Seasonal Variability in the Impacts of Climatic and Landscape Dynamics on Soil Conservation Services: A Case Study from Upper and Middle Yellow River Basin, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources
2.3. Methods
2.3.1. Calculation of Soil Conservation Services
2.3.2. Calculation of Landscape Metrics
2.3.3. Sen’s Slope and Mann–Kendall Method
2.3.4. Stepwise Regression
2.3.5. Geographically Weighted Regression
3. Results
3.1. Spatiotemporal Variations in Soil Conservation
3.2. Driving Forces of Changes in Soil Conservation Based on Stepwise Regression
3.3. Driving Forces of Changes in Soil Conservation Based on GWR Method
4. Discussion
4.1. Impacts of Climate Variability on Soil Conservation
4.2. Impacts of Changes in Landscape Patterns on Soil Conservation
4.3. Implications for Ecosystem Management
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Badreldin, N.; Gao, Y.; Yan, C.; Zhao, Y.; Dyck, M.; He, H. Innovative methods for monitoring soil erosion: Utilizing InSAR technology effectively. Catena 2025, 261, 109547. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.; Panagos, P.; Lugato, E.; Yang, J.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Khosravi, K.; Rezaie, F.; Cooper, J.; Kalantari, Z.; Abolfathi, S.; Hatamiafkoueieh, J. Soil water erosion susceptibility assessment using deep learning algorithms. J. Hydrol. 2023, 618, 129229. [Google Scholar] [CrossRef]
- Firoozi, A.; Firoozi, A. Water erosion processes: Mechanisms, impact, and management strategies. Results Eng. 2024, 24, 103237. [Google Scholar] [CrossRef]
- Tuo, M.; Qiao, H.; Xu, G.; Wang, B.; Wan, S.; Wang, X.; Xie, X. Effects of vegetation types on hillslope runoff and soil erosion on the Loess Plateau. Catena 2025, 260, 109487. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Jia, L. Soil conservation service: Concept, assessment, and outlook. Acta Ecol. Sin. 2019, 39, 432–440. [Google Scholar] [CrossRef][Green Version]
- An, Y.; Zhao, W.; Li, C.; Ferreira, C. Temporal changes on soil conservation services in large basins across the world. Catena 2022, 209, 105793. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, C.; Zhu, Q.; Wang, M.; Wang, H.; Peng, S.; He, H. Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. J. Environ. Manag. 2019, 250, 109403. [Google Scholar] [CrossRef]
- IPCC. AR6 Synthesis Report: Climate Change 2023. Available online: https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed on 15 September 2025).
- Wu, H.; Su, X.; Singh, V. Increasing risks of future compound climate extremes with warming over global land masses. Earth’s Future 2023, 11, e2022EF003466. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Eekhout, J.; de Vente, J. Global impact of climate change on soil erosion and potential for adaptation through soil conservation. Earth-Sci. Rev. 2022, 226, 103921. [Google Scholar] [CrossRef]
- Liu, J.; Ning, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010–2015. Acta Geogr. Sin. 2018, 73, 789–802. [Google Scholar] [CrossRef]
- He, C.; Zhang, J.; Liu, Z.; Huang, Q. Characteristics and progress of land use/cover change research during 1990-2018. J. Geogr. Sci. 2022, 32, 537–559. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, G.; Zhang, Y.; Bai, Y.; Tian, P.; Mu, X.; Tian, X. Linkages between soil erosion and long-term changes of landscape pattern in a small watershed on the Chinese Loess Plateau. Catena 2023, 220, 106659. [Google Scholar] [CrossRef]
- Zhou, P.; Tian, Y.; Zhai, J.; Song, X.; Li, Y.; Sun, W. How does land use transfer affect ecosystem services in Northwest China? Ecol. Eng. 2025, 219, 107712. [Google Scholar] [CrossRef]
- Xue, S.; Ma, B.; Wang, C.; Li, Z. Identifying key landscape pattern indices influencing the NPP: A case study of the upper and middle reaches of the Yellow River. Ecol. Model. 2023, 484, 110457. [Google Scholar] [CrossRef]
- Xia, H.; Kong, W.; Zhou, G.; Sun, O. Impacts of landscape patterns on water-related ecosystem services under natural restoration in Liaohe River Reserve, China. Sci. Total Environ. 2021, 792, 148290. [Google Scholar] [CrossRef]
- Song, S.; Yu, D.; Li, X. Impacts of changes in climate and landscape pattern on soil conservation services in a dryland landscape. Catena 2023, 222, 106869. [Google Scholar] [CrossRef]
- Tang, Z.; Li, R. Small watersheds are the best control and management unit for improving soil conservation services in karst areas. Sci. Total Environ. 2024, 953, 176162. [Google Scholar] [CrossRef]
- Dai, E.; Lu, R.; Yin, J. Identifying the effects of landscape pattern on soil conservation services on the Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2024, 50, e02850. [Google Scholar] [CrossRef]
- Yang, Z.; Gu, T.; Zeng, Y.; Chen, W.; Zhang, X.; Pan, S. Spatially non-stationary relationships between landscape fragmentation and soil conservation services in China, 2000–2018. Ecol. Indic. 2024, 160, 111913. [Google Scholar] [CrossRef]
- Qiu, J.; Carpenter, S.; Booth, E.; Motew, M.; Zipper, S.; Kucharik, C.; Loheide II, S.; Turner, M. Understanding relationships among ecosystem services across spatial scales and over time. Environ. Res. Lett. 2018, 13, 054020. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Wang, K.; Zhang, H.; Tian, H.; Cao, J. Impacts of land use, rainfall, and temperature on soil conservation in the Loess Plateau of China. Catena 2024, 239, 107883. [Google Scholar] [CrossRef]
- Hao, R.; Yu, D.; Liu, Y.; Liu, Y.; Qiao, J.; Wang, X.; Du, J. Impacts of changes in climate and landscape pattern on ecosystem services. Sci. Total Environ. 2017, 579, 718–728. [Google Scholar] [CrossRef]
- Cao, Y.; Hua, L.; Tang, Q.; Liu, L.; Cai, C. Evaluation of monthly-scale soil erosion spatio-temporal dynamics and identification of their driving factors in Northeast China. Ecol. Indic. 2023, 150, 110187. [Google Scholar] [CrossRef]
- Sánchez-Canales, M.; López-Benito, A.; Acuña, V.; Ziv, G.; Hamel, P.; Chaplin-Kramer, R.; Elorza, F. Sensitivity analysis of a sediment dynamics model applied in a Mediterranean river basin: Global change and management implications. Sci. Total Environ. 2015, 502, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Ochuodho, T.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Xiao, S.; Xia, H.; Zhai, J.; Jin, D.; Gao, H. Trade-off and synergy relationships and driving factor analysis of ecosystem services in the Hexi Region. Remote Sens. 2024, 16, 3147. [Google Scholar] [CrossRef]
- Punzo, G.; Castellano, R.; Bruno, E. Using geographically weighted regressions to explore spatial heterogeneity of land use influencing factors in Campania (Southern Italy). Land Use Policy 2022, 112, 105853. [Google Scholar] [CrossRef]
- Li, Y.; Zhen, W.; Shi, D.; Tang, Y.; Xia, B. Coupling coordination and influencing mechanism of ecosystem services using remote sensing: A case study of food provision and soil conservation. Remote Sens. 2024, 16, 4598. [Google Scholar] [CrossRef]
- Liang, F.; Zhu, R.; Lin, S. Exploring spatial relationship between landscape configuration and ecosystem services: A case study of Xiamen–Zhangzhou–Quanzhou in China. Ecol. Model. 2023, 486, 110527. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, J.; Tan, M.; Lu, P.; Xue, Z.; Liu, M.; Wang, X. Impacts of vegetation restoration on soil erosion in the Yellow River Basin, China. Catena 2024, 234, 107547. [Google Scholar] [CrossRef]
- Wu, Q.; Jiang, X.; Shi, X.; Zhang, Y.; Liu, Y.; Cai, W. Spatiotemporal evolution characteristics of soil erosion and its driving mechanisms-a case Study: Loess Plateau, China. Catena 2024, 242, 108075. [Google Scholar] [CrossRef]
- Fu, B.; Wu, X.; Wang, Z.; Wu, X.; Wang, S. Coupling human and natural systems for sustainability: Experience from China’s Loess Plateau. Earth Syst. Dynam. 2022, 13, 795–808. [Google Scholar] [CrossRef]
- Li, H.; Guan, Q.; Sun, Y.; Wang, Q.; Liang, L.; Ma, Y.; Du, Q. Spatiotemporal analysis of the quantitative attribution of soil water erosion in the upper reaches of the Yellow River Basin based on the RUSLE-TLSD model. Catena 2022, 212, 106081. [Google Scholar] [CrossRef]
- Tian, S.; Xu, M.; Jiang, E.; Wang, G.; Hu, H.; Liu, X. Temporal variations of runoff and sediment load in the upper Yellow River, China. J. Hydrol. 2019, 568, 46–56. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Zhou, T.; Sun, J.; He, Y.; Lan, X.; Chen, Z. Pattern and dynamics of ecological vulnerability in the upper reach of Yellow River. J. Mt. Sci. 2025, 22, 2177–2190. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, G.; Mu, X.; Zhang, P.; Gao, P.; Sun, W.; Lu, X.; Tian, P. Decoupling effects of driving factors on sediment yield in the Chinese Loess Plateau. Int. Soil Water Conserv. Res. 2023, 11, 60–74. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Yu, H. Dynamic changes and distribution characteristics of soil and water loss in Loess Plateau area of Yellow River Basin. Res. Soil Water Conserv. 2025, 32, 110–116. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Jiang, D. Landscape pattern identification and ecological risk assessment using land-use change in the Yellow River Basin. Trans. Chin. Soc. Agric. Eng. 2021, 37, 265–274. [Google Scholar] [CrossRef]
- Mitchell, M.; Suarez-Castro, A.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.; Johansen, K.; Rhodes, J. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef]
- Li, W.; Kang, J.; Wang, Y. Seasonal changes in ecosystem health and their spatial relationship with landscape structure in China’s Loess plateau. Ecol. Indic. 2024, 163, 112127. [Google Scholar] [CrossRef]
- Liu, Q.; Qiao, J.; Li, M.; Huang, M. Spatiotemporal heterogeneity of ecosystem service interactions and their drivers at different spatial scales in the Yellow River Basin. Sci. Total Environ. 2024, 908, 168486. [Google Scholar] [CrossRef]
- Ma, Y.; Li, X.; Song, J.; Gao, C.; Zhao, D.; Shen, Y. The climatological calculation of global solar radiation and its temporal and spatial distribution in Inner Mongolia Autonomous Region. J. Meteorol. Environ. 2013, 29, 102–109. [Google Scholar]
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agricultural Handbook: No. 703; USDA: Washington, DC, USA, 1997.
- McGarigal, K.; Cushman, S.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical Maps. Computer Software Program Produced by the Authors. Available online: https://www.fragstats.org (accessed on 17 September 2025).
- Cano, D.; Cacciuttolo, C.; Rosario, C.; Barzola, R.; Pizarro, S.; Ramirez, D.; Freitas, M.; Bremer, U. Performance of green areas in mitigating the alteration of land surface temperature in urban zones of Lima, Peru. Remote Sens. 2025, 17, 1323. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, L.; He, C.; He, X. Response of erosive precipitation to vegetation restoration and its effect on soil and water conservation over China’s Loess Plateau. Water Resou. Res. 2023, 59, e2022WR033382. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Xiang, F.; Qin, W.; Jiang, W. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2020, 110, 105892. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Hu, R.; Cai, S.; Zhu, X.; Hao, Y. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors. Sci. Total Environ. 2021, 775, 145644. [Google Scholar] [CrossRef]
- Sadok, W.; Lopez, J.; Smith, K. Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant Cell Environ. 2021, 44, 2102–2116. [Google Scholar] [CrossRef]
- Jiao, K.; Gao, J.; Wu, S.; Hou, W. Research progress on the response processes of vegetation activity to climate change. Acta Ecol. Sin. 2018, 38, 2229–2238. [Google Scholar] [CrossRef]
- Yin, M.; Di, M.; Deng, X.; Wang, H.; Yin, Z.; Tong, B.; Zhang, J. Wind erosion characteristics on windward slopes affected by water erosion in wind-water erosion crisscross region of the Loess Plateau. Sci. Soil Water Conserv. 2022, 20, 39–46. [Google Scholar] [CrossRef]
- Marzen, M.; Iserloh, T.; de Lima, J.; Fister, W.; Ries, J. Impact of severe rain storms on soil erosion: Experimental evaluation of wind-driven rain and its implications for natural hazard management. Sci. Total Environ. 2017, 590, 502–513. [Google Scholar] [CrossRef]
- Ouyang, W.; Skidmore, A.; Hao, F.; Wang, T. Soil erosion dynamics response to landscape pattern. Sci. Total Environ. 2010, 408, 1358–1366. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, Y.; Fu, B. Implication and limitation of landscape metrics in delineating relationship between landscape pattern and soil erosion. Acta Ecol. Sin. 2011, 31, 267–275. [Google Scholar] [CrossRef]
- Huang, T.; Yu, D.; Qiao, J.; Hao, R. Landscape pattern change and soil conservation in Xilingol League, Inner Mongolia. Resour. Sci. 2018, 40, 1256–1266. [Google Scholar] [CrossRef]
- Li, Z.; Yang, L.; Wang, G.; Hou, J.; Xin, Z.; Liu, G.; Fu, B. The management of soil and water conservation in the Loess Plateau of China: Present situations, problems, and counter-solutions. Acta Ecol. Sin. 2019, 39, 7398–7409. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Yu, X. Impact of China’s Grain for Green Project on the landscape of vulnerable arid and semi-arid agricultural regions: A case study in northern Shaanxin Province. J. Appl. Ecol. 2009, 46, 536–543. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, H.; Wang, J.; Feng, G.; Li, L.; Sun, T.; Li, Y.; Wei, J.; Cai, X. Impacts of the Grain for Green Project on Soil Moisture in the Yellow River Basin, China. Hydrol. Process. 2025, 39, e70112. [Google Scholar] [CrossRef]
- Milazzo, F.; Francksen, R.; Zavattaro, L.; Abdalla, M.; Hejduk, S.; Enri, S.; Pittarello, M.; Price, P.; Schils, R.; Smith, P.; et al. The role of grassland for erosion and flood mitigation in Europe: A meta-analysis. Agr. Ecosyst. Environ. 2023, 348, 108443. [Google Scholar] [CrossRef]
- Li, P.; Xie, Z.; Yan, Z.; Dong, R.; Tang, L. Assessment of vegetation restoration impacts on soil erosion control services based on a biogeochemical model and RUSLE. J. Hydrol. Reg. Stud. 2024, 53, 101830. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Z.; Zou, X.; Zhang, K.; Zhang, W. Quantifying wind erosion at landscape scale in a temperate grassland: Nonignorable influence of topography. Geomorphology 2020, 370, 107401. [Google Scholar] [CrossRef]
- Keesstra, S.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido-Fernández, M.; Di Prima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 2019, 174, 95–103. [Google Scholar] [CrossRef]
- Lin, J.; Guan, Q.; Tian, J.; Wang, Q.; Tan, Z.; Li, Z.; Wang, N. Assessing temporal trends of soil erosion and sediment redistribution in the Hexi Corridor region using the integrated RUSLE-TLSD model. Catena 2020, 195, 104756. [Google Scholar] [CrossRef]
- Cao, B.; Yu, L.; Li, W.; Ciais, P.; Panagos, P.; Borrelli, P.; Naipal, V.; Wei, W.; Jiao, Y.; Xie, Y.; et al. Terracing can reduce cropland water erosion in China by over 50% at present and under future climate change. One Earth 2025, 8, 101490. [Google Scholar] [CrossRef]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sc. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Felix, F.; Cândido, B.; de Moraes, J. Improving RUSLE predictions through UAV-based soil cover management factor (C) assessments: A novel approach for enhanced erosion analysis in sugarcane fields. J. Hydrol. 2023, 626, 130229. [Google Scholar] [CrossRef]
- Xiong, M.; Sun, R.; Chen, L. Effects of soil conservation techniques on water erosion control: A global analysis. Sci. Total Environ. 2018, 645, 753–760. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Dong, Y.; Yang, Z.; Govers, G. How soil erosion and runoff are related to land use, topography and annual precipitation: Insights from a meta-analysis of erosion plots in China. Sci. Total Environ. 2022, 802, 149665. [Google Scholar] [CrossRef]
- Schulte to Bühne, H.; Tobias, J.; Durant, S.; Pettorelli, N. Improving predictions of climate change–land use change interactions. Trends Ecol. Evol. 2021, 36, 29–38. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, Y.; Liu, B. Rainfall erosivity estimation using daily rainfall amounts. Sci. Geogr. Sin. 2002, 22, 705–711. [Google Scholar]
- Fu, S.; Liu, B.; Zhou, G.; Sun, Z.; Zhu, X. Calculation tool of topographic factors. Sci. Soil Water Conserv. 2015, 13, 105–110. [Google Scholar]
- Cai, C.; Ding, S.; Shi, Z.; Huang, L.; Zhang, G. Study of applying USLE and geographical information system IDRISI to protect soil erosion in small watershed. J. Soil Water Conserv. 2000, 14, 19–24. [Google Scholar]
- Jin, F.; Yang, W.; Fu, J.; Li, Z. Effects of vegetation and climate on the changes of soil erosion in the Loess Plateau of China. Sci. Total Environ. 2021, 773, 145514. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xu, X.; Meng, X. Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with information diffusion model: A case study of Bohai Rim, China. Catena 2013, 100, 74–82. [Google Scholar] [CrossRef]
- Dai, Z.; Feng, X.; Zhang, C.; Shang, L.; Qiu, G. Assessment of mercury erosion by surface water in Wanshan mercury mining area. Environ. Res. 2013, 125, 2–11. [Google Scholar] [CrossRef]
- Lu, Q.; Xu, B.; Liang, F.; Gao, Z.; Ning, J. Influences of the Grain-for-Green project on grain security in southern China. Ecol. Ind. 2013, 34, 616–622. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, K.; Wang, M.; Karthikeyan, R. Basin-scale spatial soil erosion variability: Pingshuo opencast mine site in Shanxi Province, Loess Plateau of China. Nat. Hazards 2016, 80, 1213–1230. [Google Scholar] [CrossRef]
- Chen, S.; Zha, X. Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China. Nat. Hazards 2016, 82, 1589–1607. [Google Scholar] [CrossRef]
- Sun, W.; Shao, Q.; Liu, J.; Zhai, J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 2014, 121, 151–163. [Google Scholar] [CrossRef]






| Time Scales | Percentage of Areas with Significant Upward (%) | Percentage of Areas with Insignificant Upward (%) | Percentage of Areas with Significant Downward (%) | Percentage of Areas with Insignificant Downward (%) |
|---|---|---|---|---|
| Annual | 17.30 | 77.00 | 0.00 | 5.70 |
| Spring | 19.77 | 68.31 | 0.04 | 11.89 |
| Summer | 12.09 | 81.59 | 0.00 | 6.31 |
| Autumn | 0.55 | 44.20 | 0.06 | 55.19 |
| Winter | 7.77 | 11.18 | 6.48 | 74.57 |
| Time Scales | Explanatory Variables | ||
|---|---|---|---|
| Climatic Factors | Landscape Pattern Factors | Topographical Factor | |
| Annual | Pre (0.746) Tem (0.094) | NDVI (0.158) SHDI (−0.246) ED_1 (−0.126) LPI (−0.117) | Alt (−0.218) |
| Spring | Pre (0.894) SR (0.169) WS (−0.176) | NDVI (0.132) ED_1 (−0.126) PLAND_1 (0.254) AI_1 (−0.143) | Alt (−0.101) |
| Summer | Pre (0.810) Tem (0.276) SR (0.145) | PLAND_3 (0.165) NDVI (0.241) LPI_1 (−0.200) ED_1 (−0.147) FRAC_MN_1 (0.095) ED_2 (0.078) | |
| Autumn | Pre (0.822) SR (0.183) Tem (0.084) | ED_1 (0.135) NDVI (−0.110) | Alt (−0.150) |
| Time Scales | AICc | R2 | Adjusted R2 | Residuals’ Moran’s I | ||||
|---|---|---|---|---|---|---|---|---|
| Stepwise Regression | GWR | Stepwise Regression | GWR | Stepwise Regression | GWR | Stepwise Regression | GWR | |
| Annual | 568.200 | 452.916 | 0.638 | 0.899 | 0.629 | 0.833 | 0.155 (0.000) | 0.025 (0.250) |
| Spring | 483.657 | 257.734 | 0.728 | 0.933 | 0.721 | 0.901 | 0.166 (0.000) | 0.035 (0.117) |
| Summer | 516.895 | 422.421 | 0.698 | 0.862 | 0.689 | 0.814 | 0.250 (0.000) | 0.022 (0.312) |
| Autumn | 533.956 | 309.867 | 0.674 | 0.923 | 0.667 | 0.884 | 0.349 (0.000) | 0.004 (0.780) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Dai, L.; Zhang, Q. Seasonal Variability in the Impacts of Climatic and Landscape Dynamics on Soil Conservation Services: A Case Study from Upper and Middle Yellow River Basin, China. Sustainability 2025, 17, 11019. https://doi.org/10.3390/su172411019
Li S, Dai L, Zhang Q. Seasonal Variability in the Impacts of Climatic and Landscape Dynamics on Soil Conservation Services: A Case Study from Upper and Middle Yellow River Basin, China. Sustainability. 2025; 17(24):11019. https://doi.org/10.3390/su172411019
Chicago/Turabian StyleLi, Shengkun, Luwei Dai, and Qin Zhang. 2025. "Seasonal Variability in the Impacts of Climatic and Landscape Dynamics on Soil Conservation Services: A Case Study from Upper and Middle Yellow River Basin, China" Sustainability 17, no. 24: 11019. https://doi.org/10.3390/su172411019
APA StyleLi, S., Dai, L., & Zhang, Q. (2025). Seasonal Variability in the Impacts of Climatic and Landscape Dynamics on Soil Conservation Services: A Case Study from Upper and Middle Yellow River Basin, China. Sustainability, 17(24), 11019. https://doi.org/10.3390/su172411019

