Spatial Analysis Model for Sustainable Soil Management in Livestock Systems: Case Study at Hacienda Pacaguan, Chimborazo, Ecuador
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Preparatory Phase
2.2.2. Diagnostic Phase
2.2.3. Cartographic Analysis Phase
Exploratory Analysis
Spatial Interpolation
Surface Validation
Reclassification of Variables
Overlap Analysis and Prioritisation
2.2.4. Proposed Management Phase
| Parameter | Range | Classification | Prioritisation of Interventions | Value | Management Strategy |
|---|---|---|---|---|---|
| pH | <5 | Acidic | High | 3 | Amendment: pH of 4.8 applied to 25.1 tn·ha−1 [51]. |
| 5–6.5 | Moderately acidic | Medium | 2 | Incorporate organic matter and fertilisers without acid reactions [52]. | |
| 6.5–7.5 | Neutral | None | 0 | Do not intervene. | |
| 7.5–9 | Moderately alkaline | Medium | 2 | Add organic matter and fertilisers without alkaline reaction [52]. | |
| >9 | Alkaline | High | 3 | Incorporate fertilisers that do not produce alkalinity [53]. | |
| Electrical conductivity (dS/m) | 0–2.0 | Non-saline | None | 0 | Do not intervene. |
| 2.1–4.0 | Slightly saline | Low | 1 | Agro-hydrotechnical measures (control of saline water table and application of drainage systems—localised irrigation with channels or pipes—and salt leaching). Biological control (use of resistant grafts, salt-tolerant varieties, diversity of microbiota and use of arbuscular mycorrhizal fungi). Bio/ecoengineering (use of nanomaterials/nanofertilisers, use of physical or hydraulic barriers, bio-priming with abscisic acid, desalination by evaporation-condensation, filtration, crystallisation and application of organic/mineral fertilisers). Chemical control (application of Ca/Mg-enriched conditioners and application of phytohormones such as jasmonic and salicylic acids, ethylene and auxins) [54,55]. Salt leaching and use of tolerant varieties [56]. It is important to note that the intensive use of mineral amendments may increase soil electrical conductivity and, in some cases, mobilize trace metals. Therefore, organic amendments such as compost, straw and manure are recommended as long-term strategies to improve soil structure and biological functioning while avoiding salinity or contamination risks [55,57] | |
| 4.1–8.0 | Moderately saline | Medium | 2 | ||
| 8.1–16.0 | Highly saline | High | 3 | ||
| 16.1+ | Very saline | Very high | 4 | ||
| Water retention capacity (kPa) | <10 | Saturated soil | High | 3 | Incorporate organic matter (2 tn ha−1 year−1) [57,58]. |
| 10–20 | Soil at field capacity | None | 0 | Do not intervene. | |
| 20–60 | Soil within the usable moisture range | Low | 1 | Incorporate organic matter (0.6 to 1 tn ha−1 year−1) [57,58] | |
| >30 | Soil in the critical moisture range | High | 3 | Incorporate organic matter (2 tn ha−1 year−1) [57,58]. | |
| Soil compaction (penetration resistance in MPa) | <1 | Low | None | 0 | No intervention |
| 1–2 | Moderate | Low | 1 | Aerate the soil with a scarifier (25 to 250 mm deep) and then incorporate sandy soil and organic fertiliser [37]. | |
| 2–4 | High | Medium | 2 | Aerate the soil with a scarifier (50 to 150 mm deep) appropriate for permanent pasture systems where most root activity occurs in the upper soil layers, then incorporate sandy soil and organic fertiliser [37]. | |
| >4 | Very high | High | 3 | Aerate the soil with a subsoiler (100 to 240 mm deep) and then incorporate sandy soil and organic fertiliser [59]. |
3. Results
3.1. Cartographic Analysis Phase
Statistical Distribution of pH, Electrical Conductivity, Water Retention Capacity, and Soil Compaction
3.2. Analysis of Overlap and Prioritisation of Interventions
3.3. Proposal Phase of the Spatial Analysis Model
3.3.1. Soil pH
3.3.2. Electrical Conductivity
3.3.3. Water Retention Capacity
3.3.4. Soil Compaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samad, H.A.; Kumar Eshwaran, V.; Muquit, S.P.; Sharma, L.; Arumugam, H.; Kant, L.; Fatima, Z.; Sharun, K.; Aradotlu Parameshwarappa, M.; Latheef, S.K.; et al. Sustainable Livestock Solutions: Addressing Carbon Footprint Challenges from Indian and Global Perspectives. Sustainability 2025, 17, 2105. [Google Scholar] [CrossRef]
- Winder, M.G. La ganadería en América Latina y el Caribe: Una reflexión sobre sus perspectivas y desafíos. In La Ganadería en América Latina y El Caribe: Alternativas para la Producción Competitiva, Sutentable e Incluyente de Alimentos de Origen Animal; Printing arts México, S. de R.L. de C.V.: Guadalajara, Mexico, 2015; pp. 27–49. ISBN 978-607-715-305-4. [Google Scholar]
- Núnez, R.; Ramírez, R.; Fernández, S.; Araujo, O.; García, M.; Díaz, T. La Ganadería en América Latina y el Caribe: Alternativas para la Producción Competitiva, Sutentable e Incluyente de Alimentos de Origen Animal, 1st ed.; Printing arts México, S. de R.L. de C.V.: Guadalajara, Mexico, 2015; ISBN 978-607-715-305-4. [Google Scholar]
- Organización de las Naciones Unidas para la Agricultura y Alimentación. Estadísticas Sobre la Alimentación y Agricultura. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 23 October 2023).
- Williams, G.W.; Anderson, D.P. Growth of the Latin American Livestock Industry: Situation and Challenges. Choices 2019, 34, 1–12. [Google Scholar]
- Pino Peralta, S.; Ortega Álvarez, K. Análisis de los Principales Indicadores Socioeconómicos del Sector Agropecuario Ecuatoriano (2000–2022). Perspect. Rural. 2024, 22, 1–32. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Censos. Encuesta de Superficie y Producción Agropecuaria Continua. 2021. Available online: https://www.ecuadorencifras.gob.ec/encuesta-superficie-produccion-agropecuaria-continua-2021/ (accessed on 24 June 2025).
- Instituto Nacional de Estadística y Censos. Encuesta de Superficie y Producción—Agropecuaria. Available online: https://www.ecuadorencifras.gob.ec/encuesta-de-superficie-y-produccion-agropecuaria-continua-bbd/ (accessed on 1 July 2025).
- United Nations Convention to Combat Desertification. La Desaparición Silenciosa de los Pastizales Amenaza el Clima, la Alimentación y el Bienestar de Miles de Millones de Personas. Available online: https://www.unccd.int/es/news-stories/press-releases/silent-demise-vast-rangelands-threatens-climate-food-wellbeing-billions (accessed on 1 July 2025).
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Gregory, A.S.; Ritz, K.; McGrath, S.P.; Quinton, J.N.; Goulding, K.W.T.; Jones, R.J.A.; Harris, J.A.; Bol, R.; Wallace, P.; Pilgrim, E.S.; et al. A Review of the Impacts of Degradation Threats on Soil Properties in the UK. Soil Use Manag. 2015, 31, 1–15. [Google Scholar] [CrossRef]
- Sánchez, C.I.M.; Enriquez, M.D.E. Degradación del suelo y desarrollo económico en la agricultura familiar de la parroquia Emilio María Terán, Píllaro. Siembra 2021, 8, e1735. [Google Scholar] [CrossRef]
- Mateo, S. Evaluación de la Degradación de Suelos en dos Agroecosistema; Universidad Técnica de Machala: Machala, Ecuador, 2017. [Google Scholar]
- Zhang, E.; Meng, C.; Qu, J.; Zhu, Z.; Niu, J.; Wang, L.; Song, N.; Yin, Z. Dual Effects of Caragana Korshinskii Introduction on Herbaceous Vegetation in Chinese Desert Areas: Short-Term Degradation and Long-Term Recovery. Plant Soil 2025. [Google Scholar] [CrossRef]
- Dao, T.H.; Daidone, S.; Kangasniemi, M. Evaluating the Impacts of the FAO’s Cash+ Programme in Mali, 1st ed.; FAO: Rome, Italy, 2021; ISBN 978-92-5-134310-4. [Google Scholar]
- Eswaran, H.; Lal, R.; Reich, P. Land degradation: An overview. In ResearchGate; CRC Press: Boca Raton, FL, USA, 2019; pp. 20–35. [Google Scholar]
- Hualpa, G.; Carrión-Paladines, V.; Jiménez, W.; Capa-Mora, D.; Quichimbo, P.; Fierro, N.; Jiménez, L. Farmers’ Indigenous Knowledge of Soil Management in an Altitudinal Gradient in Southern Ecuador. Sustainability 2025, 17, 4983. [Google Scholar] [CrossRef]
- Ping, Y.; Xi, W.; Cai, H.; Tan, Q. Influence of Soil Characteristics on the Concentrations of Cr, Pb, and Zn in Tobacco Leaves from Longyan, China, and the Associated Predictive Models. Environ. Res. Commun. 2024, 6, 035022. [Google Scholar] [CrossRef]
- Grijalva, O.J.; Espinosa, F.; Hidalgo, M. Producción y Utilización de Pastizales en la Región Interandina del Ecuador; INIAP: Quito, Ecuador, 1995. [Google Scholar]
- Salazar, M.; Cedeño, P. Cambio del sistema de manejo y alimentación extensivo por semi intensivo en ganado bovino de carne en el Ecuador. Investig. Tecnol. Innov. 2015, 7, 106–118. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Cobo, J.G.; Dercon, G.; Cadisch, G. Nutrient Balances in African Land Use Systems across Different Spatial Scales: A Review of Approaches, Challenges and Progress. Agric. Ecosyst. Environ. 2010, 136, 1–15. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Status of the World’s Soil Resources. Available online: https://reliefweb.int/report/world/status-worlds-soil-resources (accessed on 2 July 2025).
- Vargas, A.; Santos, A.; Cárdenas, E.; Obregón, N. Analisis de la distribución e interpolación espacial de lluvias en Bogotá, Colombia. Dyna 2011, 78, 151–159. [Google Scholar]
- ESRI. Cómo Funciona La Interpolación de Distancia Inversa Ponderada. Available online: https://pro.arcgis.com/es/pro-app/latest/help/analysis/geostatistical-analyst/how-inverse-distance-weighted-interpolation-works.htm (accessed on 2 July 2025).
- ESRI. ¿Qué Es Un Kriging Bayesiano Empírico? Available online: https://desktop.arcgis.com/es/arcmap/10.4/extensions/geostatistical-analyst/what-is-empirical-bayesian-kriging-.htm (accessed on 2 July 2025).
- Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.-P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; et al. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. [Google Scholar] [CrossRef]
- Henríquez, C.; Méndez, J.C.; Masís, R. Interpolación de variables de fertilidad de suelo mediante el Análisis kriging y su validación. Agron. Costarric. 2013, 37, 71–82. [Google Scholar] [CrossRef]
- Moreira, T.V.M. Diretrizes e Procedimentos Metodológicos Para a Cartografia de Síntese Com Atributos Quantitativos via Álgebra de Mapas e Análise Multicritério. Bol. Geogr. 2012, 30, 121–131. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Censos. Personas Viven en Chimborazo. Available online: https://www.ecuadorencifras.gob.ec/471-933-personas-viven-en-chimborazo/ (accessed on 17 November 2025).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1 km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Ati, G.M.; Vasco, M.; Cushquicullma, D.F.; Barba, M.B. Análisis del estado del suelo de los ríos Cebadas—Yasipan de la microcuenca del río Cebadas, provincia de Chimborazo. Polo Conoc. 2023, 8, 112–125. [Google Scholar]
- Jiménez, W.; Loayza, V.; Metzler, E. Mapeo de cangahuas mediante teledetección en el Ecuador. Siembra 2018, 5, 38–50. [Google Scholar] [CrossRef]
- ESRI. Cómo Funciona Create Fishnet—ArcGIS Pro. Available online: https://pro.arcgis.com/en/pro-app/3.4/tool-reference/data-management/how-create-fishnet-works.htm (accessed on 17 July 2025).
- Li, J.; Heap, A.D. Spatial Interpolation Methods Applied in the Environmental Sciences: A Review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Piikki, K.; Wetterlind, J.; Söderström, M.; Stenberg, B. Perspectives on Validation in Digital Soil Mapping of Continuous Attributes—A Review. Soil Use Manag. 2021, 37, 7–21. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil Compaction in Cropping Systems: A Review of the Nature, Causes and Possible Solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Environmental Soil Physics, 1st ed.; Academic Press: Cambridge, MA, USA, 2003; ISBN 978-0-12-348655-4. [Google Scholar]
- Weil, R.; Brady, N.C. Nature and Properties of Soils, The, Global Edition; Pearson Education: Columbus, OH, USA, 2016; ISBN 978-1-292-16224-9. [Google Scholar]
- Bañón, S.; Álvarez, S.; Bañón, D.; Ortuño, M.F.; Sánchez-Blanco, M.J. Assessment of Soil Salinity Indexes Using Electrical Conductivity Sensors. Sci. Hortic. 2021, 285, 110171. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Percival, J.E.H.; Tsutsumida, N.; Murakami, D.; Yoshida, T.; Nakaya, T. Exploratory Spatial Data Analysis with gwpcorMapper: An Interactive Mapping Tool for Geographically Weighted Correlation and Partial Correlation. J. Geovisualization Spat. Anal. 2022, 6, 17. [Google Scholar] [CrossRef]
- Pilz, J.; Spöck, G. Why Do We Need and How Should We Implement Bayesian Kriging Methods. Stoch. Environ. Res. Risk Assess. 2008, 22, 621–632. [Google Scholar] [CrossRef]
- Krivoruchko, K.; Gribov, A. Evaluation of Empirical Bayesian Kriging. Spat. Stat. 2019, 32, 100368. [Google Scholar] [CrossRef]
- Landivar, A.; Rotta Loria, A.F. Electrokinetic Treatments of Soils: Potential for Geoenergy Applications. E3S Web Conf. 2020, 205, 09002. [Google Scholar] [CrossRef]
- Li, Z.; Tao, H.; Zhao, D.; Li, H. Three-Dimensional Empirical Bayesian Kriging for Soil PAHs Interpolation Considering the Vertical Soil Lithology. CATENA 2022, 212, 106098. [Google Scholar] [CrossRef]
- Barrena-González, J.; Lavado Contador, J.F.; Pulido Fernández, M. Mapping Soil Properties at a Regional Scale: Assessing Deterministic vs. Geostatistical Interpolation Methods at Different Soil Depths. Sustainability 2022, 14, 10049. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based Multicriteria Decision Analysis: A Survey of the Literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Model. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T. An Uncertainty and Sensitivity Analysis Approach for GIS-Based Multicriteria Landslide Susceptibility Mapping. Int. J. Geogr. Inf. Sci. 2014, 28, 610–638. [Google Scholar] [CrossRef]
- Castellanos, J.Z. Manejo y Corrección de la Acidez de los Suelos. Available online: https://www.intagri.com/articulos/suelos/manejo-y-correccion-de-acidez-de-suelo (accessed on 11 September 2025).
- Howells, G.; Dalziel, T. Controle la acidez y alcalinidad y aumente la fertilidad de los suelos. Profertil 1992. Available online: https://www.profertil.com.ar/wp-content/uploads/2020/08/controle-la-acidez-y-alcalinidad-y-aumente-la-fertilidad-de-los-suelos.pdf (accessed on 7 December 2025).
- Colacelli, N. Corrección de Suelos Alcalinos (Enyesado). Available online: https://www.produccion.com.ar/1997/97jul_14.htm (accessed on 11 August 2025).
- Eswar, D.; Karuppusamy, R.; Chellamuthu, S. Drivers of Soil Salinity and Their Correlation with Climate Change. Curr. Opin. Environ. Sustain. 2021, 50, 310–318. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil Salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as One of the Tools for Its Alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Ghulam, M.; Mohd, A. Crops and Methods to Control Soil Salinity. In Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches; Springer: Singapore; Shahjahanpur, India, 2019; Volume 2, pp. 237–251. [Google Scholar]
- Gould, C.; Hensel, E. Compost Can Increase the Water Holding Capacity in Droughty Soils. Available online: https://www.canr.msu.edu/news/compost_increases_the_water_holding_capacity_of_droughty_soils (accessed on 18 November 2025).
- Programa SIRSD-S. Pauta Técnica Para La Aplicacion de Compost. Available online: http://www.sag.cl/sites/default/files/pauta-tecnica-aplicacion-de-compost-conc.1-2-3_region_atacama.pdf (accessed on 5 April 2021).
- McGarry, D. Tillage and Soil Compaction. In Conservation Agriculture: Environment, Farmers Experiences, Innovations, Socio-Economy, Policy; García-Torres, L., Benites, J., Martínez-Vilela, A., Holgado-Cabrera, A., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 307–316. ISBN 978-94-017-1143-2. [Google Scholar]
- Greenwood, K.L.; McKenzie, B.M. Grazing Effects on Soil Physical Properties and the Consequences for Pastures: A Review. Aust. J. Exp. Agric. 2001, 41, 1231–1250. [Google Scholar] [CrossRef]
- Buytaert, W.; Célleri, R.; De Bièvre, B.; Cisneros, F.; Wyseure, G.; Deckers, J.; Hofstede, R. Human Impact on the Hydrology of the Andean Páramos. Earth-Sci. Rev. 2006, 79, 53–72. [Google Scholar] [CrossRef]
- Shoji, S.; Nanzyo, M.; Dahlgren, R.A. Volcanic Ash Soils, 1st ed.; Elsevier: Amsterdan, The Netherlands, 1994; Volume 21, ISBN 978-0-444-89799-2. [Google Scholar]
- Dahlgren, R.A.; Saigusa, M.; Ugolini, F.C. The Nature, Properties and Management of Volcanic Soils. Adv. Agron. 2004, 82, 113–182. [Google Scholar] [CrossRef]
- Célleri, R.; Feyen, J. The Hydrology of Tropical Andean Ecosystems: Importance, Knowledge Status, and Perspectives. Mt. Res. Dev. 2009, 29, 350–355. [Google Scholar] [CrossRef]
- Harden, C.; Hartsig, J.; Farley Wolf, K.; Lee, J.; Bremer, L. Effects of Land-Use Change on Water in Andean Páramo Grassland Soils. Ann. Assoc. Am. Geogr. 2013, 103, 375–384. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Chapter 7 Ameliorating Soil Acidity of Tropical Oxisols by Liming For Sustainable Crop Production. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2008; Volume 99, pp. 345–399. ISBN 9780123743602. [Google Scholar]
- Sumner, M.E. Nutrient Interactions in Soil and Plant Nutrition. Eur. J. Soil Sci. 2001, 52, 167–168. [Google Scholar] [CrossRef]
- Rengasamy, P. Transient Salinity and Subsoil Constraints to Dryland Farming in Australian Sodic Soils: An Overview. Aust. J. Exp. Agric. 2002, 42, 351–361. [Google Scholar] [CrossRef]
- Killham, K. Soil Ecology; Cambridge University Press: Cambridge, MA, USA, 1994; ISBN 978-0-521-43521-5. [Google Scholar]
- Ho, T.T.K.; Tra, V.T.; Le, T.H.; Nguyen, N.-K.-Q.; Tran, C.-S.; Nguyen, P.-T.; Vo, T.-D.-H.; Thai, V.-N.; Bui, X.-T. Compost to Improve Sustainable Soil Cultivation and Crop Productivity. Case Stud. Chem. Environ. Eng. 2022, 6, 100211. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics, 1st ed.; Academic Press: Cambridge, MA, USA, 1998; ISBN 978-0-12-348525-0. [Google Scholar]
- Roa, C.; Brown, S.; Krzic, M.; Lavkulich, L.; Roa-García, M.C. Relationship of Soil Water Retention Characteristics and Soil Properties: A Case Study from the Colombian Andes. Can. J. Soil Sci. 2021, 101, 147–156. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Improving Soil Physical Fertility and Crop Yield on a Clay Soil in Western Australia. Aust. J. Agric. Res. 2002, 53, 615–620. [Google Scholar] [CrossRef]
- Spoor, G. Alleviation of Soil Compaction: Requirements, Equipment and Techniques. Soil Use Manag. 2006, 22, 113–122. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012; ISBN 978-0-12-384905-2. [Google Scholar]
- Weil, R.R.; Nyle, C. The Nature and Properties of Soils, 15th ed.; Pearson Education: Columbus, OH, USA, 2016; ISBN 978-0-13-325455-6. [Google Scholar]
- Li, G.D.; Conyers, M.K.; Refshauge, G.; Ataollahi, F.; Hayes, R.C. Long-Term Liming Changes Pasture Mineral Profile. Sci. Rep. 2024, 14, 3539. [Google Scholar] [CrossRef]
- Grijalva-Olmedo, J.E.; Palate Moreta, P.M.; Vera-Vélez, R.R.; Ramos Veintimilla, R.A.; Tourrand, J.-F.; Portilla-Narváez, A. Assessment of Scenarios for Intensifying Pasture Management and Grazing in Fragile Micro-Watersheds of High Andean Mountains. Siembra 2025, 12, e7017. [Google Scholar] [CrossRef]
- Sarmiento, F. Breaking Mountain Paradigms: Ecological Effects on Human Impacts in Managed Tropandean Landscapes. Ambio 2000, 29, 423–431. [Google Scholar] [CrossRef]
- Tapia-Armijos, M.F.; Homeier, J.; Espinosa, C.I.; Leuschner, C.; de la Cruz, M. Deforestation and Forest Fragmentation in South Ecuador since the 1970s—Losing a Hotspot of Biodiversity. PLoS ONE 2015, 10, e0133701. [Google Scholar] [CrossRef]
- Instituto Interamericano de Cooperación para la Agricultura; Inter-American Board of Agriculture (IABA). Agriculture and Rurality in a Future of Permanent Change. In Proceedings of the Conference of Ministers of Agriculture of the Americas 2019, San Jose, Costa Rica, 29–31 October 2019. [Google Scholar]
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future Directions of Precision Agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Tunçay, T.; Kılıç, Ş.; Dedeoğlu, M.; Dengiz, O.; Başkan, O.; Bayramin, İ. Assessing Soil Fertility Index Based on Remote Sensing and Gis Techniques with Field Validation in a Semiarid Agricultural Ecosystem. J. Arid. Environ. 2021, 190, 104525. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Maestre, F.T.; Reich, P.B.; Jeffries, T.C.; Gaitan, J.J.; Encinar, D.; Berdugo, M.; Campbell, C.D.; Singh, B.K. Microbial Diversity Drives Multifunctionality in Terrestrial Ecosystems. Nat. Commun. 2016, 7, 10541. [Google Scholar] [CrossRef]






| Parameter Analysed | Unit | 2015 | 2017 | Trend |
|---|---|---|---|---|
| pH at 25 °C | - | 6.9 | 6.5 | Decreasing |
| Organic Matter * | % | 4.10 | 6.5 | Increasing |
| Nitrogen * | Ppm | 70.00 | 49.1 | Decreasing |
| Phosphorus * | Ppm | 7.80 | 26.0 | Increasing |
| Potassium * | meq/100 mL | 0.58 | 1.00 | Increasing |
| Calcium * | meq/100 mL | 24.80 | 21.0 | Decreasing |
| Sulfur | Ppm | 3.60 | 2.8 | Decreasing |
| Magnesium * | meq/100 mL | 4.50 | 5.0 | Increasing |
| Iron * | Ppm | 151.0 | 140.0 | Decreasing |
| Manganese * | Ppm | 4.60 | 13.0 | Increasing |
| Copper * | Ppm | 9.90 | 25.0 | Increasing |
| Boron | Ppm | 0.40 | 0.35 | Decreasing |
| Zinc * | Ppm | 26.00 | 3.0 | Decreasing |
| Electrical Conductivity * | dS/m | 0.28 | 0.30 | Stable |
| Number | Sector | Area (Ha) |
|---|---|---|
| 1 | Pacaguan | 3.30 |
| 2 | Pacaguan | 3.13 |
| 3 | Pacaguan | 2.43 |
| 4 | Pacaguan | 2.60 |
| 9 | Pacaguan | 2.96 |
| 10 | Pacaguan | 4.11 |
| 11 | Pacaguan | 4.70 |
| 12 | Pacaguan | 4.10 |
| 1 | San Carlos | 1.92 |
| 2 | San Carlos | 2.33 |
| 6 | San Carlos | 3.40 |
| 7 | San Carlos | 2.83 |
| 31 | San Carlos | 3.00 |
| 32 | San Carlos | 2.62 |
| Total | 43.43 | |
| Class | Area (ha) | % | Management Strategy |
|---|---|---|---|
| Neutral | 12.89 | 30% | No intervention is required. |
| Moderately Acidic | 30.54 | 70% | Frequent incorporation of organic matter, together with the application of agricultural lime to correct acidity, and the use of non-acidifying mineral fertilisers. |
| Total | 43.43 | 100% |
| Class | Area (ha) | % | Management Strategy |
|---|---|---|---|
| Non-saline | 43.43 | 100 | No intervention is required |
| Total | 43.43 | 100 |
| Class | Area (ha) | % | Management Strategy | Retention Capacity (kPa) |
|---|---|---|---|---|
| Soil field capacity | 29.38 | 68 | No intervention is required. | 10 to 20 |
| Soil within the usable moisture range | 12.19 | 28 | Incorporate compost at a rate of 0.6 to 1 t ha−1 year−1 | 20 to 30 |
| Soil in critical moisture conditions | 1.86 | 4 | Add compost at a rate of 2 t ha−1 year−1 | >30 |
| Total | 43.43 | 100 |
| Class | Area (ha) | % | Management Strategy | Compaction (MPa) |
|---|---|---|---|---|
| Low | 14.27 | 32.9 | No intervention is required. | <1 |
| Moderate | 29.01 | 67 | Solid tine scarifier; subsequent reseeding with a 3:1 mixture of sandy soil and compost | 1 |
| High | 0.15 | 0.1 | Scarifier (9–18 mm, depth 50–150 mm), then reseed with a 3:1 mixture of sandy soil and compost | 2 to 4 |
| Total | 43.43 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Córdova-Lliquín, J.; Guzmán-Guaraca, A.; Morales-León, V.; Vargas-Tierras, T.; Vásquez-Castillo, W. Spatial Analysis Model for Sustainable Soil Management in Livestock Systems: Case Study at Hacienda Pacaguan, Chimborazo, Ecuador. Sustainability 2025, 17, 11131. https://doi.org/10.3390/su172411131
Córdova-Lliquín J, Guzmán-Guaraca A, Morales-León V, Vargas-Tierras T, Vásquez-Castillo W. Spatial Analysis Model for Sustainable Soil Management in Livestock Systems: Case Study at Hacienda Pacaguan, Chimborazo, Ecuador. Sustainability. 2025; 17(24):11131. https://doi.org/10.3390/su172411131
Chicago/Turabian StyleCórdova-Lliquín, Jorge, Adriana Guzmán-Guaraca, Vanessa Morales-León, Tannia Vargas-Tierras, and Wilson Vásquez-Castillo. 2025. "Spatial Analysis Model for Sustainable Soil Management in Livestock Systems: Case Study at Hacienda Pacaguan, Chimborazo, Ecuador" Sustainability 17, no. 24: 11131. https://doi.org/10.3390/su172411131
APA StyleCórdova-Lliquín, J., Guzmán-Guaraca, A., Morales-León, V., Vargas-Tierras, T., & Vásquez-Castillo, W. (2025). Spatial Analysis Model for Sustainable Soil Management in Livestock Systems: Case Study at Hacienda Pacaguan, Chimborazo, Ecuador. Sustainability, 17(24), 11131. https://doi.org/10.3390/su172411131

