Research on Climate Change Initiatives in Nigeria: Identifying Trends, Themes and Future Directions
Abstract
1. Introduction
- How has the field of net-zero transition research evolved in Nigeria?
- What are the most important research themes and trends in research on the net-zero transition in Nigeria?
- What are the potential directions for future research or policy-making on the net-zero transition in Nigeria?
2. Climate Change-Related Initiatives in Nigeria
2.1. Nigeria’s Nationally Determined Contributions (NDCs)
2.2. Climate Change Act of 2021
2.3. Nigeria’s Energy Transition Plan (ETP)
2.4. National Biofuel Policy and Incentive (NBP)
2.5. Other Policies and Programs
3. Materials and Methods
- (i)
- Exclude papers that are not written in English which the authors understand and are fluent in.
- (ii)
- Exclude papers on coal characteristics (such as physicochemical, thermogravimetric, etc.) This is because even though coal-to-gas shift (BTU) is touted as a climate-friendly transition, the coal gasification process has likely higher cost compared to natural gas [61], indicating its economic infeasibility in Nigeria, which has an enormous natural gas reserve and other potential renewables. Further, coal mining has numerous environmental impacts and has been abandoned for decades in Nigeria.
- (iii)
- Exclude papers on risk of pollutants such as hydrocarbons, etc., as they do not contribute to cutting GHG emissions or achieving net-zero.
- (iv)
- Include papers that focus on any of the relevant keyword items focused on Nigeria and those that combine Nigeria with other countries
- (v)
- Include papers on forestry and biomes carbon sink potential, as they pursue carbon sequestration.
Data Analysis
4. Result and Discussion
4.1. Bibliometric Mapping of the Publications
4.1.1. Publications Evolution
4.1.2. Citation Analysis: Major Articles and Authors
4.1.3. Collaboration Analysis of the Countries and Institutions
4.1.4. Bibliographic Coupling: Data Clustering Analysis Between the Publications
4.1.5. Co-Occurrence of Authors’ Keywords: Identifying Recent Directions
4.2. Text Mining Analysis: Uncovering Important Research Themes and Developments
4.3. Qualitative Content Analysis of the Eight Clusters: Further Exploration
4.3.1. Cluster 1: Renewable Energy, Economic Growth and Emission Reduction Nexus
4.3.2. Cluster 2: Energy Transition in Nigerian Power System
4.3.3. Cluster 3: Policy Drivers (Socio-Technical and Economic) for a Cleaner Energy System
4.3.4. Cluster 4: Energy Transition Governance
4.3.5. Cluster 5: Hybrid Renewable Energy Systems (HRES)
4.3.6. Cluster 6: Low-Carbon Transition
4.3.7. Cluster 7: Energy Efficiency and Low-Carbon Growth
4.3.8. Cluster 8: Solar PV Mitigation Potential
5. Research Implications: Further Directions
6. Conclusions
7. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
CCA | Climate Change Act of Nigeria 2021 |
NDC | Nationally Determined Contributions |
NCCC | National Council of Climate Change |
ETP | Energy Transition Plan 2021 of Nigeria |
CCS | Carbon capture and storage |
CCUS | Carbon capture utilization and sequestration |
DAC | Direct air capture |
CC | Climate change |
LCT | Low-carbon transition |
LCD | Low-carbon development |
ET | Energy transition |
CE | Circular economy |
WtE | Waste-to-energy |
RE | Renewable energy |
VRE | Variable renewable energy |
SHP | Small hydroelectricity power |
References
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Abam, F.I.; Nwachukwu, C.O.; Emodi, N.V.; Okereke, C.; Diemuodeke, O.E.; Owolabi, A.B.; Owebor, K.; Suh, D.; Huh, J.-S. A systematic literature review on the decarbonization of the building sector—A case for Nigeria. Front. Energy Res. 2023, 19, 1253825. [Google Scholar] [CrossRef]
- Osadume, R.; University, E.O. Impact of economic growth on carbon emissions in selected West African countries, 1980–2019. J. Money Bus. 2021, 1, 8–23. [Google Scholar] [CrossRef]
- Boyle, R. Greenhouse Gas Emissions in Nigeria. 2024. Available online: https://www.emission-index.com/countries/nigeria#:~:text=The%20sector%20that%20produced%20the,of%20total%20GHG%20in%20Nigeria (accessed on 9 April 2025).
- Yusuf, A. Dynamic effects of energy consumption, economic growth, international trade and urbanization on environmental degradation in Nigeria. Energy Strategy Rev. 2023, 50, 101228. [Google Scholar] [CrossRef]
- Tol, R.S.J. A meta-analysis of the total economic impact of climate change. Energy Policy 2024, 185, 113922. [Google Scholar] [CrossRef]
- Bonell, A.; Sonko, B.; Badjie, J.; Samateh, T.; Saidy, T.; Sosseh, F.; Sallah, Y.; Bajo, K.; A Murray, K.; Hirst, J.; et al. Environmental heat stress on maternal physiology and fetal blood flow in pregnant subsistence farmers in The Gambia, West Africa: An observational cohort study. Lancet Planet. Health 2022, 6, e968–e976. [Google Scholar] [CrossRef]
- Khurshid, N.; Fiaz, A.; Khurshid, J.; Ali, K. Impact of climate change shocks on economic growth: A new insight from non-linear analysis. Front. Environ. Sci. 2022, 10, 1039128. [Google Scholar] [CrossRef]
- Rigas, N.; Kounetas, K.E. The impact of CO2 emissions and climate on economic growth and productivity: International evidence. Rev. Dev. Econ. 2022, 28, 719–740. [Google Scholar] [CrossRef]
- Onofrei, M.; Vatamanu, A.F.; Cigu, E. The relationship between economic growth and CO2 emissions in EU countries: A cointegration analysis. Front. Environ. Sci. 2022, 10, 934885. [Google Scholar] [CrossRef]
- Raihan, A.; Muhtasim, D.A.; Khan Md Pavel, M.I.; Faruk, O. Nexus between carbon emissions, economic growth, renewable energy use, and technological innovation towards achieving environmental sustainability in Bangladesh. Clean Energy Syst. 2022, 3, 100032. [Google Scholar] [CrossRef]
- Arogundade, S.; Hassan, A.S.; Mduduzi, B. Is climate change hindering the economic progress of Nigerian economy? Insights from dynamic models. Heliyon 2024, 10, e39288. [Google Scholar] [CrossRef] [PubMed]
- Amare, M.; Balana, B. Climate change, income sources, crop mix, and input use decisions: Evidence from Nigeria. Ecol. Econ. 2023, 211, 107892. [Google Scholar] [CrossRef]
- Chamma, D.D. Climate change and economic growth in sub-Saharan Africa: An empirical analysis of aggregate- and sector-level growth. J. Soc. Sci. Econ. Dev. 2024, 1–33. [Google Scholar] [CrossRef]
- Okon, E.; Falana, B.; Solaja, S.; Yakubu, S.; Alabi, O.; Okikiola, B.; Awe, T.; Adesina, B.; Tokula, B.; Kipchumba, A.; et al. Systematic review of climate change impact research in Nigeria: Implication for sustainable development. Heliyon 2021, 7, e07941. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, X.; Kjellstrom, T.; Lee, J.K.W.; Otto, M.; Zhang, X.; Romanello, M.; Zhang, D.; Cai, W. Labour productivity and economic impacts of carbon mitigation: A modelling study and benefit–cost analysis. Lancet Planet. Earth 2022, 6, e941–e948. [Google Scholar] [CrossRef]
- Ojo, T.O.; Baiyegunhi, L.J.S. Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria. Land Use Policy 2020, 95, 103946. [Google Scholar] [CrossRef]
- Shiru, M.S.; Shahid, S.; Chung, E.-S.; Alias, N. Changing characteristics of meteorological droughts in Nigeria during 1901–2010. Atmos. Res. 2019, 223, 60–73. [Google Scholar] [CrossRef]
- Ojo, T.O.; Ogundeji, A.A.; Emenike, C.U. Does Adoption of Climate Change Adaptation Strategy Improve Food Security? A Case of Rice Farmers in Ogun State, Nigeria. Land 2022, 11, 1875. [Google Scholar] [CrossRef]
- Sustainable Development Report. Nigeria: The SDGs and the UN Summit of the Future. 2024. Available online: https://dashboards.sdgindex.org/profiles/nigeria (accessed on 8 April 2025).
- Okafor, C.; Madu, C.; Ajaero, C.; Ibekwe, J.; Bebenimibo, H.; Nzekwe, C. Moving beyond fossil fuel in an oil-exporting and emerging economy: Paradigm shift. AIMS Energy 2021, 9, 379–413. [Google Scholar] [CrossRef]
- Okoh, A.S.; Okpanachi, E. Transcending energy transition complexities in building a carbon-neutral economy: The case of Nigeria. Clean Energy Syst. 2023, 6, 100069. [Google Scholar] [CrossRef]
- Wang, R.; Assenova, V.A.; Hertwich, E.G. Energy system decarbonization and productivity gains reduced the coupling of CO2 emissions and economic growth in 73 countries between 1970 and 2016. One Earth 2021, 4, 1614–1624. [Google Scholar] [CrossRef]
- Hajiyev, N.; Guliyev, V.; Abdullayeva, S.; Abdullayeva, E. Energy intensity of the economy in the context of rethinking growth within a limited planet. Energy Strategy Rev. 2023, 50, 101246. [Google Scholar] [CrossRef]
- Nigeria Energy Transition Plan. Key ETP Objectives. 2022. Available online: https://www.energytransition.gov.ng (accessed on 7 April 2025).
- Akujor, C.E.; Uzowuru, E.E.; Abubakar, S.S.; Amakom, C.M. Decarbonization of the transport sector in Nigeria. Environ. Health Insights 2022, 16, 11786302221125039. [Google Scholar] [CrossRef]
- Dioha, M.O.; Kumar, A. Sustainable energy pathways for land transport in Nigeria. Util. Policy 2020, 64, 101034. [Google Scholar] [CrossRef]
- Nwokolo, S.C.; Meyer, E.L.; Ahia, C.C. Credible pathways to catching up with climate goals in Nigeria. Climate 2023, 11, 196. [Google Scholar] [CrossRef]
- Dioha, M.O.; Emodi, N.V.; Dioha, E.C. Pathways for low carbon Nigeria in 2050 by using NECAL2050. Renew. Energy Focus 2019, 29, 63–77. [Google Scholar] [CrossRef]
- Dioha, M.O.; Kumar, A. Exploring the energy system impacts of Nigeria’s Nationally Determined Contributions and low-carbon transition to mid-century. Energy Policy 2020, 144, 111703. [Google Scholar] [CrossRef]
- Dioha, M.O.; Kumar, A. Exploring sustainable energy transitions in sub-Saharan Africa residential sector: The case of Nigeria. Renew. Sustain. Energy Rev. 2020, 117, 109510. [Google Scholar] [CrossRef]
- Daggash, H.A.; Dowell, N.M. Delivering low-carbon electricity systems in sub-Saharan Africa: Insights from Nigeria. Energy Environ. Sci. 2021, 14, 4018–4037. [Google Scholar] [CrossRef]
- Cervigni, R.; Rogers, J.A.; Dvorak, I. Assessing Low-Carbon Development in Nigeria: An Analysis of Four Sectors; World Bank: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Yetano Roche, M.; Verolme, H.; Agbaegbu, C.; Binnington, T.; Fischedick, M.; Oladipo, E.O. Achieving Sustainable Development Goals in Nigeria’s power sector: Assessment of transition pathways. Clim. Policy 2020, 20, 846–865. [Google Scholar] [CrossRef]
- Ogbonna, C.G.; Nwachi, C.C.; Okeoma, I.O.; Fagbami, O.A. Understanding Nigeria’s transition pathway to carbon neutrality using the multilevel perspective. Carbon Neutrality 2023, 2, 24. [Google Scholar] [CrossRef]
- Edomah, N. Governing sustainable industrial energy use: Energy transitions in Nigeria’s manufacturing sector. J. Clean. Prod. 2019, 210, 620–629. [Google Scholar] [CrossRef]
- Edomah, N. The governance of energy transition: Lessons from the Nigerian electricity sector. Energy Sustain. Soc. 2021, 11, 40. [Google Scholar] [CrossRef]
- Olujobi, O.J.; Okorie, U.E.; Olarinde, E.S.; Aina-Pelemo, A.D. Legal responses to energy security and sustainability in Nigeria’s power sector amidst fossil fuel disruptions and low carbon energy transition. Heliyon 2023, 9, e17912. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Front. Energy Res. 2021, 9, 743114. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Naghizadeh, A.; Aneke, F.I.; Kontoni, D.-P.N.; Onyia, M.E.; Welman-Purchase, M.; Ebid, A.M.; Adah, E.I.; Liberty, U. Characterization of net-zero pozzolanic potential of thermally-derived metakaolin samples for sustainable carbon neutrality construction. Sci. Rep. 2023, 13, 18901. [Google Scholar] [CrossRef]
- Msheila, H.; Eni-Ibukun, T.A. Legal Perspectives to Raising Ambition and Implementing the Nationally Determined Contributions (NDCs) in Nigeria; Alex Ekwueme Federal University Ndufu-Alike Nigeria Discussion Paper; Center for Climate Change and Development: Abakaliki, Nigeria, 2021. [Google Scholar]
- Noah, I.A. Nigeria’s Climate Change Act, conditional and unconditional nationally determined contributions, and the principle of common but differentiated responsibilities. Environ. Law Rev. 2024, 1–19. [Google Scholar] [CrossRef]
- Department of Climate Change. Nigeria’s first Nationally Determined Contribution 2021 Update. Available online: https://climatechange.gov.ng/wp-content/uploads/2021/08/NDC_File-Amended-_11222.pdf (accessed on 6 April 2025).
- Adetipe, P. Climate Change Act 2021—The Highlights. Available online: https://foundationchambers.com/climate-change-act-2021-the-highlights/ (accessed on 7 April 2025).
- Olujobi, O.O.; Odogbo, I.S. Strategic evaluation of the 2021 Nigeria Climate Change Act: Surmounting challenges, paving the way for success, and envisioning future trajectories. Soc. Sci. Humanit. Open 2024, 10, 100928. [Google Scholar] [CrossRef]
- Ekpotu, W.; Akintola, J.; Moses, Q.; Obialor, M.; Osagie, E.; Utoh, I.-O.; Akpan, J. Nigeria’s Energy Transition Plan: A technical analysis, opportunities, and recommendations for sustainable development. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 5–7 August 2024. [Google Scholar]
- Federal Republic of Nigeria. Official Gazette of the Nigerian Bio-fuel Policy and Incentives. 2007. Available online: https://moman.org/wp-content/uploads/2024/07/Biofuels-Policy-2007.pdf (accessed on 9 April 2025).
- Nwozor, A.; Owoeye, G.; Olowojolu, O.; Ake, M.; Adedire, S.; Ogundele, O. Nigeria’s quest for alternative clean energy through biofuels: An assessment. IOP Conf. Ser. Earth Environ. Sci. 2021, 655, 012054. [Google Scholar] [CrossRef]
- IEA Nigeria Renewable Energy Master Plan. 2013. Available online: https://www.iea.org/policies/4974-nigeria-renewable-energy-master-plan (accessed on 9 April 2025).
- Federal Ministry of Power and Steel. Renewable Electricity Policy Guidelines December 2006. 2006. Available online: https://www.iceednigeria.org/resources/dec-2006.pdf (accessed on 9 April 2025).
- NREAP National Renewable Energy Action Plan, NREAP (2015–2030). 2016. Available online: https://cleantechnologyhub.com/wp-content/uploads/2022/07/NATIONAL-RENEWABLE-ENERGY-ACTION-PLAN-NREAP.pdf (accessed on 10 April 2025).
- Arku, R.E.; Brauer, M.; Duong, M.; Wei, L.; Hu, B.; Tse, L.A.; Mony, P.K.; Lakshmi, P.; Pillai, R.K.; Mohan, V.; et al. Adverse health impacts of cooking with kerosene: A multi-country analysis within the prospective urban and rural epidemiology study. Environ. Res. 2020, 188, 109851. [Google Scholar] [CrossRef]
- Powell, K.R.; Peterson, S.R. Coverage and quality: A comparison of Web of Science and Scopus databases for reporting faculty nursing publication metrics. Nurs. Outlook 2017, 65, 572–578. [Google Scholar] [CrossRef]
- AlRyalat, S.A.; Malkwai, L.W.; Momani, S.M. Comparing bibliometric analysis using PubMed, Scopus and Web of Science Databases. J. Vis. Exp. 2019, 24, e58494. [Google Scholar] [CrossRef]
- Pranckute, R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Asubiaro, T.V.; Onaolapo, S. A comparative study of the coverage of African journals in Web of Science, Scopus, and Crossref. J. Assoc. Inf. Sci. Technol. 2023, 74, 745–758. [Google Scholar] [CrossRef]
- Wimbadi, R.W.; Djalante, R. From decarbonization to low carbon development and transition: A systematic literature review of the conceptualization of moving toward net-zero carbon dioxide emission (1995–2019). J. Clean. Prod. 2020, 256, 120307. [Google Scholar] [CrossRef]
- Adedayo, H.B.; Adio, S.A.; Oboirien, B.O. Energy research in Nigeria: A bibliometric analysis. Energy Strategy Rev. 2021, 34, 100629. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Chen, L.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-W. Strategies to achieve a carbon neutrality society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef]
- Chyou, Y.-P.; Chiu, H.-M.; Chen, P.-C.; Chien, H.-Y.; Wang, T. Coal-derived synthetic natural gas as an alternative energy carrier for application to power—Comparison of integrated vs. non-integrated process. Energy 2023, 282, 128958. [Google Scholar] [CrossRef]
- Ranjbari, M.; Saidani, M.; Esfandabadi, Z.S.; Peng, W.; Lam, S.S.; Aghbashlo, M.; Quatraro, F.; Tabatabaei, M. Two decades of research on waste management in the circular economy: Insights from bibliometric, text mining, and content analyses. J. Clean. Prod. 2021, 314, 128009. [Google Scholar] [CrossRef]
- Talabis, M.R.M.; McPherson, R.; Miyamoto, I.; Martin, J.L.; Kaye, M. Analytics defined. In Information Security Analytics; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–12. [Google Scholar] [CrossRef]
- Emodi, N.V.; Emodi, C.C.; Murthy, G.P.; Emodi, A.S.A. Energy policy for low carbon development in Nigeria: A LEAP model application. Renew. Sustain. Energy Rev. 2017, 68, 247–261. [Google Scholar] [CrossRef]
- Mutezo, G.; Mulopo, J. A review of Africa’s transition from fossil fuels to renewable energy using circular economy principles. Renew. Sustain. Energy Rev. 2021, 137, 110609. [Google Scholar] [CrossRef]
- Ndukwu, M.C.; Bennamoun, L.; Abam, F.I.; Eke, A.B.; Ukoha, D. Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium. Renew. Energy 2017, 113, 1182–1192. [Google Scholar] [CrossRef]
- Okundamiya, M.S. Size optimization of a hybrid photovoltaic/fuel cell grid connected power system including hydrogen storage. Int. J. Hydrogen Energy 2021, 46, 30539–30546. [Google Scholar] [CrossRef]
- Farage, P.K.; Ardo, J.; Olsson, I.; Rienzi, E.A.; Ball, S.; Pretty, J.N. The potential for soil carbon sequestration in three tropical dryland farming systems of Africa and Latin America: A modelling approach. Soil Tillage Res. 2007, 94, 457–472. [Google Scholar] [CrossRef]
- Akram, R.; Umar, M.; Xiaoli, G.; Chen, F. Dynamic linkages between energy efficiency, renewable energy along with economic growth and carbon emission. A case of MINT countries an asymmetric analysis. Energy Rep. 2022, 8, 2119–2130. [Google Scholar] [CrossRef]
- Dillimono, H.D. Travel, tourism, climate change, and behavioral change: Travelers’ perspectives from a developing country, Nigeria. J. Sustain. Tour. 2015, 23, 437–454. [Google Scholar] [CrossRef]
- Inal, V.; Addi, H.M.; Çakmak, E.E.; Torusdağ, M.; Çalışkan, M. The nexus between renewable energy, CO2 emissions, and economic growth: Empirical evidence from African oil-producing countries. Energy Rep. 2022, 8, 1634–1643. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Rayudu, R.K.; Nair, N.K.C. Life cycle impact assessment of photovoltaic power generation from crystalline silicon-based solar modules in Nigeria. Renew. Energy 2017, 101, 537–549. [Google Scholar] [CrossRef]
- Oyewo, A.S.; Aghahosseini, A.; Bogdanov, D.; Breyer, C. Pathways to a fully sustainable electricity supply for Nigeria in the mid-term future. Energy Convers. Manag. 2018, 178, 44–64. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Science 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Voumik, L.C.; Rahman, M.H.; Nafi, S.M.; Hossain, M.A.; Ridzuan, A.R.; Mohamed Yusoff, N.Y. Modelling Sustainable Non-Renewable and Renewable Energy Based on the EKC Hypothesis for Africa’s Ten Most Popular Tourist Destinations. Sustainability 2023, 15, 4029. [Google Scholar] [CrossRef]
- Bamidele, R.; Ozturk, I.; Gyamfi, B.A.; Bekun, F.V. Tourism-induced pollution emission amidst energy mix: Evidence from Nigeria. Environ. Sci. Pollut. Res. 2022, 29, 19752–19761. [Google Scholar] [CrossRef]
- Somoye, O.A.; Ozdeser, H.; Seraj, M. Modeling the determinants of renewable energy consumption in Nigeria: Evidence from Autoregressive Distributed Lagged in error correction approach. Renew. Energy 2022, 190, 606–616. [Google Scholar] [CrossRef]
- Owebor, K.; Diemuodeke, E.O.; Briggs, T.A.; Imran, M. Power Situation and renewable energy potentials in Nigeria—A case for integrated multi-generation technology. Renew. Energy 2021, 177, 773–796. [Google Scholar] [CrossRef]
- Adewuyi, O.B.; Kiptoo, M.K.; Afolayan, A.F.; Amara, T.; Alawode, O.I.; Senjyu, T. Challenges and prospects of Nigeria’s sustainable energy transition with lessons from other countries’ experiences. Energy Rep. 2020, 6, 993–1009. [Google Scholar] [CrossRef]
- Barau, A.S.; Abubakar, A.H.; Kiyawa, A.-H.I. Not there yet: Mapping inhibitions to solar energy utilization by households in African informal urban neighbourhoods. Sustainalibity 2020, 12, 840. [Google Scholar] [CrossRef]
- Nwaiwu, F. Digitalisation and sustainable energy transitions in Africa: Assessing the impact of policy and regulatory environments on the energy sector in Nigeria and South Africa. Energy Sustain. Soc. 2021, 11, 48. [Google Scholar] [CrossRef]
- Ebhota, W.S.; Tabakov, P.Y. The place of small hydropower electrification scheme in socioeconomic stimulation of Nigeria. Int. J. Low-Carbon Technol. 2018, 13, 311–319. [Google Scholar] [CrossRef]
- Dufo-López, R.; Zubi, G.; Fracastoro, G.V. Techno-economic assessment of an off-grid PV-powered community kitchen for developing regions. Appl. Energy 2012, 91, 255–262. [Google Scholar] [CrossRef]
- Sofimieari, I.; Mustafa, M.W.B.; Obite, F. Modelling and analysis of a PV/wind/diesel hybrid standalone Microgrid for rural electrification in Nigeria. Bull. Electr. Eng. Inform. 2019, 8, 1468–1477. [Google Scholar] [CrossRef]
- Yakub, A.O.; Same, N.N.; Owolabi, A.B.; Nsafon, B.E.K.; Suh, D.; Huh, J.-S. Optimizing the performance of hybrid renewable energy systems to accelerate a sustainable energy. Energy Strategy Rev. 2022, 43, 100906. [Google Scholar] [CrossRef]
- Babatunde, O.M.; Oluseyi, P.O.; Akinbulire, T.O.; Denwigwe, H.I.; Akin-Adeniyi, T.J. The role of demand-side management in carbon footprint reduction in modern energy services for rural health clinics. In Environmental Carbon Footprints; Elsevier: Amsterdam, The Netherlands, 2017; pp. 317–363. [Google Scholar] [CrossRef]
- Adom, P.K.; Adams, S. Energy savings in Nigeria. Is there a way of escape from energy inefficiency? Renew. Sustain. Energy Rev. 2018, 81, 2421–2430. [Google Scholar] [CrossRef]
- Akinwale, Y.O. Descriptive analysis of building indigenous low-carbon innovation capability in Nigeria. Afr. J. Sci. Technol. Innov. Dev. 2018, 10, 601–614. [Google Scholar] [CrossRef]
- Sarpong, F.A.; Wang, J.; Cobbinah, B.B.; Makwetta, J.J.; Chen, J. The drivers of energy efficiency improvement among nine selected West African countries: A two-stage DEA methodology. Energy Strategy Rev. 2022, 43, 100910. [Google Scholar] [CrossRef]
- Akinyemi, O.; Alege, P.O.; Ajayi, O.O.; Okodua, H. Energy pricing policy and environmental quality in Nigeria: A dynamic computable general equilibrium approach. Int. J. Energy Econ. Policy 2017, 7, 268–276. [Google Scholar]
- Enongene, K.E.; Abanda, F.H.; Otene, I.J.J.; Obi, S.I.; Okafor, C. The potential of solar photovoltaic systems for residential homes in Lagos city of Nigeria. J. Environ. Manag. 2019, 244, 247–256. [Google Scholar] [CrossRef]
- Akinyele, D.O.; Nair, N.K.C.; Rayudu, R.K.; Seah, W.K.G. Clean development mechanism projects for developing countries: Potential for carbon emissions mitigation and sustainable development. In Proceedings of the 2014 18th National Power Systems Conference, NPSC 2014, Guwahati, India, 18–20 December 2014. [Google Scholar] [CrossRef]
- Tambari, I.T.; Dioha, M.O.; Failler, P. Renewable energy scenarios for sustainable electricity supply in Nigeria. Energy Clim. Change 2020, 1, 100017. [Google Scholar] [CrossRef]
- Ibikunle, R.A. Exploration and prediction of wet season municipal solid waste for power generation in Ilorin metropolis, Nigeria. J. Mater. Cycles Waste Manag. 2022, 24, 1591–1602. [Google Scholar] [CrossRef]
- Momodu, A.S.; Aransiola, E.F.; Adepoju, T.D.; Okunade, I.D. Global Strategy, Local Action with Biogas Production for Rural Energy Climate Change Impact Reduction. In African Handbook of Climate Change Adaptation; Springer: Cham, Switzerland, 2021; pp. 1381–1399. [Google Scholar] [CrossRef]
- Unuigbe, M.; Zulu, S.L.; Johnston, D. Exploring Factors Influencing Renewable Energy Diffusion in Commercial Buildings in Nigeria: A Grounded Theory Approach. Sustainability 2022, 14, 9726. [Google Scholar] [CrossRef]
- Unuigbe, M.; Zulu, S.L.; Johnston, D. Challenges to energy transitioning in commercial buildings in the Nigerian built environment–from generator to RETs economy. Built Environ. Proj. Asset Manag. 2023, 13, 157–171. [Google Scholar] [CrossRef]
- Ekung, S.; Ohama, V.; Tiokpat, M. Cost factors in Zero-Carbon Technologies Applied in Buildings: Nigeria’s Perspective. J. Sustain. Constr. Mater. Technol. 2020, 5, 484–493. [Google Scholar] [CrossRef]
- Kwag, B.C.; Adamu, B.M.; Krarti, M. Analysis of high-energy performance residences in Nigeria. Energy Effic. 2019, 12, 681–695. [Google Scholar] [CrossRef]
- Anyaoha, K.E.; Zhang, L. Technology-based comparative life cycle assessment for palm oil industry: The case of Nigeria. Environ. Dev. Sustain. 2023, 25, 4575–4595. [Google Scholar] [CrossRef]
- Awoyale, A.A.; Lokhat, D.; Eloka-Eboka, A.C. Experimental characterization of selected Nigerian lignocellulosic biomasses in bioethanol production. Int. J. Ambient. Energy 2021, 42, 1343–1351. [Google Scholar] [CrossRef]
- Igbokwe, V.C.; Ezugworie, F.N.; Onwosi, C.O.; Aliyu, G.O.; Obi, C.J. Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy. J. Environ. Manag. 2022, 305, 114333. [Google Scholar] [CrossRef]
- Shari, B.E.; Madougou, S.; Ohunakin, O.S.; Blechinger, P.; Moumouni, Y.; Ahmed, A.; Tukur, Y. Exploring the dynamics of stakeholders’ perspectives towards planning low-carbon energy transitions: A case of the Nigerian power sector. Int. J. Sustain. Energy 2023, 42, 209–235. [Google Scholar] [CrossRef]
- Akinbusoye, A.J.; Nwobi, D.L.; Akolo, A.O.; Phillips, O.P. Socio-legal opportunities and barriers to achieving the objectives of the Paris Agreement in selected sub-Saharan African (pp. 19–43). In Energy Transition in the African Economy Post 2050; IGI Global: Hershey, PA, USA, 2023. [Google Scholar] [CrossRef]
- Ofosu-Peasah, G.; Antwi, E.O.; Blyth, W.; Sarquah, K. The impact of climate action on energy security in West Africa: Evidence from Burkina Faso, Ghana and Nigeria. OPEC Energy Rev. 2022, 46, 449–481. [Google Scholar] [CrossRef]
- Omodero, C.O.; Alege, P.O. Green Fiscal Policy Mechanisms for a Low–Carbon Ecosystem: A Developing Country Assessment. Environ. Ecol. Res. 2022, 10, 550–560. [Google Scholar] [CrossRef]
- Esily, R.R.; Chi, Y.; Ibrahiem, D.M.; Houssam, N.; Chen, Y. Modelling natural gas, renewables-sourced electricity, and ICT trade on economic growth and environment: Evidence from top natural gas producers in Africa. Environ. Sci. Pollut. Res. 2023, 30, 57086–57102. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Ağa, M. The Race to Zero Emissions in MINT Economies: Can Economic Growth, Renewable Energy and Disintegrated Trade Be the Path to Carbon Neutrality? Sustainability 2022, 14, 14178. [Google Scholar] [CrossRef]
- Somoye, O.A.; Seraj, M.; Ozdeser, H.; Mar’I, M. Modelling the connection between energy intensity, renewable energy, globalization, technological innovation and CO2 emissions: A Quantile–on–Quantile technique. Geol. J. 2024, 59, 1322–1336. [Google Scholar] [CrossRef]
- Abdulfatah, H.K.; Ayodele, E. Impact of Nigeria’s Nationally Determined Contributions (NDC) on Energy Security as the Country Transition to Low Carbon or Net-Zero Energy Systems. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 31 July–2 August 2023. [Google Scholar] [CrossRef]
- Nwachukwu, C.O.; Diemuodeke, E.O.; Briggs, T.A.; Ojapah, M.M.; Okereke, C.; Okedu, K.E.; Kalam, A. Low/zero carbon technology diffusion and mapping for Nigeria’s decarbonization. Int. J. Sustain. Energy 2024, 43, 2317146. [Google Scholar] [CrossRef]
- Umar, B.A.; Gholami, R.; Nayak, P.; Shah, A.A.; Adamu, H. Regional and field assessments of potentials for geological storage of CO2: A case study of the Niger Delta Basin, Nigeria. J. Nat. Gas Sci. Eng. 2020, 77, 103195. [Google Scholar] [CrossRef]
- The National Council on Climate Change. Nigeria’s Long-Term Low-Emission Development Strategy—2060. 2023. Available online: https://unfccc.int/sites/default/files/resource/Nigeria_LT-LEDS_01122023_240425_094617.pdf (accessed on 4 April 2025).
- Nigeria’s Climate Change ACT. 2021. Available online: https://faolex.fao.org/docs/pdf/NIG208055.pdf (accessed on 4 April 2025).
- Okafor, C.C.; Ibekwe, J.C.; Nnadi, V.E.; Otunomo, F.A.; Ajaero, C.C. A review on trend, challenges, and strategies for circular economy in Nigerian construction. J. Knowl. Econ. 2025, 1–44. [Google Scholar] [CrossRef]
- Salakhetdinov, E.; Agyeno, O. Achieving energy security in Africa: Prospects of nuclear energy development in South Africa and Nigeria. Afr. J Sci. Technol. Innov. Dev. 2020, 14, 22–30. [Google Scholar] [CrossRef]
- PCNGi Presidential Compressed Natural Gas Initiative Moving Nigeria Forward with the Power of C.N.G. 2025. Available online: https://pci.gov.ng/ (accessed on 5 April 2025).
- Igbojionu, A.; Anyadiegwu, C.; Anyanwu, E.; Obah, B.; Muonagor, C. Technical and economic evaluation of the use of CNG as potential public transport fuel in Nigeria. Sci. Afr. 2019, 6, e00212. [Google Scholar] [CrossRef]
- Dioha, M.O. Making Nigeria’s Energy Transition Plan a Reality. 2022. Available online: https://energyforgrowth.org/wp-content/uploads/2022/11/Making-Nigerias-energy-transition-plan-a-reality.pdf (accessed on 7 April 2025).
- Statista. Primary Energy Intensity in Nigeria from 2000 to 2021. 2024. Available online: https://www.statista.com/statistics/1358224/primary-energy-intensity-in-nigeria/#:~:text= (accessed on 8 April 2025).
- Okorie, D.I.; Wesseh, P.K. Fossil fuel subsidy removal, economic welfare, and environmental quality under alternative policy schemes. J. Clean. Prod. 2024, 450, 141991. [Google Scholar] [CrossRef]
- Oladigbolu, J.O.; Mujeeb, A.; Imam, A.A.; Rushdi, A.M. Design, Technical and Economic Optimization of Renewable Energy-Based Electric Vehicle Charging Stations in Africa: The Case of Nigeria. Energies 2023, 16, 397. [Google Scholar] [CrossRef]
Rank | Authors | Paper Type | TC | TC/Y | Journal |
---|---|---|---|---|---|
1 | Emodi et al. [64] | Article | 180 | 25.7 | Renew Sust Energy Rev |
2 | Mutezo and Mulopo [65] | Review | 149 | 49.6 | Renew Sust Energy Rev |
3 | Ndukwu [66] | Article | 98 | 14 | Renew Energy |
4 | Okundamiya et al. [67] | Article | 81 | 20.2 | Int J Hydrogen Energy |
5 | Farage et al. [68] | Article | 75 | 4.4 | Soil and Tillage Res |
6 | Akram [69] | Article | 63 | 31.5 | Energy Reports |
7 | Dillimono [70] | Article | 55 | 6.1 | Journal of Sustainable Tourism |
8 | Inal [71] | Article | 52 | 26 | Energy Reports |
9 | Akinyele [72] | Article | 51 | 7.2 | Renew Energy |
10 | Oyewo [73] | Article | 48 | 8 | Energy Conversion Manage |
Most Influential Authors | Most Productive Authors | ||||||||
---|---|---|---|---|---|---|---|---|---|
Rank | Author | TC | TP | TC/TP | Rank | Author | TP | TC | TC/TP |
1 | Emodi, N.V. | 207 | 7 | 51.7 | 1 | Dioha, M.O. | 9 | 119 | 13.2 |
2 | Emodi, A.S. | 182 | 2 | 91 | 2 | Emodi, N.V. | 7 | 207 | 29.5 |
3 | Emodi, C.C. | 182 | 2 | 91 | 3 | Kumar, A. | 4 | 72 | 18 |
4 | Murthy, G.P. | 180 | 1 | 180 | 4 | Adewuyi, O.B. | 3 | 58 | 19.3 |
5 | Mutezo, G. | 149 | 1 | 149 | 5 | Edomah, N. | 3 | 46 | 15.3 |
6 | Mulopo, J. | 149 | 1 | 149 | 6 | Ozdeser, H. | 3 | 25 | 8.3 |
7 | Dioha, M.O. | 119 | 9 | 13.2 | 7 | Seraj, M. | 3 | 25 | 8.3 |
8 | Ukoha, D. | 98 | 1 | 98 | 8 | Somoye, O.A. | 3 | 25 | 8.3 |
9 | Ndukwu, M.C. | 98 | 1 | 98 | 9 | Ohunakin, O.S. | 3 | 16 | 5.3 |
10 | Abam, F.I. | 98 | 1 | 98 | |||||
11 | Eke, A.B. | 98 | 1 | 98 |
Rank | Organization | TP | TC * | TP/CP |
---|---|---|---|---|
1 | Covenant Univ, Nigeria | 13 (6.5%) | 102 (2.6%) | 7.8 |
2 | Univ of Nigeria | 11 (5.5%) | 97 (2.5%) | 8.8 |
3 | Univ of Ibadan | 10 (5.0%) | 73 (1.9%) | 7.3 |
4 | Univ of Port Harcourt | 7 (3.5%) | 44 (1.1%) | 6.3 |
4 | Univ of Lagos | 7 (3.5%) | 46 (1.2%) | 6.6 |
4 | TERI Sch of Adv Studies, India | 7 (3.5%) | 108 (2.8%) | 15.4 |
4 | Obafemi Awolowo Univ | 7 (3.5%) | 25 (0.6%) | 3.6 |
5 | Univ of Johannesburg, SA | 6 (3.0%) | 23 (0.5%) | 3.8 |
6 | Federal Univ of Tech, Owerri | 5 (2.5%) | 17 (0.4%) | 3.4 |
6 | Michael Okpara Univ of Agric | 5 (2.5%) | 292 (7.5%) | 58.4 |
7 | Nisanti Univ, Turkey | 4 (2.0%) | 8 (0.2%) | 2 |
7 | Univ of Calabar | 4 (2.0%) | 21 (0.5%) | 5.2 |
7 | Landmark Univ | 4 (2.0%) | 48 (1.2%) | 12 |
7 | Univ Teknologi Malaysia | 4 (2.0%) | 23 (0.5%) | 5.7 |
Cluster 1: Renewable energy, economic growth and emission reduction nexus | Akram et al. [69] İnal et al. [71] Voumik et al. [75] Bamidele et al. [76] * Somoye et al. [77] * |
Cluster 2: Energy transition in Nigerian power system | Mutezo and Mulopo [65] Oyewo et al. [73] Yetano-Roche et al. [34] Owebor et al. [78] |
Cluster 3: Policy drivers (socio-technical and economic) for a cleaner energy system | Emodi et al. [64] Adewuyi et al. [79] Barau et al. [80] Nwaiwu [81] |
Cluster 4: ET governance | Edomah [36] Ebhota and Tabakov [82] Edomah [37] Daggash and Dowell [32] |
Cluster 5: Hybrid renewable energy systems | Dufo-lopez et al. [83] Sofimieari et al. [84] Yakub et al. [85] Babatunde et al. [86] |
Cluster 6: Low-carbon transition | Dioha and Kumar [27] Dioha and Kumar [29] Dioha and Kumar [30] Dioha et al. [31] |
Cluster 7: Energy efficiency and low-carbon growth | Adom and Adams [87] Akinwale [88] Sarpong et al. [89] Akinyemi et al. [90] |
Cluster 8: Solar PV mitigation potential | Akinyele et al. [72] Enongene et al. [91] Akinyele et al. [92] Tambari et al. [93] |
Categorization of the Research Subject | Key Terms | Recent References |
---|---|---|
Buildings/residential | Building, carbon dioxide emission, carbon footprint, construction, consumer, economy, electricity, energy demand, energy use, global warming, greenhouse gas, household, kwh, low-carbon economy, negative impact, population, rural area, solar photovoltaic, sustainable development, utilization | [31,91,96,97,98,99] |
Waste-to-Energy | Biomass, carbon neutrality, energy mix, energy sector, energy system, environmental impact, fuel, grid, hydrogen, infrastructure, integration, optimization, paradigm shift, power, power generation, renewable energy technology, technology, waste | [94,95,100,101,102] |
Climate action | Climate action, climate change, climate change mitigation, community, contribution, deployment, economic development, energy access, energy policy, environment, framework, government, low-carbon, low-carbon development, opportunity, Paris Agreement, sustainable development, sustainable energy transition | [28,64,92,103,104,105,106] |
Energy demand and consumption | Economic growth, energy consumption, energy source, environmental quality, financial development, implementation, long run, Nigerian government, policy implication, policymaker, renewable energy consumption, renewable energy source, short-run, stakeholder, urbanization | [5,38,69,71,107,108] |
Energy transition | Clean energy, electricity generation, energy crisis, energy security, energy transition, prospect, renewable, renewable energy, sustainability, sustainable energy future, environmental sustainability | [22,79,93,109,110] |
Carbon capture and others | Carbon capture, decarbonization, industry, net-zero, pathway, policy framework, storage | [2,26,34,35,111,112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okafor, C.C.; Madu, C.N.; Nwoye, A.V.; Nzekwe, C.A.; Otunomo, F.A.; Ajaero, C.C. Research on Climate Change Initiatives in Nigeria: Identifying Trends, Themes and Future Directions. Sustainability 2025, 17, 3995. https://doi.org/10.3390/su17093995
Okafor CC, Madu CN, Nwoye AV, Nzekwe CA, Otunomo FA, Ajaero CC. Research on Climate Change Initiatives in Nigeria: Identifying Trends, Themes and Future Directions. Sustainability. 2025; 17(9):3995. https://doi.org/10.3390/su17093995
Chicago/Turabian StyleOkafor, Chukwuebuka C., Christian N. Madu, Adaobi V. Nwoye, Chinelo A. Nzekwe, Festus A. Otunomo, and Charles C. Ajaero. 2025. "Research on Climate Change Initiatives in Nigeria: Identifying Trends, Themes and Future Directions" Sustainability 17, no. 9: 3995. https://doi.org/10.3390/su17093995
APA StyleOkafor, C. C., Madu, C. N., Nwoye, A. V., Nzekwe, C. A., Otunomo, F. A., & Ajaero, C. C. (2025). Research on Climate Change Initiatives in Nigeria: Identifying Trends, Themes and Future Directions. Sustainability, 17(9), 3995. https://doi.org/10.3390/su17093995