Industrial Upgrading and Spatial Spillover Effects on Rural Revitalization: Evidence from County-Level Fujian in China
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Upgrading of County-Level Industrial Structure and Rural Revitalization
2.2. Spatial Spillover Effects of County Rural Revitalization
2.3. Summary of the Theoretical Framework
3. Research Design
3.1. Model Specification
3.1.1. General OLS Model
3.1.2. Spatial Regression Model
Spatial Lag Model (SLM)
Spatial Error Model (SEM)
3.2. Variables
3.2.1. Explained Variable
3.2.2. Explanatory Variable
3.2.3. Control Variables
3.3. Data Sources and Descriptive Statistics
3.4. Other Statistical Results
4. Empirical Result
4.1. Model Judgement
4.2. Main Results
4.2.1. Hypothesis 1 Test: Industrial Upgrading and Rural Revitalization
4.2.2. Hypothesis 2 Test: Spatial Overflow and the “Local Club” Effect
4.2.3. Integrated Analysis
4.3. Diagnostic Tests for the Spatial Econometric Model
4.4. Comparative Analysis
5. Conclusions and Discussion
5.1. Conclusions
5.2. Policy Implications
5.3. Limitations and Directions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Kim, E.; Yang, C.; Cao, F. Rural Revitalization: Sustainable Strategy for the Development of Cultural Landscape of Traditional Villages through Optimized IPA Approach. J. Cult. Herit. Manag. Sustain. Dev. 2023, 13, 66–86. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J. The Impact of Regional Carbon Emission Reduction on Corporate ESG Performance in China. Sustainability 2024, 16, 5802. [Google Scholar] [CrossRef]
- Yin, X.; Chen, J.; Li, J. Rural Innovation System: Revitalize the Countryside for Sustainable Development. J. Rural. Stud. 2022, 93, 471–478. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, L.; Chen, L. Rural Revitalization of China: A New Framework, Measurement and Forecast. Socio-Econ. Plan. Sci. 2023, 89, 101696. [Google Scholar] [CrossRef]
- Zhang, Y.; Pi, L.; Chen, Y.; Shi, R. Energy Transition Policy and Chinese Rural Revitalization: The Roles of Industrial Upgrading and Digital Economy. Financ. Res. Lett. 2024, 69, 106100. [Google Scholar] [CrossRef]
- Gereffi, G. International Trade and Industrial Upgrading in the Apparel Commodity Chain. J. Int. Econ. 1999, 48, 37–70. [Google Scholar] [CrossRef]
- Gereffi, G. Development Models and Industrial Upgrading in China and Mexico. Eur. Sociol. Rev. 2009, 25, 37–51. [Google Scholar] [CrossRef]
- Wang, J.; Peng, L.; Chen, J.; Deng, X. Impact of Rural Industrial Integration on Farmers’ Income: Evidence from Agricultural Counties in China. J. Asian Econ. 2024, 93, 101761. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, Z. The Impact of Industrial Structure Upgrades on the Urban–Rural Income Gap: Evidence from China’s Provincial Panel Data. Growth Change 2021, 52, 1761–1782. [Google Scholar] [CrossRef]
- Lin, J.Y.; Yu, M. Industrial Upgrading and Poverty Reduction in China. In Structural Change and Industrial Development in the BRICS; Oxford University Press: Oxford, UK, 2015; pp. 93–118. [Google Scholar]
- Chen, X.; Li, J. Industrial Structure Transformation and Upgrading of Chinese Tourism Villages Based on Big Data Analysis. Mob. Inf. Syst. 2022, 2022, 1820098. [Google Scholar] [CrossRef]
- Anselin, L. Lagrange Multiplier Test Diagnostics for Spatial Dependence and Spatial Heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Yu, N.; De Jong, M.; Storm, S.; Mi, J. Spatial Spillover Effects of Transport Infrastructure: Evidence from Chinese Regions. J. Transp. Geogr. 2013, 28, 56–66. [Google Scholar] [CrossRef]
- Shi, J.; Yang, X. Sustainable Development Levels and Influencing Factors in Rural China Based on the Rural Revitalization Strategy. Sustainability 2022, 14, 8908. [Google Scholar] [CrossRef]
- Xiang, H.; Zhai, B.; Yang, Y. The Realization Logic of Rural Revitalization: Coupled Coordination Analysis of Development and Governance. PLoS ONE 2024, 19, e0305593. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dai, L.; Long, H.; Woods, M.; Fois, F. Rural Vitalization Promoted by Industrial Transformation under Globalization: The Case of Tengtou Village in China. J. Rural. Stud. 2022, 95, 241–255. [Google Scholar] [CrossRef]
- Kenessey, Z. The Primary, Secondary, Tertiary and Quaternary Sectors of the Economy. Rev. Income Wealth 1987, 33, 359–385. [Google Scholar] [CrossRef]
- Hong, M.; Zhang, W. Industrial Structure Upgrading, Urbanization and Urban–Rural Income Disparity: Evidence from China. Appl. Econ. Lett. 2021, 28, 1321–1326. [Google Scholar] [CrossRef]
- Chen, X.; Hu, F. Employee Pension Welfare and Corporate Risk-Taking: Evidence from the Enterprise Annuity System in China. Pac.-Basin Financ. J. 2025, 94, 102768. [Google Scholar] [CrossRef]
- Hu, L.; Yuan, W.; Jiang, J.; Ma, T.; Zhu, S. Asymmetric Effects of Industrial Structure Rationalization on Carbon Emissions: Evidence from Thirty Chinese Provinces. J. Clean. Prod. 2023, 428, 139347. [Google Scholar] [CrossRef]
- Krüger, J.J. Productivity and Structural Change: A Review of the Literature. J. Econ. Surv. 2008, 22, 330–363. [Google Scholar] [CrossRef]
- Islam, N.; Subramanian, A. Agricultural Exports of Developing Countries: Estimates of Income and Price Elasticities of Demand and Supply. J. Agric. Econ. 1989, 40, 221–231. [Google Scholar] [CrossRef]
- Courtois, P.; Subervie, J. Farmer Bargaining Power and Market Information Services. Am. J. Agric. Econ. 2015, 97, 953–977. [Google Scholar] [CrossRef]
- Acedo, F.J.; Barroso, C.; Galan, J.L. The Resource-Based Theory: Dissemination and Main Trends. Strateg. Manag. J. 2006, 27, 621–636. [Google Scholar] [CrossRef]
- Hu, F.; Chen, X.; Liu, X.; Yang, C. Do Employee-Friendly Practices Affect Executive Pay–Performance Sensitivity? Evidence from Corporate Annuity Systems in China. Appl. Econ. 2025, 1–18. [Google Scholar] [CrossRef]
- Ryser, L.; Halseth, G. Rural Economic Development: A Review of the Literature from Industrialized Economies. Geogr. Compass 2010, 4, 510–531. [Google Scholar] [CrossRef]
- Wang, S.; Peng, T.; Du, A.M.; Lin, X. The Impact of the Digital Economy on Rural Industrial Revitalization. Res. Int. Bus. Financ. 2025, 76, 102878. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, J.; Xiao, J.; Han, D.; Pan, T. Evaluation of the Effectiveness of Rural Revitalization and an Improvement Path: A Typical Old Revolutionary Cultural Area as an Example. Int. J. Environ. Res. Public Health 2022, 19, 13494. [Google Scholar] [CrossRef]
- Gao, J.; Wu, B. Revitalizing Traditional Villages through Rural Tourism: A Case Study of Yuanjia Village, Shaanxi Province, China. Tour. Manag. 2017, 63, 223–233. [Google Scholar] [CrossRef]
- Wang, F.; Wu, M.; Du, X. Does Industrial Upgrading Improve Eco-Efficiency? Evidence from China’s Industrial Sector. Energy Econ. 2023, 124, 106774. [Google Scholar] [CrossRef]
- Zhu, Z.; Bai, Y.; Dai, W.; Liu, D.; Hu, Y. Quality of E-Commerce Agricultural Products and the Safety of the Ecological Environment of the Origin Based on 5G Internet of Things Technology. Environ. Technol. Innov. 2021, 22, 101462. [Google Scholar] [CrossRef]
- Guo, J.; Jin, S.; Zhao, J.; Wang, H.; Zhao, F. Has COVID-19 Accelerated the E-Commerce of Agricultural Products? Evidence from Sales Data of E-Stores in China. Food Policy 2022, 112, 102377. [Google Scholar] [CrossRef] [PubMed]
- Romer, P.M. Endogenous Technological Change. J. Political Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef]
- Ahn, H.J.; Mah, J.S. Development of Technology-Intensive Industries in Korea. J. Contemp. Asia 2007, 37, 364–379. [Google Scholar] [CrossRef]
- Tian, X.; Wu, M.; Ma, L.; Wang, N. Rural Finance, Scale Management and Rural Industrial Integration. China Agric. Econ. Rev. 2020, 12, 349–365. [Google Scholar] [CrossRef]
- Ye, F.; Qin, S.; Nisar, N.; Zhang, Q.; Tong, T.; Wang, L. Does Rural Industrial Integration Improve Agricultural Productivity? Implications for Sustainable Food Production. Front. Sustain. Food Syst. 2023, 7, 1191024. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, G.; Li, M.; Zhang, M.; Agyeman, F.O.; Liu, F. The Spillover Effect of Green Finance Development on Rural Revitalization: Evidence from China’s Provincial Panel Data. Environ. Sci. Pollut. Res. 2023, 30, 58907–58919. [Google Scholar] [CrossRef]
- Krugman, P. Increasing Returns and Economic Geography. J. Political Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Su, M.; Yuan, M.; Ma, X.; Wang, Z.; Zhou, Z. The Organic Connection of Rural Revitalization and Poverty Alleviation from the Perspective of Spillover Effect. Int. J. Educ. Humanit. 2022, 5, 176–185. [Google Scholar] [CrossRef]
- Quah, D.T. Empirics for Economic Growth and Convergence. Eur. Econ. Rev. 1996, 40, 1353–1375. [Google Scholar] [CrossRef]
- Feser, E.; Isserman, A. Harnessing Growth Spillovers for Rural Development: The Effects of Regional Spatial Structure; Report to USDA Rural Development; University of Illinois at Urbana–Champaign: Champaign, IL, USA, 2006. [Google Scholar]
- Hou, L.; Tian, C.; Xiang, R.; Wang, C.; Gai, M. Research on the Impact Mechanism and Spatial Spillover Effect of Digital Economy on Rural Revitalization: An Empirical Study Based on China’s Provinces. Sustainability 2023, 15, 11607. [Google Scholar] [CrossRef]
- Döring, T.; Schnellenbach, J. What Do We Know about Geographical Knowledge Spillovers and Regional Growth? A Survey of the Literature. Reg. Stud. 2006, 40, 375–395. [Google Scholar] [CrossRef]
- Anselin, L.; Gallo, J.L.; Jayet, H. Spatial Panel Econometrics. In The Econometrics of Panel Data: Fundamentals and Recent Developments in Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2008; pp. 625–660. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Revitalize the World’s Countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef]
- Cheong, T.S.; Wu, Y. The Impacts of Structural Transformation and Industrial Upgrading on Regional Inequality in China. China Econ. Rev. 2014, 31, 339–350. [Google Scholar] [CrossRef]





| Target Level | Normative Layer | Indicator Layer | Unit | Weights | Attributes |
|---|---|---|---|---|---|
| Evaluation of the implementation effectiveness of county rural revitalisation in Fujian province | Thriving industry | Gross regional product (X1) | RMB | 0.0761 | + |
| Gross power of agricultural machinery (X2) | KW | 0.0477 | + | ||
| Labour supply intensity X3 | Persons/village | 0.0698 | + | ||
| Expenditure on agriculture, forestry and water (X4) | RMB | 0.0286 | + | ||
| Agriculture, forestry, animal husbandry and fisheries gross product index (X5) | % | 0.0066 | + | ||
| Per capita yield of grain (X6) | kg/acre | 0.0253 | + | ||
| Ecologically livable | Number of villages benefiting from piped water as a percentage (X7) | % | 0.011 | + | |
| Intensity of fertiliser use (X8) | Tonnes/acre | 0.0054 | − | ||
| Intensity of pesticide use (X9) | Tonnes/acre | 0.0058 | − | ||
| Intensity of use of agricultural plastic film (X10) | Tonnes/acre | 0.0055 | − | ||
| Area of renewed afforestation (X11) | % | 0.1088 | + | ||
| Local customs and civilisation | Per capita expenditure on education (X12) | RMB | 0.022 | + | |
| Percentage of cable television connections (X13) | % | 0.0061 | + | ||
| Percentage of villages with broadband (X14) | % | 0.004 | + | ||
| Level of education teachers (X15) | Natural number | 0.0264 | + | ||
| Effective governance | Total rural population (X16) | Natural number | 0.0518 | + | |
| Urban–rural income gap (X17) | RMB | 0.0098 | − | ||
| Number of health service personnel (X18) | per 1000 population | 0.0447 | + | ||
| Percentage of rural pensioners insured (X19) | % | 0.0697 | + | ||
| Welfare beds for social adoption (X20) | per 1000 population | 0.0336 | + | ||
| Prosperous | Miles of rural roads (X21) | Km | 0.0474 | + | |
| Rural disposable income per capita (X22) | RMB | 0.0285 | + | ||
| Urbanisation level (X23) | % | 0.0904 | + | ||
| Rural per capita consumption expenditure (X24) | RMB | 0.0522 | + | ||
| Balance of deposits in financial institutions (X25) | RMB 10,000 yuan | 0.1227 | + |
| Variable | Definition | N | Mean | SD | Min | Max |
|---|---|---|---|---|---|---|
| rurscore | County Rural Revitalisation Development Index | 450 | 0.225 | 0.097 | 0.09 | 0.685 |
| ecostr | County industrial development structure | 450 | 0.868 | 0.089 | 0.53 | 0.998 |
| lnpgdp | Log of county GDP per capita | 450 | 11.246 | 0.376 | 10.315 | 12.301 |
| arginpt | County government input support | 450 | 0.148 | 0.06 | 0.025 | 0.389 |
| argstr | County agricultural cropping structure | 450 | 1.037 | 0.637 | 0.03 | 3.576 |
| lndenload | State of County Infrastructure | 450 | −0.037 | 0.436 | −0.821 | 1.186 |
| lnteact | Status of education levels in counties | 450 | 5.107 | 0.592 | 4.354 | 7.88 |
| lnmedic | Level of social security in counties | 450 | −0.238 | 0.5029 | −2.514 | 4.179 |
| Variable | Benchmark Regression | SLM Autoregression | SEM Autoregression | ||
|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | |
| OLS | RE | FE | RE | FE | |
| ecostr | 0.857 *** | 1.387 *** | 1.110 *** | 1.116 *** | 1.036 *** |
| (0.246) | (0.360) | (0.306) | (0.258) | (0.285) | |
| lnpgdp | −0.000949 | −0.0415 | 0.0167 | 0.111 ** | 0.147 *** |
| (0.0511) | (0.0444) | (0.0365) | (0.0458) | (0.0468) | |
| arginpt | −0.394 ** | −0.116 | 0.101 | 0.124 | 0.191 |
| (0.186) | (0.225) | (0.205) | (0.218) | (0.222) | |
| argstr | 0.0322 * | −0.0351 ** | −0.0315 * | −0.0174 | −0.0242 |
| (0.0184) | (0.0179) | (0.0167) | (0.0161) | (0.0170) | |
| lndenload | 0.0502 | 0.247 ** | 0.130 *** | 0.174 *** | 0.191 *** |
| (0.0432) | (0.113) | (0.0497) | (0.0492) | (0.0477) | |
| lnteact | −0.235 *** | −0.163 *** | −0.153 *** | −0.147 *** | −0.150 *** |
| (0.0329) | (0.0370) | (0.0378) | (0.0432) | (0.0437) | |
| lnmedic | 0.155 *** | 0.159 *** | 0.160 *** | 0.158 *** | 0.157 *** |
| (0.00981) | (0.0128) | (0.00807) | (0.0117) | (0.0112) | |
| ρ | 0.225 *** | 0.171 *** | |||
| (0.000925) | (0.00198) | ||||
| λ | 0.126 *** | 0.126 *** | |||
| (0.00377) | (0.00377) | ||||
| Observations | 450 | 450 | 450 | ||
| R-squared | 0.964 | 0.088 | 0.066 | 0.135 | 0.144 |
| Log-likelihood | -- | 143.0261 | 446.1971 | 259.6195 | 466.1520 |
| Year | Moran’s I | Z-Value | p-Value | Conclusion |
|---|---|---|---|---|
| 2017 | 0.352 | 4.721 | 0.000 | Significant clustering |
| 2018 | 0.341 | 4.583 | 0.000 | Significant clustering |
| 2019 | 0.338 | 4.552 | 0.000 | Significant clustering |
| 2020 | 0.345 | 4.637 | 0.000 | Significant clustering |
| 2021 | 0.349 | 4.689 | 0.000 | Significant clustering |
| 2022 | 0.355 | 4.768 | 0.000 | Significant clustering |
| Type | Statistical Measure | p-Value |
|---|---|---|
| LM-Lag | 38.427 | 0.000 |
| LM-Error | 42.156 | 0.000 |
| Robust LM-Lag | 6.213 | 0.013 |
| Robust LM-Error | 9.942 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, H.; Huang, Y.; Liu, Y. Industrial Upgrading and Spatial Spillover Effects on Rural Revitalization: Evidence from County-Level Fujian in China. Sustainability 2026, 18, 146. https://doi.org/10.3390/su18010146
Wang H, Huang Y, Liu Y. Industrial Upgrading and Spatial Spillover Effects on Rural Revitalization: Evidence from County-Level Fujian in China. Sustainability. 2026; 18(1):146. https://doi.org/10.3390/su18010146
Chicago/Turabian StyleWang, Haiping, Ying Huang, and Yongchang Liu. 2026. "Industrial Upgrading and Spatial Spillover Effects on Rural Revitalization: Evidence from County-Level Fujian in China" Sustainability 18, no. 1: 146. https://doi.org/10.3390/su18010146
APA StyleWang, H., Huang, Y., & Liu, Y. (2026). Industrial Upgrading and Spatial Spillover Effects on Rural Revitalization: Evidence from County-Level Fujian in China. Sustainability, 18(1), 146. https://doi.org/10.3390/su18010146
