Assessing Climate Regulation Ecosystem Services for Sustainable Management: A Multidimensional Framework to Inform Regional Pathways
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. CRESs Calculation Method
2.3.2. Multidimensional Assessment Framework
2.3.3. Exploratory Spatial Data Analysis
2.3.4. Multiscale Geographically Weighted Regression
3. Results
3.1. Trends of Variations in CRESs
3.1.1. Evolutionary Trends in the Province
3.1.2. County-Level Multidimensional Assessment of the Distribution
3.2. Analysis of Spatial Variation in CRESs
3.2.1. CRESs Output
3.2.2. CRESs Efficiency
3.2.3. CRESs Development Trends
3.2.4. Identification of Progression Zones in CRESs
3.3. Multiscale Analysis of Factors That Impact CRESs
3.3.1. Analysis of the Impacts of Long-Distance Factors
3.3.2. Analysis of the Impacts of Medium-Distance Influencing Factors
3.3.3. Analysis of the Impacts of Short-Distance Influencing Factors
4. Discussion
4.1. Applicability and Scientific Basis of the Energy-Based Assessment
4.2. Diagnostic Value of the Multidimensional Framework for Regional Heterogeneity
4.3. Multiscale Spatial Heterogeneity of Influencing Factors
4.4. Differentiated Regional Pathways for Sustainable Management
4.5. Limitations and Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wood, S.L.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef]
- Bakure, B.Z.; Hundera, K.; Abara, M. Review on the effect of climate change on ecosystem services. IOP Conf. Ser. Earth Environ. Sci. 2022, 1016, 012055. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, T.; Fu, B. The value of ecosystem services in China: A systematic review for twenty years. Ecosyst. Serv. 2021, 52, 101365. [Google Scholar] [CrossRef]
- Li, F.; Wang, F.; Liu, H.; Huang, K.; Yu, Y.; Huang, B. A comparative analysis of ecosystem service valuation methods: Taking Beijing, China as a case. Ecol. Indic. 2023, 154, 110872. [Google Scholar] [CrossRef]
- Rudel, T.K.; Coomes, O.T.; Moran, E.; Achard, F.; Angelsen, A.; Xu, J.; Lambin, E. Forest transitions: Towards a global understanding of land use change. Glob. Environ. Change 2005, 15, 23–31. [Google Scholar] [CrossRef]
- House, J.I.; Brovkin, V.; Betts, R.A.; Constanza, R.; Dias, M.A.F.; Holland, E.A.; Quéré, C.L.; Sasaki, N.; Riebesell, U.; Scholes, M. Climate and Air Quality; Publisher Island Press: Washington, DC, USA, 2006; Volume 1. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Ma, G.-X.; Yu, F.; Wang, J.-N.; Zhou, X.-F.; Yuan, J.; Mou, X.-H.; Zhou, Y.; Yang, W.; Peng, F. Measuring gross ecosystem product (GEP) of 2015 for terrestrial ecosystems in China. China Environ. Sci. 2017, 37, 1474–1482. [Google Scholar]
- Ouyang, Z.; Zhu, C.; Yang, G.; Xu, W.; Zheng, H.; Zhang, Y.; Xiao, Y. Gross ecosystem product: Concept, accounting framework and case study. Acta Ecol. Sin 2013, 33, 6747–6761. [Google Scholar] [CrossRef]
- UNEP; FAO. Ecosystem Restoration for People, Nature and Climate: Becoming #GenerationRestoration. 2021. Available online: https://www.unep.org/resources/ecosystem-restoration-people-nature-climate (accessed on 2 December 2025).
- Bing, L.-F.; Wang, J.-Y.; Yin, Y.; Xi, F.-M.; Zhang, W.-F.; Ma, M.-J.; Niu, L. Evaluation of climate regulation service at prefecture-level city: A case study of Fuzhou City, China. J. Appl. Ecol. 2022, 33, 1966–1974. [Google Scholar]
- Zheng, H.; Wu, T.; Ouyang, Z.; Polasky, S.; Ruckelshaus, M.; Wang, L.; Xiao, Y.; Gao, X.; Li, C.; Daily, G.C. Gross ecosystem product (GEP): Quantifying nature for environmental and economic policy innovation. Ambio 2023, 52, 1952–1967. [Google Scholar] [CrossRef] [PubMed]
- SCEP. Man’s Impact on the Global Environment; MIT Press: Cambridge, UK, 1970. [Google Scholar]
- Guo, X.; Yang, C.; Wang, Z.; Wang, L. Ecosystem Services in Northeast China’s Cold Region: A Comprehensive Review of Patterns, Drivers, and Policy Responses. Sustainability 2025, 17, 7352. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. A global view of regulatory ecosystem services: Existed knowledge, trends, and research gaps. Ecol. Process. 2020, 9, 40. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Engel, S.; Pagiola, S.; Wunder, S. Designing payments for environmental services in theory and practice: An overview of the issues. Ecol. Econ. 2008, 65, 663–674. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Y.; Xu, H. Response of ecosystem service values to land use change, 2002–2021. Ecol. Indic. 2024, 160, 111947. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Guan, Y. Optimization of management by analyzing ecosystem service value variations in different watersheds in the Three-River Headwaters Basin. J. Environ. Manag. 2022, 321, 115956. [Google Scholar] [CrossRef]
- Qiu, Z.; Guan, Y.; Zhou, K.; Kou, Y.; Zhou, X.; Zhang, Q. Spatiotemporal Analysis of the Interactions between Ecosystem Services in Arid Areas and Their Responses to Urbanization and Various Driving Factors. Remote Sens. 2024, 16, 520. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.A.; Fahey, D.W.; Haywood, J.M.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ma, R.; Xie, M.; Yun, W.; Zhu, D. Evaluating responses of temperature regulating service to landscape pattern based on ‘Source-Sink’ theory. ISPRS Int. J. Geo-Inf. 2020, 9, 295. [Google Scholar] [CrossRef]
- ten Brink, P. (Ed.) The Economics of Ecosystems and Biodiversity in National and International Policy Making; Earthscan: London, UK; Washington, DC, USA, 2011. [Google Scholar]
- Sánchez, J.J.; Marcos-Martinez, R.; Srivastava, L.; Soonsawad, N. Valuing the impacts of forest disturbances on ecosystem services: An examination of recreation and climate regulation services in U.S. national forests. Trees For. People 2021, 5, 100123. [Google Scholar] [CrossRef]
- Wong, C.P.; Jiang, B.; Bohn, T.J.; Lee, K.N.; Lettenmaier, D.P.; Ma, D.; Ouyang, Z. Lake and wetland ecosystem services measuring water storage and local climate regulation. Water Resour. Res. 2017, 53, 3197–3223. [Google Scholar] [CrossRef]
- Smith, P.; Ashmore, M.R.; Black, H.I.J.; Burgess, P.J.; Evans, C.D.; Quine, T.A.; Thomson, A.M.; Hicks, K.; Orr, H.G.; Angeler, D. REVIEW: The role of ecosystems and their management in regulating climate, and soil, water and air quality. J. Appl. Ecol. 2012, 50, 812–829. [Google Scholar] [CrossRef]
- Zardo, L.; Geneletti, D.; Pérez-Soba, M.; Van Eupen, M. Estimating the cooling capacity of green infrastructures to support urban planning. Ecosyst. Serv. 2017, 26, 225–235. [Google Scholar] [CrossRef]
- Takács, Á.; Kiss, M.; Hof, A.; Tanács, E.; Gulyás, Á.; Kántor, N. Microclimate Modification by Urban Shade Trees—An Integrated Approach to Aid Ecosystem Service Based Decision-making. Procedia Environ. Sci. 2016, 32, 97–109. [Google Scholar] [CrossRef]
- Serna-Chavez, H.M.; Kissling, W.D.; Veen, L.E.; Swenson, N.G.; van Bodegom, P.M. Spatial scale dependence of factors driving climate regulation services in the Americas. Glob. Ecol. Biogeogr. 2018, 27, 828–838. [Google Scholar] [CrossRef]
- Jie, S.; Meng-jia, X.; Dong, L.; Li, S.; Yue, Y. Impact Analysis of the Spatial Change of Ecosystem Climate Regulation Services in the Yangtze River Delta. J. Ecol. Rural Environ. 2024, 40, 1121–1133. [Google Scholar]
- Grêt-Regamey, A.; Weibel, B. Global assessment of mountain ecosystem services using earth observation data. Ecosyst. Serv. 2020, 46. [Google Scholar] [CrossRef]
- Wu, C.; Ma, G.; Yang, W.; Zhou, Y.; Peng, F.; Wang, J.; Yu, F. Assessment of Ecosystem Service Value and Its Differences in the Yellow River Basin and Yangtze River Basin. Sustainability 2021, 13, 3822. [Google Scholar] [CrossRef]
- Liang, L.-N.; Siu, W.S.; Wang, M.-X.; Zhou, G.-J. Measuring gross ecosystem product of nine cities within the Pearl River Delta of China. Environ. Chall. 2021, 4, 100105. [Google Scholar] [CrossRef]
- He, S.; Wang, J.; Li, J.; Sha, J.; Zhou, J.; Jiao, Y. Quantification and Simulation of the Ecosystem Service Value of Karst Region in Southwest China. Land 2024, 13, 812. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, J.; Yang, S.; Liu, W.; Dai, Y.; Huang, G.; Lin, J. Spatiotemporal Evolution, Driving Mechanisms, and Zoning Optimization Pathways of Ecosystem Health in China. Forests 2024, 15, 1987. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, C.; Qu, J.; Shi, J.; Ma, Y.; Liu, D.; Wang, R. Spatiotemporal evolution and influencing factors of ecosystem services on Hainan Island from 1985 to 2022: Insights from long-term annual assessments and spatial econometric models. J. Environ. Manag. 2025, 382, 125450. [Google Scholar] [CrossRef]
- Shi, D.; Wu, Q.; Shi, Y.; Li, Z.; Xia, B.; Chen, Y.; Zhang, N.; Meng, J.; Li, Y. Multidimensional assessment of soil conservation ecosystem services and multiscale analysis of influencing mechanisms. J. Clean. Prod. 2022, 381, 135162. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.H.; Wan, Y.X.; Xu, B. Spatial pattern evolution and driving forces of ecosystem service value in the Yellow River Basin. Front. Environ. Sci. 2025, 13, 1562274. [Google Scholar] [CrossRef]
- Liu, J.; Pei, X.; Zhu, W.; Jiao, J. Understanding the intricate tradeoffs among ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration across spatiotemporal features. Sci. Total Environ. 2023, 898, 165453. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jiao, J.; Wang, A.; Xu, C. Multi-Scale Analysis of Changes in Ecosystem Service Values Driven by Land Use Transformation: A Case Study of the Zhengzhou Metropolitan Area. Sustainability 2025, 17, 9842. [Google Scholar] [CrossRef]
- Xu, X.; Yu, J.; Wang, F. Analysis of ecosystem service drivers based on interpretive machine learning: A case study of Zhejiang Province, China. Environ. Sci. Pollut. Res. 2022, 29, 64060–64076. [Google Scholar] [CrossRef]
- Luo, D.; Zhou, Z.; Zhang, L.; Chen, Q.; Huang, D.; Feng, Q.; Wu, T.; Wu, L. Evolution and driver analysis of forest carbon stocks in karst mountainous areas of southwest China in the context of rocky desertification management. Catena 2024, 246, 108335. [Google Scholar] [CrossRef]
- Wang, J.; Han, G.; You, J.; Zhu, L.; Li, Y.; Zhou, X. Analysis of the Spatial Relationship between Ecosystem Regulation Services and Rural Tourism. Int. J. Environ. Res Public Health 2023, 20, 3888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, J.; Liu, L.; Gong, J.; Li, J.; Kang, L. Spatial–Temporal Heterogeneity of Urbanization and Ecosystem Services in the Yellow River Basin. Sustainability 2023, 15, 3113. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 2021, 1–29. [Google Scholar]
- Zhang, H. A 1 km high-resolution atmospheric moisture index collection over China, 2003–2020. Zenodo 2023, 8070140. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Gentine, P.; D’Odorico, P.; Lintner, B.R.; Sivandran, G.; Salvucci, G. Interdependence of climate, soil, and vegetation as constrained by the Budyko curve. Geophys. Res. Lett. 2012, 39, L19404. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic: San Diego, CA, USA, 1974; pp. 508–510. [Google Scholar]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436, 35–50. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.; Wood, S.A.; Chapin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.2.0 User’s Guide; The Natural Capital Project; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy: Arlington County, VA, USA; World Wildlife Fund: Gland, Switzerland, 2015. [Google Scholar]
- Zhang, L.; Dawes, W.; Walker, G. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Canqiang, Z.; Wenhua, L.; Biao, Z.; Moucheng, L. Water yield of Xitiaoxi river basin based on InVEST modeling. J. Resour. Ecol. 2012, 3, 50–54. [Google Scholar] [CrossRef]
- Deng, O.; Li, Y.; Li, R.; Yang, G. Estimation of Forest Ecosystem Climate Regulation Service Based on Actual Evapotranspiration of New Urban Areas in Guanshanhu District, Guiyang, Guizhou Province, China. Sustainability 2022, 14, 10022. [Google Scholar] [CrossRef]
- Li, R.; Zheng, H.; O’Connor, P.; Xu, H.; Li, Y.; Lu, F.; Robinson, B.E.; Ouyang, Z.; Hai, Y.; Daily, G.C. Time and space catch up with restoration programs that ignore ecosystem service trade-offs. Sci. Adv. 2021, 7, eabf8650. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, J.; Li, Z.; Yu, B. Spatial differences of ecosystem services and their driving factors: A comparation analysis among three urban agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [Google Scholar] [CrossRef]
- Yang, R.; Ren, F.; Xu, W.; Ma, X.; Zhang, H.; He, W. China’s ecosystem service value in 1992–2018: Pattern and anthropogenic driving factors detection using Bayesian spatiotemporal hierarchy model. J. Environ. Manag. 2022, 302, 114089. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Chen, Y.; Pei, W.; Xuan, L.; Wang, Y. Investigating the Dynamic Change and Driving Force of Isolated Marsh Wetland in Sanjiang Plain, Northeast China. Land 2024, 13, 1969. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of China. The Technical Guideline on Gross Ecosystem Product (GEP) (Version 1.0); Chinese Academy of Environmental Planning/Research Center for Eco-Environmental Sciences, CAS: Beijing, China, 2020.
- Guizhou Administration for Market Regulation. Technical Specification for Gross Ecosystem Product (GEP) Accounting; Guizhou Administration for Market Regulation: Guiyang, China, 2021.
- Jiang, K.; Zhang, J.; Zhang, L.; Wang, D.; Wang, Y. Sustainable cooperation in the watershed ecological compensation public-private partnership project: Lessons from China’s Chishui river basin. Socio-Econ. Plan. Sci. 2023, 90, 101730. [Google Scholar] [CrossRef]







| 2002 | 2007 | 2012 | 2017 | 2022 | |
|---|---|---|---|---|---|
| CRESs per unit area (106 KWh) | 6.47 | 7.13 | 7.42 | 7.84 | 8.10 |
| Total CRESs (109 KWh) | 2.57 | 2.83 | 2.94 | 3.12 | 3.24 |
| Model Type | R2 | Adjusted R2 | AICc |
|---|---|---|---|
| OLS | 0.536 | 0.534 | 5064.368 |
| GWR | 0.976 | 0.964 | 239.174 |
| MGWR | 0.979 | 0.971 | −722.747 |
| Influencing Factors | Minimum Coefficient | Maximum Coefficient | Mean Coefficient | Bandwidth | VIF | Scale | Significance Ratio (%) |
|---|---|---|---|---|---|---|---|
| Population density | −0.049 | 0.065 | 0.002 | 1629 | 4.2 | Global | 62.1% |
| Gross domestic product (GDP) | −2.336 | 1.542 | −0.189 | 1010 | 5.6 | Global | 68.4% |
| Net primary productivity (NPP) | −0.065 | 0.079 | −0.001 | 432 | 2.9 | Regional | 79.5% |
| Vegetation cover | −70.132 | 128.149 | 1.494 | 352 | 1.8 | Regional | 85.6% |
| Elevation | −0.152 | 0.318 | 0.072 | 676 | 2.1 | Global | 75.3% |
| slope | −0.033 | 0.019 | −0.006 | 370 | 1.3 | Regional | 82.1% |
| Aspect | −0.004 | −0.001 | −0.002 | 246 | 1.2 | Regional | 88.4% |
| Annual temperature | −0.294 | 0.117 | −0.053 | 68 | 3.5 | Local | 91.8% |
| Annual precipitation | 0.512 | 1.962 | 1.196 | 48 | 4.2 | Local | 94.5% |
| Annual humidity | −0.160 | 0.086 | −0.05 | 44 | 3.8 | Local | 96.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Li, M.; Yang, G.; Deng, O. Assessing Climate Regulation Ecosystem Services for Sustainable Management: A Multidimensional Framework to Inform Regional Pathways. Sustainability 2025, 17, 10918. https://doi.org/10.3390/su172410918
Zhao L, Li M, Yang G, Deng O. Assessing Climate Regulation Ecosystem Services for Sustainable Management: A Multidimensional Framework to Inform Regional Pathways. Sustainability. 2025; 17(24):10918. https://doi.org/10.3390/su172410918
Chicago/Turabian StyleZhao, Linglin, Man Li, Guangbin Yang, and Ou Deng. 2025. "Assessing Climate Regulation Ecosystem Services for Sustainable Management: A Multidimensional Framework to Inform Regional Pathways" Sustainability 17, no. 24: 10918. https://doi.org/10.3390/su172410918
APA StyleZhao, L., Li, M., Yang, G., & Deng, O. (2025). Assessing Climate Regulation Ecosystem Services for Sustainable Management: A Multidimensional Framework to Inform Regional Pathways. Sustainability, 17(24), 10918. https://doi.org/10.3390/su172410918

