires, Argentina, 1976. [Google Scholar]
- Casagrande, G. Inventario Integrado de los Recursos Naturales de la provincia de La Pampa; Universidad Nacional de la Pampa: Santa Rosa, Argentina, 1980. [Google Scholar]
- Medina, A.A.; Dussart, E.G.; Estelrich, H.D.; Morici, E. Reconstrucción de la historia del fuego en un bosque de Prosopis caldenia (Burk.) de Arizona, sur de la provincia de San Luis. Multequina 2000, 9, 91–98. [Google Scholar]
- Peinetti, R.; Pereyra, M.; Kin, A.; Sosa, A. Effects of cattle ingestion on viability and germination rate of calden (Prosopis caldenia) seeds. J. Range Manag. 1993, 46, 483. [Google Scholar] [CrossRef]
- González-Roglich, M.; Swenson, J.J.; Jobbágy, E.G.; Jackson, R.B. Shifting carbon pools along a plant cover gradient in woody encroached savannas of central Argentina. For. Ecol. Manag. 2014, 331, 71–78. [Google Scholar] [CrossRef]
- Bogino, S.; Roa-Giménez, S.C.; Velasco-Sastre, A.T.; Cangiano, M.L.; Risio-Allione, L.; Rozas, V. Synergetic effects of fire, climate, and management history on Prosopis caldenia recruitment in the Argentinean pampas. J. Arid Environ. 2015, 117, 59–66. [Google Scholar] [CrossRef]
- Peinetti, H.R.; Bestelmeyer, B.B.T.; Chirino, C.C.C.; Kin, A.G.A.; Frank Buss, M.E.M. Generalized and Specific State-and-Transition Models to Guide Management and Restoration of Caldenal Forests. Rangel. Ecol. Manag. 2019, 72, 230–236. [Google Scholar] [CrossRef]
- Comisión Nacional de Actividades Espaciales. SAOCOM-1 Level 1 Product Format; Technical Report; Comisión Nacional de Actividades Espaciales: Buenos Aires, Argentina, 2020.
- Ministerio de Ambiente y Desarrollo Sostenible. Segundo Inventario Nacional De Bosques Nativos (INBN2). Informe Regiones forestales Espinal y Delta e islas del río Paraná. Primera Revisión; Technical Report; Ministerio de Ambiente y Desarrollo Sostenible: Buenos Aires, Argentina, 2020.
- European Space Agency. SNAP—ESA Sentinel Application Platform v8.0.0. Available online: https://step.esa.int/main/snap-8-0-released (accessed on 23 May 2022).
- NASA Jet Propulsion Laboratory. NASA Shuttle Radar Topography Mission Global 3 Arc Second [Data Set]. 2013. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-srtmgl3-003 (accessed on 19 May 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2022. [Google Scholar]
- Li, H.; Lu, J.; Tian, G.; Yang, H.; Zhao, J.; Li, N. Crop Classification Based on GDSSM-CNN Using Multi-Temporal RADARSAT-2 SAR with Limited Labeled Data. Remote Sens. 2022, 14, 3889. [Google Scholar] [CrossRef]
- Ratha, D.; De, S.; Celik, T.; Bhattacharya, A. Change Detection in Polarimetric SAR Images Using a Geodesic Distance Between Scattering Mechanisms. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1066–1070. [Google Scholar] [CrossRef]
- Ratha, D.; Bhattacharya, A.; Frery, A.C. Unsupervised classification of PolSAR data using a scattering similarity measure derived from a geodesic distance. IEEE Geosci. Remote Sens. Lett. 2018, 15, 151–155. [Google Scholar] [CrossRef]
- Mandal, D.; Ratha, D.; Bhattacharya, A.; Kumar, V.; McNairn, H.; Rao, Y.S.; Frery, A.C. A Radar Vegetation Index for Crop Monitoring Using Compact Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6321–6335. [Google Scholar] [CrossRef]
- Kim, Y.; Van Zyl, J.J. A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2519–2527. [Google Scholar] [CrossRef]
- Pope, K.O.; Rey-Benayas, J.M.; Paris, J.F. Radar remote sensing of forest and wetland ecosystems in the Central American tropics. Remote Sens. Environ. 1994, 48, 205–219. [Google Scholar] [CrossRef]
- Cloude, S.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Van Zyl, J.J. Application of Cloude’s target decomposition theorem to polarimetric imaging radar data. Radar Polerimetry 1992, 1748, 184–191. [Google Scholar]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Hernández Stefanoni, J.L.; Castillo Santiago, M.Á.; Mauricio, J.A.; Mas, J.F.; Tun Dzul, F.; Dupuy Rada, J.M. Mapeo de la Biomasa Aérea de los Bosques Mediante Datos de Sensores Remotos y R; El Colegio de la Frontera Sur: Chetumal, Mexico; Centro de Investigación Científica de Yucatán: Mérida, Mexico, 2021; p. 129. [Google Scholar]
- West, B.T.; Welch, K.B.; Galecki, A.T. Linear Mixed Models; Number Mi; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014; pp. 5–24. [Google Scholar] [CrossRef]
- Iglesias, M.d.R. Utilización de SAR Para la Estimación de Biomasa Forestal en el Chaco Aemiárido; Technical Report; Instituto Mario Gulich: Córdoba, Argentina, 2013. [Google Scholar]
- Alvarez, M.P.; Bellis, L.M.; Arcamone, J.R.; Silvetti, L.E.; Gavier-Pizarro, G. Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables. Remote Sens. Appl. Soc. Environ. 2025, 37, 101485. [Google Scholar] [CrossRef]
- Agost, L.; Pascual, I.; Britos, H.A. Use of Argentine SAOCOM SAR polarimetric L-band satellites for classification of arid and semiarid native forests. Int. J. Remote Sens. 2025, 46, 2568–2586. [Google Scholar] [CrossRef]
- Yamaguchi, Y. Polarimetric SAR Imaging; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Persson, H.J.; Mukhopadhyay, R.; Huuva, I.; Fransson, J.E. Comparison of Boreal Biomass Estimations Using C- and X-Band Polsar. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5555–5558. [Google Scholar] [CrossRef]
- Huang, W.; Sun, G.; Ni, W.; Zhang, Z.; Dubayah, R. Sensitivity of multi-source SAR backscatter to changes in forest aboveground biomass. Remote Sens. 2015, 7, 9587–9609. [Google Scholar] [CrossRef]
- Liesenberg, V. Mapping Tropical Successional Forest Stages using Multifrequency Sar. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5638–5641. [Google Scholar] [CrossRef]
- Alvarez, M.P.; Silvetti, L.E.; Arcamone, J.R.; Pizarro, G.G.; Bellis, L.M. Evaluation of the Response of Vegetation Covers to PolSAR Decomposition Variables in L-Band. In Proceedings of the 2024 7th IEEE Biennial Congress of Argentina, ARGENCON 2024, San Miguel de Tucuman, Argentina, 6–8 June 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2024. [Google Scholar] [CrossRef]
- Pereira, L.O.; Freitas, C.C.; Sant’Anna, S.J.S.; Reis, M.S. ALOS/PALSAR Data Evaluation for Land Use and Land Cover Mapping in the Amazon Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5413–5423. [Google Scholar] [CrossRef]
- Luo, Z.; Du, L.; Liu, L.; Gan, Y.; Liu, K.; Li, C. Study on Polarimetric Scattering Characteristics of Different Band SAR Images Based on Chinese Airborne Sar System. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 2546–2549. [Google Scholar] [CrossRef]
- Medina, A.A. Fire regime reconstruction in a Prosopis caldenia woodland, La Pampa, Argentina. Bosque 2007, 28, 234–240. [Google Scholar] [CrossRef]
- Khati, U.; Lavalle, M.; Singh, G. The Role of Time-Series L-Band SAR and GEDI in Mapping Sub-Tropical Above-Ground Biomass. Front. Earth Sci. 2021, 9, 1–17. [Google Scholar] [CrossRef]












| Mission | SAOCOM (Argentine Satellite System for Emergency Management) |
| Agencies | Comisión Nacional de Actividades Espaciales (CONAE, Argentina) and Italian Space Agency (ASI, Italy) |
| Satellites | SAOCOM-1A and SAOCOM-1B |
| Objective | To prevent, monitor, mitigate, and assess natural and anthropogenic disasters. Applications include: Agriculture (soil moisture, vegetation indices, pest control); hydrological, coastal and ocean applications; snow, ice, and glacier monitoring; urban studies, security and defence |
| Instrument | Fully polarimetric L-band SAR |
| Satellite mass | 3000 kg |
| Dimensions | 4.7 m height × 1.2 m diameter |
| Antenna size (deployed) | 35 m2 |
| Design life | 5.5 years |
| Orbit | Sun-synchronous |
| Orbital altitude | 620 km |
| Swath width | 20 to 350 km |
| Spatial resolution | 10 to 100 m |
| Revisit time | 16 days (single satellite), 8 days (constellation) |
| Launcher | Falcon 9/SpaceX |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Frank Buss, E.; Argañaraz, J.P.; Frery, A.C. Exploratory Data Analysis from SAOCOM-1A Polarimetric Images over Forest Attributes of the Semiarid Caldén (Neltuma caldenia) Forest, Argentina. Sustainability 2026, 18, 369. https://doi.org/10.3390/su18010369
Frank Buss E, Argañaraz JP, Frery AC. Exploratory Data Analysis from SAOCOM-1A Polarimetric Images over Forest Attributes of the Semiarid Caldén (Neltuma caldenia) Forest, Argentina. Sustainability. 2026; 18(1):369. https://doi.org/10.3390/su18010369
Chicago/Turabian StyleFrank Buss, Elisa, Juan Pablo Argañaraz, and Alejandro C. Frery. 2026. "Exploratory Data Analysis from SAOCOM-1A Polarimetric Images over Forest Attributes of the Semiarid Caldén (Neltuma caldenia) Forest, Argentina" Sustainability 18, no. 1: 369. https://doi.org/10.3390/su18010369
APA StyleFrank Buss, E., Argañaraz, J. P., & Frery, A. C. (2026). Exploratory Data Analysis from SAOCOM-1A Polarimetric Images over Forest Attributes of the Semiarid Caldén (Neltuma caldenia) Forest, Argentina. Sustainability, 18(1), 369. https://doi.org/10.3390/su18010369

