Foliar Spraying of Aqueous Lavender Extract: A Cost-Effective and Sustainable Way to Improve Lettuce Yield and Quality in Organic Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Aqueous Extracts
2.2. Chemical Characterization of the Aqueous Extracts
2.2.1. Elemental Analysis with ICP-OES and Kjeldahl Method
2.2.2. NMR Analysis
2.3. Field Experiment
2.4. Field and Laboratory Measurements on Plants
2.5. Statistical Analysis
3. Results and Discussion
3.1. Elemental Composition of the Lavender Aqueous Extract
3.2. NMR Analysis of the Lavender Aqueous Extract
3.3. Biometric and Vegetative Characteristics of Lettuce
3.4. Elemental Concentrations
3.5. Elemental Uptake
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kostina-Bednarz, M.; Płonka, J.; Barchanska, H. Allelopathy as a Source of Bioherbicides: Challenges and Prospects for Sustainable Agriculture. Rev. Environ. Sci. Biotechnol. 2023, 22, 471–504. [Google Scholar] [CrossRef]
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Asgari Lajayer, B.; Hadian, J.; Astatkie, T. Applications of Essential Oils and Plant Extracts in Different Industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef] [PubMed]
- Directive-2009/128-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/dir/2009/128/oj/eng (accessed on 23 January 2025).
- Regulation-2019/1009-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj/eng (accessed on 28 January 2025).
- Hernández-Bolaños, E.; Sánchez-Retuerta, V.; Matías-Hernández, L.; Cuyas, L. Promising Applications on the Use of Medicinal and Aromatic Plants in Agriculture. Discov. Agric. 2025, 3, 36. [Google Scholar] [CrossRef]
- Salehi, B.; Mnayer, D.; Özçelik, B.; Altin, G.; Kasapoğlu, K.N.; Daskaya-Dikmen, C.; Sharifi-Rad, M.; Selamoglu, Z.; Acharya, K.; Sen, S.; et al. Plants of the Genus Lavandula: From Farm to Pharmacy. Nat. Prod. Commun. 2018, 13, 1934578X1801301037. [Google Scholar] [CrossRef]
- Truzzi, E.; Benvenuti, S.; Bertelli, D.; Francia, E.; Ronga, D. Effects of Biostimulants on the Chemical Composition of Essential Oil and Hydrosol of Lavandin (Lavandula x intermedia Emeric Ex Loisel.) Cultivated in Tuscan-Emilian Apennines. Molecules 2021, 26, 6157. [Google Scholar] [CrossRef]
- Danh, L.T.; Triet, N.D.A.; Han, L.T.N.; Zhao, J.; Mammucari, R.; Foster, N. Antioxidant Activity, Yield and Chemical Composition of Lavender Essential Oil Extracted by Supercritical CO2. J. Supercrit. Fluids 2012, 70, 27–34. [Google Scholar] [CrossRef]
- Białoń, M.; Krzyśko-Łupicka, T.; Nowakowska-Bogdan, E.; Wieczorek, P.P. Chemical Composition of Two Different Lavender Essential Oils and Their Effect on Facial Skin Microbiota. Molecules 2019, 24, 3270. [Google Scholar] [CrossRef]
- Kozuharova, E.; Simeonov, V.; Batovska, D.; Stoycheva, C.; Valchev, H.; Benbassat, N. Chemical Composition and Comparative Analysis of Lavender Essential Oil Samples from Bulgaria in Relation to the Pharmacological Effects. Pharmacia 2023, 70, 395–403. [Google Scholar] [CrossRef]
- Soulaimani, B.; Abbad, I.; Amssayef, A. Seasonal Variation in the Chemical Composition and Antimicrobial Activity of Essential Oil Obtained from Moroccan Lavender Lavandula maroccana Murb. Collected from the Wild. Nat. Prod. Commun. 2024, 19, 1934578X241297990. [Google Scholar] [CrossRef]
- Ciocarlan, A.; Lupascu, L.; Aricu, A.; Dragalin, I.; Popescu, V.; Geana, E.-I.; Ionete, R.E.; Vornicu, N.; Duliu, O.G.; Hristozova, G.; et al. Chemical Composition and Assessment of Antimicrobial Activity of Lavender Essential Oil and Some By-Products. Plants 2021, 10, 1829. [Google Scholar] [CrossRef]
- Speranza, B.; Guerrieri, A.; Racioppo, A.; Bevilacqua, A.; Campaniello, D.; Corbo, M.R. Sage and Lavender Essential Oils as Potential Antimicrobial Agents for Foods. Microbiol. Res. 2023, 14, 1089–1113. [Google Scholar] [CrossRef]
- Hernández-Jiménez, M.O.; Loa, J.D.A.; Rojas-Avelizapa, N.G. Agroindustrial Plant Wastes: Novel Source of Antimicrobial Peptides. Circ. Econ. Sust. 2025, 1–35. [Google Scholar] [CrossRef]
- Sturchio, E.; Donnarumma, L.; Annesi, T.; Milano, F.; Casorri, L.; Masciarelli, E.; Zanellato, M.; Meconi, C.; Boccia, P. Essential Oils: An Alternative Approach to Management of Powdery Mildew Diseases. Phytopathol. Mediterr. 2014, 53, 385–395. [Google Scholar] [CrossRef]
- Prashar, A.; Locke, I.C.; Evans, C.S. Cytotoxicity of Lavender Oil and Its Major Components to Human Skin Cells. Cell Prolif. 2004, 37, 221–229. [Google Scholar] [CrossRef]
- Hummelbrunner, L.A.; Isman, M.B. Acute, Sublethal, Antifeedant, and Synergistic Effects of Monoterpenoid Essential Oil Compounds on the Tobacco Cutworm, Spodoptera Litura (Lep., Noctuidae). Available online: https://pubs.acs.org/doi/abs/10.1021/jf000749t (accessed on 28 January 2025).
- Koul, O.; Walia, S.; Dhaliwal, G.S.; Nagar, P. Essential Oils as Green Pesticides: Potential and Constraints. Available online: https://www.semanticscholar.org/paper/Essential-Oils-as-Green-Pesticides-%3A-Potential-and-Koul-Walia/c2cb6d3ec38480c1519ebc1cbcc028217e2758ad (accessed on 23 January 2025).
- Beni, C.; Casorri, L.; Masciarelli, E.; Ficociello, B.; Masetti, O.; Rinaldi, S.; Neri, U.; Papetti, P.; Cichelli, A. Characterization of Garlic (Allium sativum L.) Aqueous Extract and Its Hypothetical Role as Biostimulant in Crop Protection. J. Food Agric. Environ. 2018, 16, 38–44. [Google Scholar]
- Casorri, L.; Masciarelli, E.; Ficociello, B.; Beni, C. L’importanza dell’agricoltura sostenibile nel recupero della biodiversità. In Proceedings of the Atti del X Convegno Nazionale sulla Biodiversità, Roma, Italy, 3–5 September 2014; pp. 405–410. [Google Scholar]
- Boutahiri, S.; Eto, B.; Bouhrim, M.; Mechchate, H.; Saleh, A.; Al Kamaly, O.; Drioiche, A.; Remok, F.; Samaillie, J.; Neut, C.; et al. Lavandula Pedunculata (Mill.) Cav. Aqueous Extract Antibacterial Activity Improved by the Addition of Salvia Rosmarinus Spenn., Salvia Lavandulifolia Vahl and Origanum Compactum Benth. Life 2022, 12, 328. [Google Scholar] [CrossRef]
- Dostálová, L.; Detvanová, L.; Kalhotka, L. Antimicrobial Activity of Aqueous Herbal Extracts. 2014. Available online: https://www.semanticscholar.org/paper/Antimicrobial-Activity-of-Aqueous-Herbal-Extracts-Dost%C3%A1lov%C3%A1-Detvanov%C3%A1/4d39dfb4ecdd2e6b64b9cdecbae6926d49b98d6e (accessed on 27 February 2025).
- Alnamer, R.; Alaoui, K.; Doudach, L.; Bouidida, E.H.; AL-Sobarry, M.; Benjouad, A.; Cherrah, Y. Investigation of Methanolic and Aqueous Extract of Lavandula Officinalis for Toxicity and Antibacterial Activity. World J. Pharm. Res. 2012, 1, 1223–1233. [Google Scholar]
- Haig, T.; Pratley, J.; An, M.; Haig, T.; Hildebrand, S. Using Allelopathy to Search for New Natural Herbicides from Plants. In Proceedings of the Allelopathy, Establishing the Scientific Base, Gosford, Australia, 21–26 August 2005; The Regional Institute: Gosford, Australia, 2005; pp. 1–5. [Google Scholar]
- Haig, T.J.; Haig, T.J.; Seal, A.N.; Pratley, J.E.; An, M.; Wu, H. Lavender as a Source of Novel Plant Compounds for the Development of a Natural Herbicide. J. Chem. Ecol. 2009, 35, 1129–1136. [Google Scholar] [CrossRef]
- Amanda, A.; Ferrante, A.; Valagussa, M.; Piaggesi, A. Effect of Biostimulants on Quality of Baby Leaf Lettuce Grown under Plastic Tunnel. Acta Hortic. 2009, 807, 407–412. [Google Scholar] [CrossRef]
- Bulgari, R.; Podetta, N.; Cocetta, G.; Piaggesi, A.; Ferrante, A. The Effect of a Complete Fertilizer for Leafy Vegetables Production in Family and Urban Gardens. Bulg. J. Agric. Sci. 2014, 20, 1361–1367. [Google Scholar]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The Effect of a Plant-Derived Biostimulant on Metabolic Profiling and Crop Performance of Lettuce Grown under Saline Conditions. Sci. Hortic. 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Shehata, S.M.; Schmidhalter, U.; Valšíková, M.; Junge, H. Effect of Bio-Stimulants on Yield and Quality of Head Lettuce Grown Under Two Sources of Nitrogen. Gesunde Pflanz. 2016, 68, 33–39. [Google Scholar] [CrossRef]
- Ottaiano, L.; Di Mola, I.; Cozzolino, E.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Biostimulant Application under Different Nitrogen Fertilization Levels: Assessment of Yield, Leaf Quality, and Nitrogen Metabolism of Tunnel-Grown Lettuce. Agronomy 2021, 11, 1613. [Google Scholar] [CrossRef]
- Carillo, P.; De Micco, V.; Ciriello, M.; Formisano, L.; El-Nakhel, C.; Giordano, M.; Colla, G.; Rouphael, Y. Morpho-Anatomical, Physiological, and Mineral Composition Responses Induced by a Vegetal-Based Biostimulant at Three Rates of Foliar Application in Greenhouse Lettuce. Plants 2022, 11, 2030. [Google Scholar] [CrossRef]
- Yaseen, A.A.; Takacs-Hajos, M. The Effect of Plant Biostimulants on the Macronutrient Content and Ion Ratio of Several Lettuce (Lactuca sativa L.) Cultivars Grown in a Plastic House. S. Afr. J. Bot. 2022, 147, 223–230. [Google Scholar] [CrossRef]
- Nashwa, S.M.A.; Abo-Elyousr, K.A.M. Evaluation of Various Plant Extracts against the Early Blight Disease of Tomato Plants under Greenhouse and Field Conditions. Plant Prot. Sci. 2012, 48, 74–79. [Google Scholar] [CrossRef]
- Beni, C.; Casorri, L.; Masciarelli, E.; Ficociello, B.; Masetti, O.; Neri, U.; Aromolo, R.; Rinaldi, S.; Papetti, P.; Cichelli, A. Characterization of Thyme and Tansy Extracts Used as Basic Substances in Zucchini Crop Protection. J. Agric. Stud. 2020, 8, 95–110. [Google Scholar] [CrossRef]
- Jones, J. Kjeldahl Method for Nitrogen Determination. Available online: https://www.semanticscholar.org/paper/Kjeldahl-method-for-nitrogen-determination.-Jones/26868024bcfc756a71f905e65c081e9f11545fdf (accessed on 23 January 2025).
- MIPAF—Ministero Politiche Agricole e Forestali (Italy). Metodi Ufficiali di Analisi Chimica del Suolo. Decreto Ministeriale del 13/09/1999; Gazzetta Ufficiale della Repubblica Italiana, n. 248, 21/10/1999, Supplemento Ordinario n. 185. Available online: https://www.gazzettaufficiale.it/eli/gu/1999/10/21/248/so/185/sg/pdf (accessed on 31 October 2024). (In Italian).
- Parisse, B.; Alilla, R.; Pepe, A.G.; De Natale, F. MADIA-Meteorological Variables for Agriculture: A Dataset for the Italian Area. Data Brief 2023, 46, 108843. [Google Scholar] [CrossRef]
- Decreto Legislativo 29 Aprile 2010 n. 75. Riordino e Revisione Della Disciplina in Materia Di Fertilizzanti. Gazzetta Ufficiale Della Repubblica Italiana Serie Generale n. 121, 26/05/2010. Available online: https://www.gazzettaufficiale.it/eli/gu/2010/05/26/121/so/106/sg/pdf (accessed on 20 January 2025). (In Italian).
- Decreto 10 Luglio Decree 10 July 2013. Aggiornamento Degli Allegati Del Decreto Legislativo 29 Aprile 2010, n. 75, Concernente Il Riordino e La Revisione Della Disciplina in Materia Di Fertilizzanti. (13A07510) (GU Serie Generale n.218 Del 17-09-2013). Gazzetta Ufficiale Della Repubblica Italiana General Series n. 218 of 17/09/2013. Available online: https://www.gazzettaufficiale.it/eli/id/2013/09/17/13a07510/sg (accessed on 20 January 2025). (In Italian).
- JASP Team. JASP, version 0.19.3. Computer software. JASP Team: Amsterdam, The Netherlands, 2025.
- Wakeel, A.; Ishfaq, M. Potash Use and Dynamics in Agriculture; Springer: Singapore, 2022; ISBN 9789811668821. [Google Scholar]
- De Mello Prado, R. Nitrogen. In Mineral Nutrition of Tropical Plants; Springer International Publishing: Cham, Switzerland, 2021; pp. 69–98. ISBN 978-3-030-71261-7. [Google Scholar]
- Tang, R.-J.; Luan, S. Regulation of Calcium and Magnesium Homeostasis in Plants: From Transporters to Signaling Network. Curr. Opin. Plant Biol. 2017, 39, 97–105. [Google Scholar] [CrossRef]
- Anjum, N.A.; Masood, A.; Umar, S.; Khan, N.A. Phosphorus in Soils and Plants; IntechOpen: London, UK, 2024; ISBN 978-1-83769-035-0. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-0-429-19203-6. [Google Scholar]
- Francesca, S.; Arena, C.; Hay Mele, B.; Schettini, C.; Ambrosino, P.; Barone, A.; Rigano, M.M. The Use of a Plant-Based Biostimulant Improves Plant Performances and Fruit Quality in Tomato Plants Grown at Elevated Temperatures. Agronomy 2020, 10, 363. [Google Scholar] [CrossRef]
- Foss, K.; Przybyłowicz, K.E.; Sawicki, T. Antioxidant Activity and Profile of Phenolic Compounds in Selected Herbal Plants. Plant Foods Hum. Nutr. 2022, 77, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Yu, O.; Jez, J.M. Nature’s Assembly Line: Biosynthesis of Simple Phenylpropanoids and Polyketides. Plant J. 2008, 54, 750–762. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Yu, O. Metabolic Engineering of Flavonoids in Plants and Microorganisms. Appl. Microbiol. Biotechnol. 2011, 91, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.L.; Maia, B.H.L.N.S.; Ferriani, A.P.; Teixeira, S.D. Flavonoids: Classification, Biosynthesis and Chemical Ecology. In Flavonoids-from Biosynthesis to Human Health; Justino, G.C., Ed.; InTech: Houston, TX, USA, 2017; ISBN 978-953-51-3423-7. [Google Scholar]
- Belisle, C.E.; Sargent, S.A.; Brecht, J.K.; Sandoya, G.V.; Sims, C.A. Accelerated Shelf-Life Testing to Predict Quality Loss in Romaine-Type Lettuce. HortTechnology 2021, 31, 490–499. [Google Scholar] [CrossRef]
- Aguiar, P.; Corrêa, G.M.G.; Rodrigues, M.Â.; Arrobas, M. Reduced Effect of Commercial Leonardite and Seaweed Extract on Lettuce Growth under Mineral, Organic, and No Fertilization Regimes. Agronomy 2024, 14, 1939. [Google Scholar] [CrossRef]
- Afonso, S.; Dias, M.I.; Ferreira, I.C.F.R.; Arrobas, M.; Cunha, M.; Barros, L.; Rodrigues, M.Â. The Phenolic Composition of Hops (Humulus lupulus L.) Was Highly Influenced by Cultivar and Year and Little by Soil Liming or Foliar Spray Rich in Nutrients or Algae. Horticulturae 2022, 8, 385. [Google Scholar] [CrossRef]
- Amiri, M.E.; Fallahi, E.; Golchin, A. Influence of Foliar and Ground Fertilization on Yield, Fruit Quality, and Soil, Leaf, and Fruit Mineral Nutrients in Apple. J. Plant Nutr. 2008, 31, 515–525. [Google Scholar] [CrossRef]
- Patel, J.S.; Selvaraj, V.; Gunupuru, L.R.; Rathor, P.K.; Prithiviraj, B. Combined Application of Ascophyllum Nodosum Extract and Chitosan Synergistically Activates Host-Defense of Peas against Powdery Mildew. BMC Plant Biol. 2020, 20, 113. [Google Scholar] [CrossRef]
- Gunupuru, L.R.; Patel, J.S.; Sumarah, M.W.; Renaud, J.B.; Mantin, E.G.; Prithiviraj, B. A Plant Biostimulant Made from the Marine Brown Algae Ascophyllum Nodosum and Chitosan Reduce Fusarium Head Blight and Mycotoxin Contamination in Wheat. PLoS ONE 2019, 14, e0220562. [Google Scholar] [CrossRef]
- Di Stasio, E.; Van Oosten, M.J.; Silletti, S.; Raimondi, G.; dell’Aversana, E.; Carillo, P.; Maggio, A. Ascophyllum Nodosum-Based Algal Extracts Act as Enhancers of Growth, Fruit Quality, and Adaptation to Stress in Salinized Tomato Plants. J. Appl. Phycol. 2018, 30, 2675–2686. [Google Scholar] [CrossRef]
- Helmy, A.A.; El-Sherpiny, M.A.; Ghazi, D.A. Organic Fertilization and Melatonin: Improving Crisphead Lettuce Performance in Water-Limited Conditions. Egypt. J. Soil Sci. 2024, 64, 1585–1599. [Google Scholar] [CrossRef]
- Atero-Calvo, S.; Izquierdo-Ramos, M.J.; García-Huertas, C.; Rodríguez-Alcántara, M.; Navarro-Morillo, I.; Navarro-León, E. An Evaluation of the Effectivity of the Green Leaves Biostimulant on Lettuce Growth, Nutritional Quality, and Mineral Element Efficiencies under Optimal Growth Conditions. Plants 2024, 13, 917. [Google Scholar] [CrossRef]
- Martins Filho, A.P.; De Medeiros, E.V.; Barbosa, J.G.; Barbosa, J.M.P.; Kuklinsky-Sobral, J.; Souza-Motta, C. Combined effect of pseudomonas sp. and trichoderma aureoviride on lettuce growth promotion. Biosci. J. 2019, 35, 419–430. [Google Scholar] [CrossRef]
- Ahmad, E.; Khan, M.S.; Zaidi, A. ACC Deaminase Producing Pseudomonas Putida Strain PSE3 and Rhizobium Leguminosarum Strain RP2 in Synergism Improves Growth, Nodulation and Yield of Pea Grown in Alluvial Soils. Symbiosis 2013, 61, 93–104. [Google Scholar] [CrossRef]
- Harman, G.E. Multifunctional Fungal Plant Symbionts: New Tools to Enhance Plant Growth and Productivity. New Phytol. 2011, 189, 647–649. [Google Scholar] [CrossRef]
- Arrobas, M.; Correia, C.M.; Rodrigues, M.Â. Methylobacterium Symbioticum Applied as a Foliar Inoculant Was Little Effective in Enhancing Nitrogen Fixation and Lettuce Dry Matter Yield. Sustainability 2024, 16, 4512. [Google Scholar] [CrossRef]
- Franzoni, G.; Ferrante, A. Plant Extract Improves Quality Traits of Green and Red Lettuce Cultivars. Heliyon 2024, 10, e39224. [Google Scholar] [CrossRef]
- Dudaš, S.; Šola, I.; Sladonja, B.; Erhatić, R.; Ban, D.; Poljuha, D. The Effect of Biostimulant and Fertilizer on “Low Input” Lettuce Production. Acta Bot. Croat. 2016, 75, 253–259. [Google Scholar] [CrossRef]
- Uçan, U.; Demir, H.; Yalçi, H.K. Effects of Microbial Fertisizer on Yield and Quality of Curly Lettuce Grown in Pots. Int. J. Innov. Approaches Agric. Res. 2024, 8, 200–217. [Google Scholar] [CrossRef]
- Chase, K.; Belisle, C.; Ahlawat, Y.; Yu, F.; Sargent, S.; Sandoya, G.; Begcy, K.; Liu, T. Examining Preharvest Genetic and Morphological Factors Contributing to Lettuce (Lactuca sativa L.) Shelf-Life. Sci. Rep. 2024, 14, 6618. [Google Scholar] [CrossRef]
- Shi, M.; Gu, J.; Wu, H.; Rauf, A.; Emran, T.B.; Khan, Z.; Mitra, S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; et al. Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce—A Comprehensive Review. Antioxidants 2022, 11, 1158. [Google Scholar] [CrossRef] [PubMed]
- Margon, A.; Mondini, C.; Valentini, M.; Ritota, M.; Leita, L. Soil Microbial Biomass Influence on Strontium Availability in Mine Soil. Chem. Speciat. Bioavailab. 2013, 25, 119–124. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.; Bielecki, K.; Karmowska, K.; et al. Chlorophyll Fluorescence as a Tool for Nutrient Status Identification in Rapeseed Plants. Photosynth. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef]
- Sustr, M.; Soukup, A.; Tylova, E. Potassium in Root Growth and Development. Plants 2019, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Sugier, D.; Kołodziej, B.; Bielińska, E. The Effect of Leonardite Application on Arnica montana L. Yielding and Chosen Chemical Properties and Enzymatic Activity of the Soil. J. Geochem. Explor. 2013, 129, 76–81. [Google Scholar] [CrossRef]
- Cieschi, M.T.; Lucena, J.J. Leonardite Iron Humate and Synthetic Iron Chelate Mixtures in Glycine max Nutrition. J. Sci. Food Agric. 2021, 101, 4207–4219. [Google Scholar] [CrossRef]
- Palani, V. Synergistic and Antagonistic Interactions of Calcium with Other Nutrients in Soil and Plants. SSRN J. 2019. [Google Scholar] [CrossRef]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron Homeostasis in Plants and Its Crosstalk with Copper, Zinc, and Manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Ibourki, M.; Hallouch, O.; Devkota, K.; Guillaume, D.; Hirich, A.; Gharby, S. Elemental Analysis in Food: An Overview. J. Food Compos. Anal. 2023, 120, 105330. [Google Scholar] [CrossRef]
- El Khattabi, O.; El Hasnaoui, S.; Toura, M.; Henkrar, F.; Collin, B.; Levard, C.; Colin, F.; Merghoub, N.; Smouni, A.; Fahr, M. Seaweed Extracts as Promising Biostimulants for Enhancing Lead Tolerance and Accumulation in Tomato (Solanum lycopersicum). J. Appl. Phycol. 2023, 35, 459–469. [Google Scholar] [CrossRef]
- Mosa, W.F.A.; Sas-Paszt, L.; Głuszek, S.; Górnik, K.; Anjum, M.A.; Saleh, A.A.; Abada, H.S.; Awad, R.M. Effect of Some Biostimulants on the Vegetative Growth, Yield, Fruit Quality Attributes and Nutritional Status of Apple. Horticulturae 2022, 9, 32. [Google Scholar] [CrossRef]
- Theobald, H.E. Dietary Calcium and Health. Nutr. Bull. 2005, 30, 237–277. [Google Scholar] [CrossRef]
- Gupta, U.C.; Gupta, S.C. Sources and Deficiency Diseases of Mineral Nutrients in Human Health and Nutrition: A Review. Pedosphere 2014, 24, 13–38. [Google Scholar] [CrossRef]
- Sago, Y. Effects of Light Intensity and Growth Rate on Tipburn Development and Leaf Calcium Concentration in Butterhead Lettuce. HortScience 2016, 51, 1087–1091. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on Iron and Its Importance for Human Health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
N | P | K | Ca | Mg | Mn | Fe | Cu | Zn | B | Mo |
---|---|---|---|---|---|---|---|---|---|---|
146.1 | 9.13 | 196.02 | 51.06 | 18.34 | 0.32 | 0.25 | <LOQ | 0.12 | <LOQ | <LOQ |
Concentration | Uptake | ||||||
---|---|---|---|---|---|---|---|
Control | Lavender | p Values | Control | Lavender | p value | ||
N (%) | 1.64 | 1.85 | (‡) ** | N (g plant−1) | 0.174 | 0.227 | (‡) *** |
P (mg kg−1) | 2215.91 | 2834.16 | (‡) *** | P (mg plant−1) | 23.629 | 34.855 | (‡) *** |
K (mg kg−1) | 5170.23 | 5890.03 | (‡) *** | K (mg plant−1) | 55.224 | 72.399 | (‡) *** |
Ca (mg kg−1) | 7746.91 | 9171.13 | (∞) *** | Ca (mg plant−1) | 82.958 | 112.422 | (‡) *** |
Mg (mg kg−1) | 3044.71 | 3588.43 | (∞) *** | Mg (mg plant−1) | 32.341 | 44.045 | (∞) *** |
Mn (mg kg−1) | 37.34 | 47.55 | (‡) ** | Mn (mg plant−1) | 0.397 | 0.588 | (‡) *** |
Fe (mg kg−1) | 426.44 | 711.42 | (‡) *** | Fe (mg plant−1) | 4.547 | 8.705 | (‡) *** |
Cu (mg kg−1) | 6.01 | 5.87 | ns | Cu (mg plant−1) | 0.064 | 0.072 | ns |
Zn (mg kg−1) | 42.56 | 38.82 | (‡) * | Zn (mg plant−1) | 0.458 | 0.470 | ns |
B (mg kg−1) | 0.95 | 1.00 | ns | B (mg plant−1) | 0.010 | 0.012 | (‡) * |
Mo (mg kg−1) | 0.82 | 0.81 | ns | Mo (mg plant−1) | 0.009 | 0.010 | (‡) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritota, M.; Neri, U.; Casorri, L.; Masciarelli, E.; Di Luigi, M.; Valentini, M.; Beni, C. Foliar Spraying of Aqueous Lavender Extract: A Cost-Effective and Sustainable Way to Improve Lettuce Yield and Quality in Organic Farming. Sustainability 2025, 17, 3505. https://doi.org/10.3390/su17083505
Ritota M, Neri U, Casorri L, Masciarelli E, Di Luigi M, Valentini M, Beni C. Foliar Spraying of Aqueous Lavender Extract: A Cost-Effective and Sustainable Way to Improve Lettuce Yield and Quality in Organic Farming. Sustainability. 2025; 17(8):3505. https://doi.org/10.3390/su17083505
Chicago/Turabian StyleRitota, Mena, Ulderico Neri, Laura Casorri, Eva Masciarelli, Marco Di Luigi, Massimiliano Valentini, and Claudio Beni. 2025. "Foliar Spraying of Aqueous Lavender Extract: A Cost-Effective and Sustainable Way to Improve Lettuce Yield and Quality in Organic Farming" Sustainability 17, no. 8: 3505. https://doi.org/10.3390/su17083505
APA StyleRitota, M., Neri, U., Casorri, L., Masciarelli, E., Di Luigi, M., Valentini, M., & Beni, C. (2025). Foliar Spraying of Aqueous Lavender Extract: A Cost-Effective and Sustainable Way to Improve Lettuce Yield and Quality in Organic Farming. Sustainability, 17(8), 3505. https://doi.org/10.3390/su17083505