Relationship Between Carbon Stock and Stand Cumulative Production at Harvesting Age of Pinus radiata Plantations: A Comparison Between Granitic and Metamorphic Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Stand Cumulative Production at Harvesting Age Estimation
2.3. Carbon Stock in Above and Belowground Biomass
2.4. Forest Floor Sampling and Carbon Estimations
2.5. Soil Sampling and Carbon Estimations
2.6. Statistical Analysis
3. Results
3.1. Plantation Cumulative Production at Harvesting Age
3.2. Soil Horizon Characteristics
3.3. Carbon Stock
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Dellsén, F. Consensus Versus Unanimity: Which Carries More Weight? Br. J. Philos. Sci. 2021. [Google Scholar] [CrossRef]
- IPCC. Global Carbon and Other Biogeochemical Cycles and Feedbacks. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate; Cambridge University Press: Cambridge, UK, 2023; pp. 673–816. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Kipping, L.; Goßner, M.M.; Koschorreck, M.; Muszynski, S.; Maurer, F.P.; Weiser, W.W.; Jehmlich, N.; Noll, M. Emission of CO2 and CH4 From 13 Deadwood Tree Species Is Linked to Tree Species Identity and Management Intensity in Forest and Grassland Habitats. Glob. Biogeochem. Cycles 2022, 36, e2021GB007143. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Han, H.; Shi, Z.; Yang, X. Biomass accumulation and carbon sequestration in an age-sequence of Mongolian pine plantations in Horqin sandy land, China. Forests 2019, 10, 197. [Google Scholar] [CrossRef]
- Diao, J.; Liu, J.; Zhu, Z.; Wei, X.; Li, M. Active forest management accelerates carbon storage in plantation forests in Lishui, southern China. For. Ecosyst. 2022, 9, 100004. [Google Scholar] [CrossRef]
- Zha, T.S.; Barr, A.G.; Bernier, P.Y.; Lavigne, M.B.; Trofymow, J.A.; Amiro, B.D.; Arain, M.A.; Bhatti, J.S.; Black, T.A.; Margolis, H.A.; et al. Gross and aboveground net primary production at Canadian forest carbon flux sites. Agric. For. Meteorol. 2013, 174–175, 54–64. [Google Scholar] [CrossRef]
- Díaz Villa, M.V.E.; Cristiano, P.M.; De Diego, M.S.; Rodríguez, S.A.; Efron, S.T.; Bucci, S.J.; Scholz, F.; Goldstein, G. Do selective logging and pine plantations in humid subtropical forests affect aboveground primary productivity as well as carbon and nutrients transfer to soil? For. Ecol. Manag. 2022, 503, 119736. [Google Scholar] [CrossRef]
- López-Senespleda, E.; Calama, R.; Ruiz-Peinado, R. Estimating forest floor carbon stocks in woodland formations in Spain. Sci. Total Environ. 2021, 788, 147734. [Google Scholar] [CrossRef]
- Watt, M.S.; Kimberley, M.O. Spatial comparisons of carbon sequestration for redwood and radiata pine within New Zealand. For. Ecol. Manag. 2022, 513, 120190. [Google Scholar] [CrossRef]
- Olmedo, G.F.; Guevara, M.; Gilabert, H.; Montes, C.R.; Arellano, E.C.; Barría-Knopf, B.; Gárate, F.; Mena-Quijada, P.; Acuña, E.; Bown, H.E.; et al. Baseline of Carbon Stocks in Pinus radiata and Eucalyptus spp. Plantations of Chile. Forests 2020, 11, 1063. [Google Scholar] [CrossRef]
- Mizuta, K.; Grunwald, S.; Bacon, A.R.; Cropper, W.P.; Phillips, M.A.; Moss, C.B.; Gonzalez-Benecke, C.A.; Markewitz, D.; Clingensmith, C.M.; Xiong, X. Holistic aboveground ecological productivity efficiency modeling using data envelopment analysis in the southeastern U.S. Sci. Total Environ. 2022, 824, 153802. [Google Scholar] [CrossRef] [PubMed]
- Bellassen, V.; Luyssaert, S. Carbon sequestration: Managing forests in uncertain times. Nature 2014, 506, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Kranabetter, J.M. Site carbon storage along productivity gradients of a late-seral southern boreal forest. Can. J. For. Res. 2009, 39, 1053–1060. [Google Scholar] [CrossRef]
- Waring, B.; Neumann, M.; Prentice, I.C.; Adams, M.; Smith, P.; Siegert, M. Forests and Decarbonization—Roles of Natural and Planted Forests. Front. For. Glob. Change 2020, 3, 534891. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 811–922. [Google Scholar]
- McKinley, D.C.; Ryan, M.G.; Birdsey, R.A.; Giardina, C.P.; Harmon, M.E.; Heath, L.S.; Houghton, R.A.; Jackson, R.B.; Morrison, J.F.; Murray, B.C.; et al. A synthesis of current knowledge on forests and carbon storage in the United States. Ecol. Appl. 2011, 21, 1902–1924. [Google Scholar] [CrossRef] [PubMed]
- Štraus, H.; Podvinšek, S.; Klopčić, M. Identifying Optimal Forest Management Maximizing Carbon Sequestration in Mountain Forests Impacted by Natural Disturbances: A Case Study in the Alps. Forests 2023, 14, 947. [Google Scholar] [CrossRef]
- Begotti, R.A.; Pacífico, E.d.S.; Ferraz, S.; Galetti, M. Landscape Context of Plantation Forests in the Conservation of Tropical Mammals. J. Nat. Conserv. 2018, 41, 97–105. [Google Scholar] [CrossRef]
- López-Bedoya, P.A.; Magura, T.; Edwards, F.A.; Edwards, D.P.; Rey-Benayas, J.M.; Löveï, G.L.; Noriega, J.A. What Level of Native Beetle Diversity Can Be Supported by Forestry Plantations? A Global Synthesis. Insect Conserv. Divers. 2021, 14, 736–747. [Google Scholar] [CrossRef]
- Heinrichs, S.; Pauchard, A.; Schall, P. Native Plant Diversity and Composition Across a Pinus radiata D. Don Plantation Landscape in South-Central Chile—The Impact of Plantation Age, Logging Roads and Alien Species. Forests 2018, 9, 567. [Google Scholar] [CrossRef]
- Becerra, P.I.; Simonetti, J.A. Native and exotic plant species diversity in forest fragments and forestry plantations of a coastal landscape of central Chile. Bosque 2020, 41, 125–136. [Google Scholar] [CrossRef]
- Kaipainen, T.; Liski, J.; Pussinen, A.; Karjalainen, T. Managing carbon sinks by changing rotation length in European forests. Environ. Sci. Policy 2004, 7, 205–219. [Google Scholar] [CrossRef]
- Nghiem, N. Optimal rotation age for carbon sequestration and biodiversity conservation in Vietnam. For. Policy Econ. 2014, 38, 56–64. [Google Scholar] [CrossRef]
- López-Bedoya, P.A.; Cardona-Galvis, E.A.; Urbina-Cardona, J.N.; Edwards, F.A.; Edwards, D.P. Impacts of Pastures and Forestry Plantations on Herpetofauna: A Global Meta-analysis. J. Appl. Ecol. 2022, 59, 3038–3048. [Google Scholar] [CrossRef]
- Heilmayr, R.; Echeverría, C.; Lambin, E.F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 2020, 3, 701–709. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Ferrer, V.; Bravo-Arrepol, G.; Reyes-Contreras, P.; Elissetche, J.P.; Santos, J.; Fuentealba, C.; Cabrera-Barjas, G. Pretreated Eucalyptus globulus and Pinus radiata Barks: Potential Substrates to Improve Seed Germination for a Sustainable Horticulture. Forests 2023, 14, 991. [Google Scholar] [CrossRef]
- Rubilar, R.; Bozo, D.; Albaugh, T.; Cook, R.; Campoe, O.; Carter, D.; Allen, H.; Lvarez, J.; Pincheira, M.; Zapata, L. Rotation-age effects of subsoiling, fertilization, and weed control on radiata pine growth at sites with contrasting soil physical, nutrient, and water limitations. For. Ecol. Manag. 2023, 544, 121213. [Google Scholar] [CrossRef]
- Ojeda, H.; Rubilar, R.A.; Montes, C.; Cancino, J.; Espinosa, M. Leaf area and growth of Chilean radiata pine plantations after thinning across a water stress gradient. N. Z. J. For. Sci. 2018, 48, 10. [Google Scholar] [CrossRef]
- Alvarez, J.; Allen, H.; Albaugh, T.; Stape, J.; Bullock, B.; Song, C. Factors influencing the growth of radiata pine plantations in Chile. Forestry 2012, 86, 13–26. [Google Scholar] [CrossRef]
- Guo, L.B.; Cowie, A.L.; Montagu, K.D.; Gifford, R.M. Carbon and nitrogen stocks in a native pasture and an adjacent 16-year-old Pinus radiata D. Don. plantation in Australia. Agric. Ecosyst. Environ. 2008, 124, 205–218. [Google Scholar] [CrossRef]
- Guedes, B.S.; Olsson, B.A.; Egnell, G.; Sitoe, A.A.; Karltun, E. Plantations of Pinus and Eucalyptus replacing degraded mountain miombo woodlands in Mozambique significantly increase carbon sequestration. Glob. Ecol. Conserv. 2018, 14, e00401. [Google Scholar] [CrossRef]
- Balboa-Murias, M.Á.; Rodríguez-Soalleiro, R.; Merino, A.; Álvarez-González, J.G. Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. For. Ecol. Manag. 2006, 237, 29–38. [Google Scholar] [CrossRef]
- Bozo, D.; Rubilar, R.; Campoe, O.C.; Alzamora, R.M.; Elissetche, J.P.; Valverde, J.C.; Pizarro, R.; Pincheira, M.; Valencia, J.C.; Sanhueza, C. Soil and Site Productivity Effects on Above- and Belowground Radiata Pine Carbon Pools at Harvesting Age. Plants 2024, 13, 3482. [Google Scholar] [CrossRef] [PubMed]
- Temesgen, H.; Affleck, D.; Poudel, K.; Gray, A.; Sessions, J. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand. J. For. Res. 2015, 30, 326–335. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Padarian, J.; Osorio, R.; Bustamante, N.; Olmedo, G.F.; Guevara, M.; Aburto, F.; Albornoz, F.; Antilén, M.; Araya, E.; et al. CHLSOC: The Chilean Soil Organic Carbon database, a multi-institutional collaborative effort. Earth Syst. Sci. Data 2020, 12, 457–468. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Change Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, W.; Sun, X.; Jiang, J.; Li, D.; Tang, G.; Xu, W.; Jia, H. Biochar Aged for Five Years Altered Carbon Fractions and Enzyme Activities of Sandy Soil. Land 2023, 12, 1645. [Google Scholar] [CrossRef]
- Su, Y.Z.; Wang, X.F.; Yang, R.; Lee, J. Effects of Sandy Desertified Land Rehabilitation on Soil Carbon Sequestration and Aggregation in an Arid Region in China. J. Environ. Manag. 2010, 91, 2109–2116. [Google Scholar] [CrossRef]
- Amin, M.N.; Shil, S.C.; Ghosh, R.C.; Shamsuzzoha, M. Influence of Conservation Tillage on Carbon Sequestration Mechanism Related to Aggregation. J. Environ. Sci. Nat. Resour. 2016, 9, 23–27. [Google Scholar] [CrossRef]
- Katayama, S.; Omori, T.; Tateno, M. Fresh Litter Acts as a Substantial Phosphorus Source of Plant Species Appearing in Primary Succession on Volcanic Ash Soil. Sci. Rep. 2021, 11, 11497. [Google Scholar] [CrossRef] [PubMed]
- Hernández, C.M.; Rodrigo-Comino, J.; Díaz, A. Impact of Lithology and Soil Properties on Abandoned Dryland Terraces During the Early Stages of Soil Erosion by Water in South-East Spain. Hydrol. Process. 2017, 31, 3095–3109. [Google Scholar] [CrossRef]
- Setia, R.; Smith, P.; Marschner, P.; Baldock, J.A.; Chittleborough, D.J.; Smith, J.U. Introducing a Decomposition Rate Modifier in the Rothamsted Carbon Model to Predict Soil Organic Carbon Stocks in Saline Soils. Environ. Sci. Technol. 2011, 45, 6396–6403. [Google Scholar] [CrossRef]
- Zhou, D.; Mao, D.; Ye, M.; Li, S.; Ma, X.-D.; Liu, S. Fractal Features of Soil Grain-Size Distribution in a Typical Tamarix Cones in the Taklimakan Desert, China. Sci. Rep. 2022, 12, 16461. [Google Scholar]
- Vadeboncoeur, M.A.; Hamburg, S.P.; Yanai, R.D.; Blum, J.D. Rates of Sustainable Forest Harvest Depend on Rotation Length and Weathering of Soil Minerals. For. Ecol. Manag. 2014, 318, 194–205. [Google Scholar] [CrossRef]
- CIREN. Descripción de Suelos, Materiales y Símbolos: Estudio Agrológico VIII Región; CIREN: Santiago, Chile, 1999. [Google Scholar]
- Stolpe, N. Descripciones de los Principales Suelos de la VIII Región de Chile; Universidad de Concepción: Concepción, Chile, 2006. [Google Scholar]
- Mininco, F. Compendium of Functions for Species of Interest to Forestal Minin S.A.; Forestal Mininco: Concepción, Chile, 1995. (In Spanish) [Google Scholar]
- Albaugh, T.J.; Alvarez, J.; Rubilar, R.A.; Fox, T.R.; Allen, H.L.; Stape, J.L.; Mardones, O. Long-Term Pinus radiata Productivity Gains from Tillage, Vegetation Control, and Fertilization. For. Sci. 2015, 61, 800–808. [Google Scholar] [CrossRef]
- Sandoval, S.; Montes, C.R.; Olmedo, G.F.; Acuña, E.; Mena-Quijada, P. Modelling above-ground biomass of Pinus radiata trees with explicit multivariate uncertainty. For. Int. J. For. Res. 2022, 95, 380–390. [Google Scholar]
- Zerihun, A.; Montagu, K.D. Belowground to aboveground biomass ratio and vertical root distribution responses of mature Pinus radiata stands to phosphorus fertilization at planting. Can. J. For. Res. 2004, 34, 1883–1894. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Poeplau, C.; Vos, C.; Don, A. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil 2017, 3, 61–66. [Google Scholar] [CrossRef]
- R Core Team, R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Staff, S.S. Keys to Soil Taxonomy, 13th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2022. [Google Scholar]
- Ray, M. Relation of Soil Bulk Density with the Soil Carbon in the Tropical Dry Deciduous Forest of Jharkhand, India. Int. J. Sci. Eng. Res. 2019, 3, 1439–1443. [Google Scholar]
Administrative Region | Plantation Code | Soil Type | Soil Order a | Age (Years) | Ntrees (Tree ha−1) | DBH (Tree ha−1) | H (m) | Plp (m3 ha−1) |
---|---|---|---|---|---|---|---|---|
Biobío | SM-362 | Granitic | Inceptisol | 18.8 | 550.0 | 29.1 (+1.5) | 27.3 (+0.6) | 362.9 (+29.0) |
La Araucanía | LD-397 | Granitic | Inceptisol | 19.8 | 473.3 | 30.4 (+0.8) | 30.6 (+0.4) | 397.9 (+6.8) |
La Araucanía | PM-437 | Granitic | Ultisol | 21.8 | 503.3 | 34.2 (+1.0) | 25.8 (+0.1) | 437.4 (+28.1) |
La Araucanía | LN-574 | Granitic | Ultisol | 20.8 | 510.0 | 36.6 (+1.6) | 30.6 (+0.3) | 574.6 (+35.0) |
Biobío | HO-669 | Granitic | Inceptisol | 24.8 | 526.7 | 36.0 (+0.7) | 34.2 (+1.2) | 669.8 (+15.3) |
Ñuble | HH-252 | Metamorphic | Entisol | 19.8 | 496.7 | 27.7 (+0.9) | 22.7 (+1.6) | 252.7 (+28.9) |
Biobío | LQ-381 | Metamorphic | Inceptisol | 20.8 | 550.0 | 29.7 (+1.0) | 27.1 (+1.2) | 381.5 (+64.8) |
Maule | SPC-402 | Metamorphic | Alfisol | 19.8 | 473.3 | 32.0 (+0.8) | 30.0 (+1.3) | 402.8 (+19.0) |
Maule | EP-530 | Metamorphic | Alfisol | 20.8 | 490.0 | 35.8 (+2.2) | 30.2 (+1.2) | 530.1 (+50.8) |
La Araucanía | SF-690 | Metamorphic | Ultisoles | 24.8 | 436.7 | 40.6 (+0.7) | 33.5 (+0.6) | 690.4 (+6.0) |
Granitic Soils (Mean) | 512.7 ns | 33.3 ns | 29.7 ns | 488.5 ns | ||||
Metamorphic (Mean) | 489.3 ns | 33.2 ns | 28.7 ns | 451.5 ns | ||||
p-value | 0.33 | 0.96 | 0.68 | 0.7 |
Soil | Plantation | Depth | B.D. | C total | C/N. | Clay | Silt | Sand |
---|---|---|---|---|---|---|---|---|
Type | Code | (cm) | (g cm3) | % | ||||
Granitic soil | SM-362 | 0–20 | 1.49 | 1.61 | 24 | 24.0 | 26.4 | 49.7 |
20–40 | 1.38 | 0.91 | 10 | 27.9 | 26.7 | 45.4 | ||
40–100 | 1.44 | 0.6 | 5 | 38.1 | 43.0 | 18.9 | ||
LD-397 | 0–20 | 1.35 | 4.12 | 31 | 11.7 | 33.2 | 55.1 | |
20–40 | 1.28 | 0.63 | 25 | 24.7 | 30.2 | 45.2 | ||
40–100 | 1.46 | 0.23 | 2 | 29.8 | 29.4 | 40.8 | ||
PM-437 | 0–20 | 1.23 | 1.76 | 23 | 27.6 | 25.8 | 46.6 | |
20–40 | 0.89 | 1.99 | 26 | 29.7 | 22.8 | 47.5 | ||
40–100 | 1.36 | 0.45 | 14 | 35.2 | 31.1 | 33.6 | ||
LN-574 | 0–20 | 0.71 | 5.78 | 21 | 26.2 | 24.2 | 49.6 | |
20–40 | 1.15 | 2.18 | 23 | 45.9 | 19.3 | 34.8 | ||
40–100 | 1.21 | 1.01 | 16 | 27 | 11 | 61.8 | ||
HO-669 | 0–20 | 1.23 | 2.56 | 29 | 24.0 | 38.4 | 37.6 | |
20–40 | 1.45 | 1.21 | 22 | 15.9 | 38.2 | 45.9 | ||
40–100 | 1.50 | 0.6 | 13 | 50.9 | 22.4 | 26.7 | ||
Metamorphic | HH-252 | 0–20 | 1.58 | 0.75 | 15 | 15.7 | 54.0 | 30.3 |
20–40 | 1.56 | 0.81 | 16 | 20.4 | 39.7 | 39.8 | ||
40–100 | 1.71 | 0.25 | 9 | 27.1 | 25.6 | 47.3 | ||
LQ-381 | 0–20 | 1.52 | 1.78 | 17 | 38.3 | 17.1 | 44.6 | |
20–40 | 1.42 | 1.32 | 14 | 30.1 | 54.0 | 15.8 | ||
40–100 | 1.48 | 0.68 | 9 | 41.4 | 46.1 | 12.4 | ||
SPC-402 | 0–20 | 1.20 | 2.97 | 31 | 31.7 | 52.0 | 16.3 | |
20–40 | 1.39 | 1.77 | 29 | 11.3 | 38.3 | 50.4 | ||
40–100 | 1.43 | 0.39 | 10 | 23.1 | 38.9 | 38.0 | ||
EP-530 | 0–20 | 1.16 | 4.33 | 21 | 33.7 | 41.4 | 24.9 | |
20–40 | 1.30 | 2.35 | 16 | 23.8 | 47.1 | 29.2 | ||
40–100 | 1.39 | 2.17 | 14 | 49.4 | 30.1 | 20.9 | ||
SF-690 | 0–20 | 0.92 | 11.97 | 14 | 64.1 | 28.2 | 7.7 | |
20–40 | 1.13 | 9.06 | 17 | 15.2 | 38.0 | 46.8 | ||
40–100 | 1.29 | 3.81 | 12 | 13.9 | 23.1 | 63.0 |
Plantation | Soil Type | Plp | CAGB | CBGB | FFCT | SOCT | C Total |
---|---|---|---|---|---|---|---|
Code | (m3 ha−1) | (Mg·ha−1) | (Mg·ha−1) | (Mg·ha−1) | (Mg·ha−1) | (Mg·ha−1) | |
SM-362 | Granitic soil | 362.9 (±29.0) | 102 | 27 | 19.8 | 143 | 291.8 |
LD-397 | Granitic soil | 397.9 (±6.8) | 110 | 28 | 14.64 | 220 | 372.64 |
PM-437 | Granitic soil | 437.4 (±28.1) | 121 | 31 | 9.24 | 181 | 342.24 |
LN-574 | Granitic soil | 574.6 (±35.0) | 157 | 40 | 24.06 | 353 | 574.06 |
HO-669 | Granitic soil | 669.8 (±15.3) | 181 | 45 | 31.2 | 213 | 470.2 |
HH-252 | Metamorphic | 252.7 (±28.9) | 72 | 20 | 15.8 | 138 | 245.8 |
LQ-381 | Metamorphic | 381.5 (±64.8) | 107 | 28 | 11.2 | 250 | 396.2 |
SPC-402 | Metamorphic | 402.8 (±19.0) | 112 | 29 | 5.6 | 367 | 513.6 |
EP-530 | Metamorphic | 530.1 (±50.8) | 145 | 37 | 13.7 | 329 | 524.7 |
SF-690 | Metamorphic | 690.4 (±6.0) | 185 | 45 | 26.8 | 829 | 1085.8 |
Granitic Soils (Mean) | 488.5 ns | 134.2 ns | 34.37 ns | 16.89 ns | 221.97 a | 407.47 ns | |
Metamorphic (Mean) | 451.5 ns | 124.05 ns | 31.77 ns | 12.01 ns | 382.44 b | 550.29 ns | |
p-value | 0.7 | 0.46 | 0.41 | 0.056 | 0.032 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asmussen, M.V.; Rubilar, R.; Bozo, D.; Alzamora, R.M.; Elissetche, J.P.; Pincheira, M.; Jara, O. Relationship Between Carbon Stock and Stand Cumulative Production at Harvesting Age of Pinus radiata Plantations: A Comparison Between Granitic and Metamorphic Soils. Sustainability 2025, 17, 3614. https://doi.org/10.3390/su17083614
Asmussen MV, Rubilar R, Bozo D, Alzamora RM, Elissetche JP, Pincheira M, Jara O. Relationship Between Carbon Stock and Stand Cumulative Production at Harvesting Age of Pinus radiata Plantations: A Comparison Between Granitic and Metamorphic Soils. Sustainability. 2025; 17(8):3614. https://doi.org/10.3390/su17083614
Chicago/Turabian StyleAsmussen, Marianne V., Rafael Rubilar, Daniel Bozo, Rosa M. Alzamora, Juan Pedro Elissetche, Matías Pincheira, and Oscar Jara. 2025. "Relationship Between Carbon Stock and Stand Cumulative Production at Harvesting Age of Pinus radiata Plantations: A Comparison Between Granitic and Metamorphic Soils" Sustainability 17, no. 8: 3614. https://doi.org/10.3390/su17083614
APA StyleAsmussen, M. V., Rubilar, R., Bozo, D., Alzamora, R. M., Elissetche, J. P., Pincheira, M., & Jara, O. (2025). Relationship Between Carbon Stock and Stand Cumulative Production at Harvesting Age of Pinus radiata Plantations: A Comparison Between Granitic and Metamorphic Soils. Sustainability, 17(8), 3614. https://doi.org/10.3390/su17083614