Applications of Geographic Information Systems in Ecological Impact Assessment: A Methods Landscape, Practical Bottlenecks, and Future Pathways
Abstract
1. Introduction
2. Core Applications of GIS in the EIA Process
2.1. Spatial Data Management: The Foundation of Geospatial Assessment
2.2. Spatial Analysis Methods: The Analytical Engine of EIA
2.3. Ecological Sensitivity Assessment
- Topographical factors: such as steep slopes (prone to erosion) and high elevations (often containing unique or fragile ecosystems).
- Hydrological factors: such as proximity to rivers, lakes, and wetlands, which are critical for water quality and biodiversity.
- Biotic factors: including vegetation cover (e.g., dense forests provide more stability than sparse grasslands), habitat for rare or endangered species, and biodiversity hotspots.
- Abiotic factors: such as soil type and erodibility.
- Human disturbance factors: such as proximity to existing roads and urban areas [32].

2.4. Impact Prediction and Simulation
3. Integration of GIS with Other Technologies
3.1. Synergy with Remote Sensing (RS)
3.2. Artificial Intelligence (AI) and Machine Learning (ML)
3.3. Multi-Source Data Fusion
4. GIS in EIA: Typical Case Studies
4.1. Urban Planning and Expansion
4.2. Transportation Infrastructure Construction
4.3. Natural Reserve and Protected Area Management
5. Challenges and Enduring Problems
5.1. Data Quality, Availability, and Standardization
5.2. Technical and Methodological Complexity
5.3. Policy, Legal, and Institutional Support Gaps
6. Future Development Directions
6.1. Intelligent and Automated Assessment Methods
6.2. Real-Time Monitoring and Adaptive Management Systems
6.3. Policy-Driven and Participatory GIS Applications
6.4. Research Gaps and Future Research Directions
7. Conclusions
7.1. Summary of Findings
7.2. Research Significance and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vishwakarma, R.; Singh, P.; Singh, Y. Methods and Applications of Environmental Impact Assessments. In Energy, Ecology, and Environment: Fundamentals and Applications; Zenodo: Geneva, Switzerland, 2025. [Google Scholar]
- Luo, L.; Zhang, J.; Wang, H.; Chen, M.; Jiang, Q.; Yang, W.; Wang, F.; Zhang, J.; Swain, R.B.; Meadows, M.E.; et al. Innovations in science, technology, engineering, and policy (iSTEP) for addressing environmental issues towards sustainable development. Innov. Geosci. 2024, 2, 100087. [Google Scholar] [CrossRef]
- Wanner, M.S.T.; Miljand, M. Unlocking the transformative potential of multi-stakeholder partnerships for sustainable development: Assessing perceived effectiveness and contributions to systemic change. World Dev. 2025, 191, 107007. [Google Scholar] [CrossRef]
- Alarcón-Ferrari, C.; Jönsson, M.; Do, T.; Gebrehiwot, S.G.; Chiwona-Karltun, L.; Mark-Herbert, C.; Powell, N.; Ruete, A.; Hilding-Rydevik, T.; Bishop, K. Analyzing environmental communication and citizen science in the context of environmental monitoring and assessment for Agenda 2030 in rural settings of Chile and Sweden. Front. Commun. 2024, 9, 1387111. [Google Scholar] [CrossRef]
- Bond, A.; Pope, J.; Fundingsland, M.; Morrison-Saunders, A.; Retief, F.; Hauptfleisch, M. Explaining the political nature of environmental impact assessment (EIA): A neo-Gramscian perspective. J. Clean. Prod. 2020, 244, 118694. [Google Scholar] [CrossRef]
- Aljareo, A.; Watson, I.; Schwaibold, U. Developing an evaluation approach to consider the influence of country context on environmental impact assessment performance, from a southern African perspective. Integr. Environ. Assess. Manag. 2023, 19, 1510–1524. [Google Scholar] [CrossRef]
- Pinheiro, M.D. Environmental Impact Assessment—Exploring New Frontiers. Environments 2025, 12, 8. [Google Scholar] [CrossRef]
- Eitan, A.; Levi-Faur, D. Environmental impact assessments as a mechanism of regulatory intermediation: The case of Israeli wind energy. Policy Soc. 2025, puaf006. [Google Scholar] [CrossRef]
- Miriam, O.O.; Adike, F.U.; Folake, O.R.; Sodiq, S.K.; Chukwu, B.N.; Animashaun, T.A.; Ebenmelu, C.E.; Chinonyerem, C.A. Environmental Risk Assessment of Transportation Infrastructure Development Using Gis in Lagos State. Int. J. Earth Des. Innov. Res. 2024, 6, 13–26. [Google Scholar] [CrossRef]
- Das, S.; Choudhury, M.R.; Chatterjee, B.; Das, P.; Bagri, S.; Paul, D.; Bera, M.; Dutta, S. Unraveling the urban climate crisis: Exploring the nexus of urbanization, climate change, and their impacts on the environment and human well-being—A global perspective. AIMS Public Health 2024, 11, 963–1001. [Google Scholar] [CrossRef]
- Laurance, W.F.; Clements, G.R.; Sloan, S.; O’connell, C.S.; Mueller, N.D.; Goosem, M.; Venter, O.; Edwards, D.P.; Phalan, B.; Balmford, A.; et al. A global strategy for road building. Nature 2014, 513, 229–232. [Google Scholar] [CrossRef]
- Gazzola, P.; Onyango, V. The evolution of environmental assessment through storytelling—Stories from five decades of experience. Environ. Impact Assess. Rev. 2024, 108, 107591. [Google Scholar] [CrossRef]
- Struthers, C.L.; Murenbeeld, K.J.; Williamson, M.A. Environmental impact assessments not the main barrier to timely forest management in the United States. Nat. Sustain. 2023, 6, 1542–1546. [Google Scholar] [CrossRef]
- Bhatt, R.; Khanal, S. Environmental impact assessment system and process: A study on policy and legal instruments in Nepal. J. Environ. Sci. Technol. 2010, 4, 586–594. [Google Scholar]
- Caro-Gonzalez, A.L.; Nita, A.; Toro, J.; Zamorano, M. From procedural to transformative: A review of the evolution of effectiveness in EIA. Environ. Impact Assess. Rev. 2023, 103, 107256. [Google Scholar] [CrossRef]
- Bond, A.; Retief, F.P.; Alberts, R.C.; Roos, C.; Cilliers, D.; Moolman, J. What would environmental impact assessment look like if we started from scratch today? Designing better EIA for developed neoliberal nations. Impact Assess. Proj. Apprais. 2024, 42, 410–422. [Google Scholar] [CrossRef]
- Foley, M.M.; Mease, L.A.; Martone, R.G.; Prahler, E.E.; Morrison, T.H.; Murray, C.C.; Wojcik, D. The challenges and opportunities in cumulative effects assessment. Environ. Impact Assess. Rev. 2017, 62, 122–134. [Google Scholar] [CrossRef]
- Cilliers, D.; Retief, F.; Bond, A.; Roos, C.; Alberts, R. The validity of spatial data-based EIA screening decisions. Environ. Impact Assess. Rev. 2022, 93, 106729. [Google Scholar] [CrossRef]
- Xie, Y.; Xie, B.; Wang, Z.; Gupta, R.K.; Baz, M.; AlZain, M.A.; Masud, M. Geological Resource Planning and Environmental Impact Assessments Based on GIS. Sustainability 2022, 14, 906. [Google Scholar] [CrossRef]
- Campo, A.G.D. GIS in Environmental Assessment: A Review of Current Issues and Future Needs. J. Environ. Assess. Policy Manag. 2012, 14, 1250007. [Google Scholar] [CrossRef]
- Christiansen, S.; Bräger, S.; Jaeckel, A. Evaluating the quality of environmental baselines for deep seabed mining. Front. Mar. Sci. 2022, 9, 898711. [Google Scholar] [CrossRef]
- Kamara, S.M. Development of a geographic information systems baseline spatial geodatabase template for evaluating potential and predicted environmental impacts for sustainable environmental impact assessment of mining in Sierra Leone. J. Geosci. Environ. Prot. 2020, 8, 262–284. [Google Scholar] [CrossRef]
- Quamar, M.M.; Al-Ramadan, B.; Khan, K.; Shafiullah, M.; El Ferik, S. Advancements and Applications of Drone-Integrated Geographic Information System Technology—A Review. Remote Sens. 2023, 15, 5039. [Google Scholar] [CrossRef]
- Štular, B.; Lozić, E.; Eichert, S. Airborne LiDAR-Derived Digital Elevation Model for Archaeology. Remote Sens. 2021, 13, 1855. [Google Scholar] [CrossRef]
- Ali, A.; Hadeed, M.; Safavi, S.; Ahmad, M. Leveraging GIS for Environmental Planning and Management. In Global Challenges for the Environment and Climate Change; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 308–331. [Google Scholar]
- Choi, Y.; Baek, J.; Park, S. Review of GIS-Based Applications for Mining: Planning, Operation, and Environmental Management. Appl. Sci. 2020, 10, 2266. [Google Scholar] [CrossRef]
- Calka, B.; Szostak, M. GIS-Based Environmental Monitoring and Analysis. Appl. Sci. 2025, 15, 3155. [Google Scholar] [CrossRef]
- Zhao, K.; Jin, B.; Fan, H.; Song, W.; Zhou, S.; Jiang, Y. High-Performance Overlay Analysis of Massive Geographic Polygons That Considers Shape Complexity in a Cloud Environment. ISPRS Int. J. Geo-Inf. 2019, 8, 290. [Google Scholar] [CrossRef]
- Mohammadi, A.; Fatemizadeh, F. Quantifying Landscape Degradation Following Construction of a Highway Using Landscape Metrics in Southern Iran. Front. Ecol. Evol. 2021, 9, 721313. [Google Scholar] [CrossRef]
- Krstić, M.; Tadić, S.; Miglietta, P.P.; Porrini, D. Enhancing Biodiversity and Environmental Sustainability in Intermodal Transport: A GIS-Based Multi-Criteria Evaluation Framework. Sustainability 2025, 17, 1391. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Yossif, T.M.H.; Metwaly, M.M. Enhancing land suitability assessment through integration of AHP and GIS-based for efficient agricultural planning in arid regions. Sci. Rep. 2025, 15, 31370. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, X.; Nan, Y.; Zhang, D.; Sun, Y. Ecological Sensitivity Assessment and Spatial Pattern Analysis of Land Resources in Tumen River Basin, China. Appl. Sci. 2023, 13, 4197. [Google Scholar] [CrossRef]
- Yaman, A. A GIS-based multi-criteria decision-making approach (GIS-MCDM) for determination of the most appropriate site selection of onshore wind farm in Adana, Turkey. Clean Technol. Environ. Policy 2024, 26, 4231–4254. [Google Scholar] [CrossRef]
- Liu, T.; Peng, X.; Li, J. Evaluation of Ecological Sensitivity and Spatial Correlation Analysis of Landscape Patterns in Sanjiangyuan National Park. Sustainability 2024, 16, 5294. [Google Scholar] [CrossRef]
- Yang, X.; Shen, J. Landscape Sensitivity Assessment of Historic Districts Using a GIS-Based Method: A Case Study of Beishan Street in Hangzhou, China. ISPRS Int. J. Geo-Inf. 2023, 12, 462. [Google Scholar] [CrossRef]
- Dahal, A.; Tanyas, H.; van Westen, C.; van der Meijde, M.; Mai, P.M.; Huser, R.; Lombardo, L. Space–time landslide hazard modeling via Ensemble Neural Networks. Nat. Hazards Earth Syst. Sci. 2024, 24, 823–845. [Google Scholar] [CrossRef]
- Che, L.; Yin, S.; Jin, J.; Wu, W. Assessment and Simulation of Urban Ecological Environment Quality Based on Geographic Information System Ecological Index. Land 2024, 13, 687. [Google Scholar] [CrossRef]
- Wang, X. Integrating GIS, simulation models, and visualization in traffic impact analysis. Comput. Environ. Urban Syst. 2005, 29, 471–496. [Google Scholar] [CrossRef]
- Neposhyvailenko, N.; Omelych, I.; Dziuba, N. Assessment of environmental impact of road construction based on results of remote sensing monitoring. Agrology 2024, 7, 54–60. [Google Scholar] [CrossRef]
- Luan, C.; Liu, R.; Sun, J.; Su, S.; Shen, Z. An Improved Future Land-Use Simulation Model with Dynamically Nested Ecological Spatial Constraints. Remote Sens. 2023, 15, 2921. [Google Scholar] [CrossRef]
- Li, W.; Arundel, S.; Gao, S.; Goodchild, M.; Hu, Y.; Wang, S.; Zipf, A. GeoAI for Science and the Science of GeoAI. J. Spat. Inf. Sci. 2024, 1–17. [Google Scholar] [CrossRef]
- Song, Y.; Kalacska, M.; Gašparović, M.; Yao, J.; Najibi, N. Advances in geocomputation and geospatial artificial intelligence (GeoAI) for mapping. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103300. [Google Scholar]
- Singh, A. Integration-of-Remote-Sensing-and-GIS-for-Environmental-Assessment. Environ. Rep. 2025, 6, 35–40. [Google Scholar]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Bourbonnais, M. Applications of geographic information systems, spatial analysis, and remote sensing in environmental impact assessment. In Routledge Handbook of Environmental Impact Assessment; Routledge: London, UK, 2022; pp. 201–220. [Google Scholar]
- Dahy, B.; Al-Memari, M.; Al-Gergawi, A.; Burt, J.A. Remote sensing of 50 years of coastal urbanization and environmental change in the Arabian Gulf: A systematic review. Front. Remote Sens. 2024, 5, 1422910. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, T.; Xu, H.; Liu, W.; Wang, J.; Chen, X.; Liu, L. GLC_FCS30D: The first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method. Earth Syst. Sci. Data 2024, 16, 1353–1381. [Google Scholar] [CrossRef]
- Kolios, S.; Vorobev, A.V.; Vorobeva, G.R.; Stylios, C. GIS and Environmental Monitoring; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Choi, Y. GeoAI: Integration of artificial intelligence, machine learning, and deep learning with GIS. Appl. Sci. 2023, 13, 3895. [Google Scholar] [CrossRef]
- Şanlı, C. Artificial intelligence in geography teaching: Potentialities, applications, and challenges. Int. J. Curr. Educ. Stud. 2025, 4, 47–76. [Google Scholar] [CrossRef]
- Zhao, S.; Tu, K.; Ye, S.; Tang, H.; Hu, Y.; Xie, C. Land Use and Land Cover Classification Meets Deep Learning: A Review. Sensors 2023, 23, 8966. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, Z.; Zhang, Y.; Wu, Y.; Luo, H.; Zhang, P.; Wang, B. A high-resolution remote sensing land use/land cover classification method based on multi-level features adaptation of segment anything model. Int. J. Appl. Earth Obs. Geoinf. 2025, 141, 104659. [Google Scholar] [CrossRef]
- Yuh, Y.G.; Tracz, W.; Matthews, H.D.; Turner, S.E. Application of machine learning approaches for land cover monitoring in northern Cameroon. Ecol. Inform. 2023, 74, 101955. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Abdelkader, M.M.; Csámer, Á. Comparative assessment of machine learning models for landslide susceptibility mapping: A focus on validation and accuracy. Nat. Hazards 2025, 121, 10299–10321. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, D.; Tsangaratos, P.; Ilia, I.; Ma, S.; Chen, W. Enhancing Predictive Accuracy of Landslide Susceptibility via Machine Learning Optimization. Appl. Sci. 2025, 15, 6325. [Google Scholar] [CrossRef]
- Immadisetty, A.; Olusegun, J. Machine Learning for Real-Time Anomaly Detection. 2025. Available online: https://www.researchgate.net/publication/387754595_Machine_Learning_for_Real-Time_Anomaly_Detection (accessed on 3 October 2025).
- Anifowose, B.; Anifowose, F. Artificial intelligence and machine learning in environmental impact prediction for soil pollution management—Case for EIA process. Environ. Adv. 2024, 17, 100554. [Google Scholar] [CrossRef]
- Gerassis, S.; Giráldez, E.; Pazo-Rodríguez, M.; Saavedra, Á.; Taboada, J. AI Approaches to Environmental Impact Assessments (EIAs) in the Mining and Metals Sector Using AutoML and Bayesian Modeling. Appl. Sci. 2021, 11, 7914. [Google Scholar] [CrossRef]
- Olawade, D.B.; Wada, O.Z.; Ige, A.O.; Egbewole, B.I.; Olojo, A.; Oladapo, B.I. Artificial intelligence in environmental monitoring: Advancements, challenges, and future directions. Hyg. Environ. Health Adv. 2024, 12, 100114. [Google Scholar] [CrossRef]
- Jiang, F.; Li, J.; Ma, L.; Dong, Z.; Chen, W.; Broyd, T.; Wang, G. Sustainable urban road planning under the digital twin-MCDM-GIS framework considering multidisciplinary factors. J. Clean. Prod. 2024, 469, 143097. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabó, G. Sustainable Urban Land-Use Optimization Using GIS-Based Multicriteria Decision-Making (GIS-MCDM) Approach. ISPRS Int. J. Geo-Inf. 2022, 11, 313. [Google Scholar] [CrossRef]
- Chen, J.; Xie, C.; Zhang, W.; Fu, C.; Shen, J.; Yang, B.; Li, H.; Shi, D. Current Status and Outlook of Roadbed Slope Stability Research: Study Based on Knowledge Mapping Bibliometric Network Analysis. Sustainability 2025, 17, 4176. [Google Scholar] [CrossRef]
- Castanedo, F. A review of data fusion techniques. Sci. World J. 2013, 2013, 704504. [Google Scholar] [CrossRef]
- Azari, P.; Li, S.; Shaker, A.; Sattar, S. Georeferencing Building Information Models for BIM/GIS Integration: A Review of Methods and Tools. ISPRS Int. J. Geo-Inf. 2025, 14, 180. [Google Scholar] [CrossRef]
- Priyashani, N.; Kankanamge, N.; Yigitcanlar, T. Multisource Open Geospatial Big Data Fusion: Application of the Method to Demarcate Urban Agglomeration Footprints. Land 2023, 12, 407. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Amin, M.; Sastry, K.L.N.; Parmar, M. Integration of social, economic and environmental factors in GIS for land degradation vulnerability assessment in the Pir Panjal Himalaya, Kashmir, India. Appl. Geogr. 2020, 125, 102307. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, L.; Yang, X.; Fan, Y.; Hiroatsu, F.; Zhang, J.; Li, L. Developing an environmental equity index for urban heat wave event. Environ. Sustain. Indic. 2025, 25, 100565. [Google Scholar] [CrossRef]
- Kross, A.; Kaur, G.; Jaeger, J.A.G. A geospatial framework for the assessment and monitoring of environmental impacts of agriculture. Environ. Impact Assess. Rev. 2022, 97, 106851. [Google Scholar] [CrossRef]
- Mahmoudi, H.; Sayahnia, R.; Esmaeilzadeh, H.; Azadi, H. Integrating resilience assessment in environmental impact assessment. Integr. Environ. Assess. Manag. 2018, 14, 567–570. [Google Scholar] [CrossRef]
- Bagheri, A.; Liu, G.-J. Climate change and urban flooding: Assessing remote sensing data and flood modeling techniques: A comprehensive review. Environ. Rev. 2024, 33, 1–14. [Google Scholar] [CrossRef]
- Chen, T.-L.; Pei, S.-L.; Pan, S.-Y.; Yu, C.-Y.; Chang, C.-L.; Chiang, P.-C. An engineering-environmental-economic-energy assessment for integrated air pollutants reduction, CO2 capture and utilization exemplified by the high-gravity process. J. Environ. Manag. 2020, 255, 109870. [Google Scholar] [CrossRef]
- Gain, A.K.; Giupponi, C.; Renaud, F.G.; Vafeidis, A.T. Sustainability of complex social-ecological systems: Methods, tools, and approaches. Reg. Environ. Change 2020, 20, 102. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, J.; Zhu, Y. Integrating social-ecological system into watershed ecosystem services management: A case study of the Jialing River Basin, China. Ecol. Indic. 2024, 160, 111781. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, J.; Jiang, H.; Chen, S.; Ding, Y.; Xia, R.; Wei, D.; Luo, X. Multi-source data assessment and multi-factor analysis of urban carbon emissions: A case study of the Pearl River Basin, China. Urban Clim. 2023, 51, 101653. [Google Scholar] [CrossRef]
- Ali, M.E.; Cheema, M.A.; Hashem, T.; Ulhaq, A.; Babar, M.A. Enabling Spatial Digital Twins: Technologies, Challenges, and Future Research Directions. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2024, 92, 761–778. [Google Scholar] [CrossRef]
- Attaran, M.; Celik, B.G. Digital Twin: Benefits, use cases, challenges, and opportunities. Decis. Anal. J. 2023, 6, 100165. [Google Scholar] [CrossRef]
- Chaminé, H.I.; Pereira, A.J.S.C.; Teodoro, A.C.; Teixeira, J. Remote sensing and GIS applications in earth and environmental systems sciences. SN Appl. Sci. 2021, 3, 870. [Google Scholar] [CrossRef]
- Pu, W.; Wang, Z.; Liu, D.; Zhang, Q. Optical Remote Sensing Image Cloud Detection with Self-Attention and Spatial Pyramid Pooling Fusion. Remote Sens. 2022, 14, 4312. [Google Scholar] [CrossRef]
- Binetti, M.S.; Massarelli, C.; Uricchio, V.F. Machine Learning in Geosciences: A Review of Complex Environmental Monitoring Applications. Mach. Learn. Knowl. Extr. 2024, 6, 1263–1280. [Google Scholar] [CrossRef]
- Liu, P.; Wang, L.; Li, J. Unlocking the Potential of Explainable Artificial Intelligence in Remote Sensing Big Data. Remote Sens. 2023, 15, 5448. [Google Scholar] [CrossRef]
- Abdulhafiz, W.; Khamis, A. Handling Data Uncertainty and Inconsistency Using Multisensor Data Fusion. Adv. Artif. Intell. 2013, 2013, 241260. [Google Scholar] [CrossRef]
- Ranatunga, S.; Ødegård, R.S.; Jetlund, K.; Onstein, E. Use of Semantic Web Technologies to Enhance the Integration and Interoperability of Environmental Geospatial Data: A Framework Based on Ontology-Based Data Access. ISPRS Int. J. Geo-Inf. 2025, 14, 52. [Google Scholar] [CrossRef]
- Furberg, D. Satellie Monitoring of Urban Growth and Indicator-Based Assessment of Environmental Impact; KTH Royal Institute of Technology: Stockholm, Sweden, 2014. [Google Scholar]
- Simkin, R.D.; Seto, K.C.; McDonald, R.I.; Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2117297119. [Google Scholar] [CrossRef]
- Tsou, J.; Gao, Y.; Zhang, Y.; Genyun, S.; Ren, J.; Li, Y. Evaluating Urban Land Carrying Capacity Based on the Ecological Sensitivity Analysis: A Case Study in Hangzhou, China. Remote Sens. 2017, 9, 529. [Google Scholar] [CrossRef]
- Alshuwaikhat, H.; Aina, Y. GIS-based urban sustainability assessment: The case of Dammam City, Saudi Arabia. Local Environ. 2006, 11, 141–162. [Google Scholar] [CrossRef]
- Mell, H.; Fack, V.; Percevault, L.; Vanpeene, S.; Bertheau, Y.; Coulon, A.; de Lachapelle, F.F.; Guinard, E.; Jeusset, A.; Le Mitouard, E.; et al. Can linear transportation infrastructure verges constitute a habitat and/or a corridor for vascular plants in temperate ecosystems? A systematic review. Environ. Evid. 2024, 13, 4. [Google Scholar] [CrossRef]
- Yang, F.; Tang, Y.; Xiong, S.; Gu, C.; Xiao, Y. Development of Highway Construction Route Selection Based on Ecological Sensitivity Evaluation and Intervention Optimization Strategy Research. Land 2024, 13, 1850. [Google Scholar] [CrossRef]
- Keshkamat, S.S.; Looijen, J.M.; Zuidgeest, M.H.P. The formulation and evaluation of transport route planning alternatives: A spatial decision support system for the Via Baltica project, Poland. J. Transp. Geogr. 2009, 17, 54–64. [Google Scholar] [CrossRef]
- Rajvanshi, A.; Mathur, V.B.; Iftikhar, U.A. Best Practice Guidance for Biodiversity-Inclusive Impact Assessment. A Manual for Practitioners and Reviewers in South Asia; International Association for Impact Assessment (IAIA): Fargo, ND, USA, 2008. [Google Scholar]
- Pegler, G.; Lemos, C.; Ranieri, V. Exploring the application of environmental impact assessment to tourism and recreation in protected areas: A systematic literature review. Environ. Dev. Sustain. 2024, 27, 15053–15075. [Google Scholar] [CrossRef]
- Tezel, D.; Inam, S.; Kocaman, S. GIS-Based Assessment of Habitat Networks for Conservation Planning in Kas-Kekova Protected Area (Turkey). ISPRS Int. J. Geo-Inf. 2020, 9, 91. [Google Scholar] [CrossRef]
- Zhu, Z.-X.; Zhao, K.-K.; Lin, Q.-W.; Qureshi, S.; Ross Friedman, C.; Cai, G.-Y.; Wang, H.-F. Systematic Environmental Impact Assessment for Non-natural Reserve Areas: A Case Study of the Chaishitan Water Conservancy Project on Land Use and Plant Diversity in Yunnan, China. Front. Ecol. Evol. 2017, 5, 60. [Google Scholar] [CrossRef]
- Mohammed, M. GIS Based Ecotourism Potentially Assessment in Kurdistan Region—Iraq. Doctoral Dissertation, University of Tabriz, Tabriz, Iran, 2024. [Google Scholar]
- Porter, D.E.; Kirtland, K.A.; Neet, M.J.; Williams, J.E.; Ainsworth, B.E. Considerations for using a geographic information system to assess environmental supports for physical activity. Prev. Chronic. Dis. 2004, 1, A20. [Google Scholar]
- Wei, Y.; Wang, H.; Xue, M.; Yin, Y.; Qian, T.; Yu, F. Spatial and Temporal Evolution of Land Use and the Response of Habitat Quality in Wusu, China. Int. J. Environ. Res. Public Health 2023, 20, 361. [Google Scholar] [CrossRef]
- Scherer, L.; Rosa, F.; Sun, Z.; Michelsen, O.; De Laurentiis, V.; Marques, A.; Pfister, S.; Verones, F.; Kuipers, K.J.J. Biodiversity Impact Assessment Considering Land Use Intensities and Fragmentation. Environ. Sci. Technol. 2023, 57, 19612–19623. [Google Scholar] [CrossRef]
- Pereira Mendes, C.; Lim, N.T.L. EcoLiDAR: An economical LiDAR scanner for ecological research. PLoS ONE 2024, 19, e0298712. [Google Scholar] [CrossRef]
- Jahan, F.; Haque, S.; Hogg, J.; Price, A.; Hassan, C.; Areed, W.; Thompson, H.; Cameron, J.; Cramb, S.M. Assessing the influence of the modifiable areal unit problem on Bayesian disease mapping in Queensland, Australia. PLoS ONE 2025, 20, e0313079. [Google Scholar] [CrossRef]
- Mushtaq, F.; O’Brien, C.D.; Parslow, P.; Åhlin, M.; Di Gregorio, A.; Latham, J.S.; Henry, M. Land Cover and Land Use Ontology—Evolution of International Standards, Challenges, and Opportunities. Land 2024, 13, 1202. [Google Scholar] [CrossRef]
- Lei, T.L.; Lei, Z. Harmonizing Full and Partial Matching in Geospatial Conflation: A Unified Optimization Model. ISPRS Int. J. Geo-Inf. 2022, 11, 375. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Xu, M.; Xing, W. Navigating urban complexity: The role of GIS in spatial planning and urban development. Appl. Comput. Eng. 2024, 65, 282–287. [Google Scholar] [CrossRef]
- Tan, Y.; Liang, Y.; Zhu, J. CityGML in the Integration of BIM and the GIS: Challenges and Opportunities. Buildings 2023, 13, 1758. [Google Scholar] [CrossRef]
- Şenol, H.İ.; Gökgöz, T. Integration of Building Information Modeling (BIM) and Geographic Information System (GIS): A new approach for IFC to CityJSON conversion. Earth Sci. Inform. 2024, 17, 3437–3454. [Google Scholar] [CrossRef]
- Bond, A.; Cilliers, D.; Retief, F.; Alberts, R.; Roos, C.; Moolman, J. Using an Artificial intelligence chatbot to critically review the scientific literature on the use of Artificial intelligence in Environmental Impact Assessment. Impact Assess. Proj. Apprais. 2024, 42, 189–199. [Google Scholar] [CrossRef]
- Giménez, J.; Merino-Benítez, T.; Bojórquez-Tapia, L.A.; Esponda-Darlington, F.; Pérez, T.M. Facilitating public scrutiny of EIA reports with open data and artificial intelligence: Insights from a Mexican case study. Impact Assess. Proj. Apprais. 2025, 43, 354–365. [Google Scholar] [CrossRef]
- Han, H.; Liu, Z.; Li, J.; Zeng, Z. Challenges in remote sensing based climate and crop monitoring: Navigating the complexities using AI. J. Cloud Comput. 2024, 13, 34. [Google Scholar] [CrossRef]
- Milenov, P.; Sima, A.; Lugato, E.; Devos, W.; Loudjani, P. Enabling Spatial Data Interoperability through the Use of a Semantic Meta-Model—The Peatland Example from the JRC SEPLA Project. Land 2024, 13, 473. [Google Scholar] [CrossRef]
- Leeonis, A.N.; Ahmed, M.F.; Mokhtar, M.B.; Lim, C.K.; Halder, B. Challenges of Using a Geographic Information System (GIS) in Managing Flash Floods in Shah Alam, Malaysia. Sustainability 2024, 16, 7528. [Google Scholar] [CrossRef]
- Mabey, P.T.; Li, W.; Sundufu, A.J.; Lashari, A.H. The Potential of Strategic Environmental Assessment to Improve Urban Planning in Sierra Leone. Int. J. Environ. Res. Public Health 2021, 18, 9454. [Google Scholar] [CrossRef]
- Lei, L.; Hilton, B. A Spatially Intelligent Public Participation System for the Environmental Impact Assessment Process. ISPRS Int. J. Geo-Inf. 2013, 2, 480–506. [Google Scholar] [CrossRef]
- Brown, G. Public participation GIS (PPGIS) for regional and environmental planning: Reflections on a decade of empirical research. J. Urban Reg. Inf. Syst. Assoc. 2012, 25, 5–16. [Google Scholar]
- Kochanek, A.; Generowicz, A.; Zacłona, T. The Role of Geographic Information Systems in Environmental Management and the Development of Renewable Energy Sources—A Review Approach. Energies 2025, 18, 4740. [Google Scholar] [CrossRef]
- Li, Z.; Chen, B.; Wu, S.; Su, M.; Chen, J.M.; Xu, B. Deep learning for urban land use category classification: A review and experimental assessment. Remote Sens. Environ. 2024, 311, 114290. [Google Scholar] [CrossRef]
- Fullman, T.J.; Sullender, B.K.; Cameron, M.D.; Joly, K. Simulation modeling accounts for uncertainty while quantifying ecological effects of development alternatives. Ecosphere 2021, 12, e03530. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Fernández-Torres, M.-Á.; Cohrs, K.-H.; Höhl, A.; Castelletti, A.; Pacal, A.; Robin, C.; Martinuzzi, F.; Papoutsis, I.; Prapas, I.; et al. Artificial intelligence for modeling and understanding extreme weather and climate events. Nat. Commun. 2025, 16, 1919. [Google Scholar] [CrossRef]
- Yin, J.; Dong, J.; Hamm, N.A.S.; Li, Z.; Wang, J.; Xing, H.; Fu, P. Integrating remote sensing and geospatial big data for urban land use mapping: A review. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102514. [Google Scholar] [CrossRef]
- Morrison-Saunders, A.; Arts, J.; Bond, A.; Pope, J.; Retief, F. Reflecting on, and revising, international best practice principles for EIA follow-up. Environ. Impact Assess. Rev. 2021, 89, 106596. [Google Scholar] [CrossRef]
- Williams, B.K.; Brown, E.D. Adaptive management: From more talk to real action. Environ. Manag. 2014, 53, 465–479. [Google Scholar] [CrossRef] [PubMed]
- García, G.A.; Atkinson, B.; Donfack, O.T.; Hilton, E.R.; Smith, J.M.; Eyono, J.N.M.; Iyanga, M.M.; Vaz, L.M.; Avue, R.M.N.; Pollock, J.; et al. Real-time, spatial decision support to optimize malaria vector control: The case of indoor residual spraying on Bioko Island, Equatorial Guinea. PLoS Digit. Health 2022, 1, e0000025. [Google Scholar] [CrossRef]
- Wild, T.A.; van Schalkwyk, L.; Viljoen, P.; Heine, G.; Richter, N.; Vorneweg, B.; Koblitz, J.C.; Dechmann, D.K.N.; Rogers, W.; Partecke, J.; et al. A multi-species evaluation of digital wildlife monitoring using the Sigfox IoT network. Anim. Biotelem. 2023, 11, 13. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Han, W.; Yan, J. Digital twin of earth: A novel information framework for managing a sustainable earth. Innov. Geosci. 2024, 2, 100092. [Google Scholar] [CrossRef]
- Zhao, T.; Song, C.; Yu, J.; Xing, L.; Xu, F.; Li, W.; Wang, Z. Leveraging Immersive Digital Twins and AI-Driven Decision Support Systems for Sustainable Water Reserves Management: A Conceptual Framework. Sustainability 2025, 17, 3754. [Google Scholar] [CrossRef]
- Ogryzek, M.; Tarantino, E.; Rząsa, K. Infrastructure of the Spatial Information in the European Community (INSPIRE) Based on Examples of Italy and Poland. ISPRS Int. J. Geo-Inf. 2020, 9, 755. [Google Scholar] [CrossRef]
- Hoalst-Pullen, N.; Patterson, M.W. Geospatial Technologies in Environmental Management; Springer Science & Business Media: New York, NY, USA, 2010; Volume 3. [Google Scholar]
- Ruiz-Gutierrez, V.; Bjerre, E.R.; Otto, M.C.; Zimmerman, G.S.; Millsap, B.A.; Fink, D.; Stuber, E.F.; Strimas-Mackey, M.; Robinson, O.J. A pathway for citizen science data to inform policy: A case study using eBird data for defining low-risk collision areas for wind energy development. J. Appl. Ecol. 2021, 58, 1104–1111. [Google Scholar] [CrossRef]
- Kotsev, A.; Minghini, M.; Tomas, R.; Cetl, V.; Lutz, M. From Spatial Data Infrastructures to Data Spaces—A Technological Perspective on the Evolution of European SDIs. ISPRS Int. J. Geo-Inf. 2020, 9, 176. [Google Scholar] [CrossRef]
- Sjoukema, J.-W.; Samia, J.; Bregt, A.K.; Crompvoets, J. The Governance of INSPIRE: Evaluating and Exploring Governance Scenarios for the European Spatial Data Infrastructure. ISPRS Int. J. Geo-Inf. 2022, 11, 141. [Google Scholar] [CrossRef]
- Rösch, C.; Fakharizadehshirazi, E. Public participation GIS scenarios for decision-making on land-use requirements for renewable energy systems. Energy Sustain. Soc. 2025, 15, 18. [Google Scholar] [CrossRef]
- Koldasbayeva, D.; Tregubova, P.; Gasanov, M.; Zaytsev, A.; Petrovskaia, A.; Burnaev, E. Challenges in data-driven geospatial modeling for environmental research and practice. Nat. Commun. 2024, 15, 10700. [Google Scholar] [CrossRef] [PubMed]
- Briggs, C.; Burfurd, I.; Duckham, M.; Guntarik, O.; Kerr, D.; McMillan, M.; Saldias, D.S.M. Bridging the geospatial gap: Data about space and indigenous knowledge of place. Geogr. Compass 2020, 14, e12542. [Google Scholar] [CrossRef]
- Yu, D.; Fang, C. Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sens. 2023, 15, 1307. [Google Scholar] [CrossRef]
- Weng, Q.; Li, Z.; Cao, Y.; Lu, X.; Gamba, P.; Zhu, X.; Xu, Y.; Zhang, F.; Qin, R.; Yang, M.Y.; et al. How will ai transform urban observing, sensing, imaging, and mapping? NPJ Urban Sustain. 2024, 4, 50. [Google Scholar] [CrossRef]
- Ncube, M.M.; Ngulube, P. Enhancing environmental decision-making: A systematic review of data analytics applications in monitoring and management. Discov. Sustain. 2024, 5, 290. [Google Scholar] [CrossRef]
- Popescu, S.M.; Mansoor, S.; Wani, O.A.; Kumar, S.S.; Sharma, V.; Sharma, A.; Arya, V.M.; Kirkham, M.B.; Hou, D.; Bolan, N.; et al. Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management. Front. Environ. Sci. 2024, 12, 1336088. [Google Scholar] [CrossRef]
- Gonzalez, A.; Enríquez-de-Salamanca, Á. Spatial multi-criteria analysis in environmental assessment: A review and reflection on benefits and limitations. J. Environ. Assess. Policy Manag. 2018, 20, 1840001. [Google Scholar] [CrossRef]





| Technique | Typical Inputs | Pros | Cons | Typical EIA Use |
|---|---|---|---|---|
| Overlay analysis | LULC, constraints, protected areas | Transparent, easy to audit | Static, weighting implicit | Constraint mapping, conflict screening |
| MCDM (e.g., AHP) | Multi-layer criteria + weights | Explicit trade-offs, reproducible | Weight subjectivity, requires sensitivity tests | Suitability, sensitivity zoning |
| Cellular Automata (CA) | Historical LULC + drivers | Dynamic, scenario-ready | Calibration-heavy, scale effects | Land use change simulation |
| Network analysis | Roads/rivers/graphs | Connectivity-aware | Data model demands | Corridor, access, fragmentation |
| SDMs/ML | Occurrence + predictors | Nonlinear patterns, predictive | Explainability, data-hungry | Species/habitat susceptibility |
| Technique | Description | Typical EIA Application |
|---|---|---|
| Buffer Analysis | Creates polygons at a specified distance around input features (points, lines, or polygons). | Defining zones of influence for noise, pollution, or habitat disturbance around roads, industrial sites, or protected area boundaries [9]. |
| Overlay Analysis | Combines multiple input data layers to create a single, integrated output layer. | Identifying land use conflicts (e.g., development footprint on sensitive habitats), calculating direct impact areas, and site suitability analysis [1]. |
| Network Analysis | Models the flow of resources or movement through a set of interconnected lines (a network). | Optimizing transportation routes to minimize ecological impact, modeling wildlife corridor connectivity, and analyzing hydrological networks [30]. |
| MCDM with AHP | Integrates multiple spatial criteria using weights derived from expert judgment or stakeholder input via the Analytic Hierarchy Process. | Comprehensive site selection, route planning, and ecological sensitivity mapping by balancing competing economic and environmental factors [32]. |
| Land Use Simulation | Uses rule-based models (e.g., Cellular Automata) to predict future land use patterns based on historical trends and driving factors. | Forecasting long-term and cumulative impacts of a project, such as induced urban sprawl or deforestation, under different scenarios [40]. |
| Technology | Primary Contribution to EIA | Typical Data Inputs | Key Benefits | Integration Challenges |
|---|---|---|---|---|
| Remote Sensing (RS) | Enhanced Data Acquisition & Monitoring | Satellite Imagery (e.g., Landsat, Sentinel), Aerial Photography, LiDAR. | Comprehensive spatiotemporal coverage, high accuracy, cost-effective for large areas, objective data source. | Atmospheric interference, cloud cover, complex image processing, spectral limitations [79,80]. |
| AI/Machine Learning (ML) | Predictive Analytics & Automation | Large geospatial datasets, time-series data, remote sensing imagery, model outputs. | Increased predictive power, high efficiency, discovery of nonlinear patterns, automation of repetitive tasks. | “Black box” problem (model opacity), large data requirements for training, risk of model bias, need for specialized expertise [81,82]. |
| Multi-Source Data Fusion | Holistic & Comprehensive Assessment | Climate models, socio-economic statistics, in situ sensor data, geological maps. | Reduced uncertainty, comprehensive socio-ecological view, improved reliability through cross-verification. | Data heterogeneity (different formats, scales, and semantics), interoperability issues, computational complexity [83,84]. |
| Challenge Category | Specific Challenge | Corresponding Future Direction | Key Technologies Involved |
|---|---|---|---|
| Data Integrity | Lack of standardization in public participation data; inconsistency in volunteered geographic information (VGI). | Policy-driven development of national and international standards for VGI and PPGIS data. | PPGIS, Open Data Platforms, SDI [84,129] |
| Technical Complexity | Lack of interoperability between GIS and citizen science platforms; data integration challenges. | Development of more user-friendly, integrated PPGIS tools for citizen participation in EIA. | AI/ML, Web-GIS, Open-Source Software [82] |
| Policy & Institutional Gaps | Disconnect between policy frameworks and public participation tools; insufficient legal mandates for GIS integration. | Integration of GIS-based decision support systems and standardized policies for public engagement through PPGIS. | PPGIS, Decision Support Systems (DSS) [130,131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Liang, X.; Du, B.; Ju, Y.; Wang, Y.; Guo, H. Applications of Geographic Information Systems in Ecological Impact Assessment: A Methods Landscape, Practical Bottlenecks, and Future Pathways. Sustainability 2025, 17, 10358. https://doi.org/10.3390/su172210358
Dong J, Liang X, Du B, Ju Y, Wang Y, Guo H. Applications of Geographic Information Systems in Ecological Impact Assessment: A Methods Landscape, Practical Bottlenecks, and Future Pathways. Sustainability. 2025; 17(22):10358. https://doi.org/10.3390/su172210358
Chicago/Turabian StyleDong, Jun, Xiongwei Liang, Baolong Du, Yongfu Ju, Yingning Wang, and Huabing Guo. 2025. "Applications of Geographic Information Systems in Ecological Impact Assessment: A Methods Landscape, Practical Bottlenecks, and Future Pathways" Sustainability 17, no. 22: 10358. https://doi.org/10.3390/su172210358
APA StyleDong, J., Liang, X., Du, B., Ju, Y., Wang, Y., & Guo, H. (2025). Applications of Geographic Information Systems in Ecological Impact Assessment: A Methods Landscape, Practical Bottlenecks, and Future Pathways. Sustainability, 17(22), 10358. https://doi.org/10.3390/su172210358

