Bayesian Projections of Shoreline Retreat Under Climate Change Along the Arid Coast of Duba, Saudi Arabia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Approach
Bayesian Integration Framework
2.3. Data Sources
2.4. Satellite Data
2.5. Preprocessing and Shoreline Extraction
2.6. Coastal Change Analysis with DSAS
2.7. Climate Projections and Socioeconomic Scenarios
2.8. Uncertainty Management Using a Bayesian Approach
3. Results
3.1. Shoreline Change Assessment
3.2. Assessment of Shoreline Change Rates
3.3. Assessment of Significant Wave Height Changes
3.4. Assessment of Relative Sea Level Changes
3.5. Bayesian Analysis
3.5.1. Relative Sea Level (RSL) Projections
3.5.2. Significant Wave Height (SWH)
3.5.3. Relative Sea Level Rise (RSL)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva, Switzerland, 2019; pp. 321–445. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Voukouvalas, E.; Dosio, A.; Feyen, L. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 2018, 45, 2416–2426. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Change 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Ramieri, E.; Hartley, A.; Barbanti, A.; Duarte Santos, F.; Gomes, A.; Hilden, M.; Laihonen, P.; Marinova, N.; Santini, M. Methods for assessing coastal vulnerability to climate change. ETC CCA Tech. Pap. 2011, 1, 1–93. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Lincke, D.; Hinkel, J.; Brown, S.; Vafeidis, A.T.; Meyssignac, B.; Hanson, S.E.; Merkens, J.L.; Fang, J. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Change 2021, 11, 338–342. [Google Scholar] [CrossRef]
- Rasul, N.M.A.; Stewart, I.C.F. The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin. Springer Earth System Sciences; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- NEOM. NEOM Master Plan: A New Future on Earth; NEOM Company: Tabuk, Saudi Arabia, 2021; Available online: https://www.neom.com/en-us (accessed on 2 October 2025).
- Nanson, G.C.; Callen, R.A.; Price, D.M. Hydrology and hydrogeology of the Riverine Plain. AGSO J. Aust. Geol. Geophys. 2009, 17, 127–133. [Google Scholar]
- Syvitski, J.P.M.; Saito, Y. Morphodynamics of deltas under the influence of humans. Global Planet. Change 2007, 57, 261–282. [Google Scholar] [CrossRef]
- Del Río, L.; Gracia, F.J.; Benavente, J. Shoreline change patterns in sandy coasts. A case study in SW Spain. Geomorphology 2013, 196, 252–266. [Google Scholar] [CrossRef]
- Brooks, S.M.; Spencer, T. Temporal and spatial variations in recession rates and sediment release from soft rock cliffs, Suffolk coast, UK. Geomorphology 2010, 124, 26–41. [Google Scholar] [CrossRef]
- Ranasinghe, R. On the need for a new generation of coastal change models for the 21st century. Sci. Rep. 2020, 10, 2010. [Google Scholar] [CrossRef]
- Fenster, M.S.; Dolan, R.; Elder, J.F. A new method for predicting shoreline positions from historical data. J. Coast. Res. 1993, 9, 147–171. [Google Scholar]
- Dwarakish, G.S.; Vinay, S.A.; Natesan, U.; Asano, T.; Kakinuma, T.; Venkataramana, K.; Pai, B.J.; Babita, M.K. Coastal vulnerability assessment of the future sea level rise in Udupi coastal zone of Karnataka state, west coast of India. Ocean Coast. Manag. 2009, 52, 467–478. [Google Scholar] [CrossRef]
- Sugiura, N.; Kato, S.; Sato, S. Multiple regression analysis of effects of bar and tide on shoreline change. J. Coast. Res. 2012, 28, 1821–1827. [Google Scholar] [CrossRef]
- Crowell, M.; Leatherman, S.P.; Buckley, M.K. Historical shoreline change: Error analysis and mapping accuracy. J. Coast. Res. 1991, 7, 839–852. [Google Scholar]
- Genz, A.S.; Fletcher, C.H.; Dunn, R.A.; Frazer, L.N.; Rooney, J.J. The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii. J. Coast. Res. 2007, 23, 87–105. [Google Scholar] [CrossRef]
- Li, R.; Liu, J.K.; Felus, Y. Spatial modeling and analysis for shoreline change detection and coastal erosion monitoring. Mar. Geod. 2001, 24, 1–12. [Google Scholar] [CrossRef]
- Toimil, A.; Losada, I.J.; Nicholls, R.J.; Dalrymple, R.A.; Stive, M.J. Addressing the challenges of climate change risks and adaptation in coastal areas: A review. Coast. Eng. 2020, 156, 103611. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Change 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Plant, N.G.; Thieler, E.R.; Passeri, D.L. Coupling centennial-scale shoreline change to sea-level rise and coastal morphology in the Gulf of Mexico using a Bayesian network. Earth’s Future 2016, 4, 143–158. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef]
- Bayoumy, M.; Skliris, N. Recent sea level changes in the Red Sea: Thermosteric and halosteric contributions, and impacts of natural climate variability. Prog. Oceanogr. 2025, 231, 103416. [Google Scholar] [CrossRef]
- Rasul, N.; Stewart, I.C.F. Oceanographic and Biological Aspects of the Red Sea; Springer Oceanography Series; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Castelle, B.; Ritz, A.; Marieu, V.; Nicolae Lerma, A.; Vandenhove, M. Primary drivers of multidecadal spatial and temporal patterns of shoreline change derived from optical satellite imagery. Geomorphology 2022, 413, 108360. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Turner, I.L.; Splinter, K.D. Pacific shoreline erosion and accretion patterns controlled by El Niño/Southern Oscillation. Nat. Geosci. 2023, 16, 140–146. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Nanson, R.; Sagar, S.; Lymburner, L. Mapping Australia’s dynamic coastline at mean sea level using three decades of Landsat imagery. Remote Sens. Environ. 2021, 267, 112734. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.1 User Guide; U.S. Geological Survey Open-File Report 2021-1091; U.S. Geological Survey (USGS): Reston, VA, USA, 2021. [CrossRef]
- Ozturk, T.; Saygili-Araci, F.S.; Kurnaz, M.L. Projected Changes in Extreme Temperature and Precipitation Indices Over CORDEX-MENA Domain. Atmosphere 2021, 12, 622. [Google Scholar] [CrossRef]
- Ntoumos, A.; Hadjinicolaou, P.; Zittis, G.; Proestos, Y.; Lelieveld, J. Projected Air Temperature Extremes and Maximum Heat Conditions Over the Middle-East-North Africa (MENA) Region. Earth Syst. Environ. 2022, 6, 343–359. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kroon, A.; de Schipper, M.A.; van Gelder, P.H.A.J.M.; Aarninkhof, S.G.J. Ranking uncertainty: Wave climate variability versus model uncertainty in probabilistic assessment of coastline change. Coast. Eng. 2020, 158, 103673. [Google Scholar] [CrossRef]
- Plant, N.G.; Stockdon, H.F. Probabilistic prediction of barrier-island response to hurricanes. J. Geophys. Res. Earth Surf. 2012, 117, F03015. [Google Scholar] [CrossRef]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef]
- Ranasinghe, R. Assessing climate change impacts on open sandy coasts: A review. Earth-Sci. Rev. 2016, 160, 320–332. [Google Scholar] [CrossRef]
- Bamber, J.L.; Oppenheimer, M.; Kopp, R.E.; Aspinall, W.P.; Cooke, R.M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl. Acad. Sci. USA 2019, 116, 11195–11200. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F. Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef]
- Clementi, E.; Aydogdu, A.; Goglio, A.C.; Pistoia, J.; Escudier, R.; Drudi, M.; Pinardi, N. Mediterranean Sea Physical Analysis and Forecast. Copernicus Mar. Environ. Monit. Serv. 2021, 10, 405. [Google Scholar]
- Haghroosta, T.; Ismail, W.R. Typhoon activity and some important parameters in the South China Sea. Weather Clim. Extrem. 2015, 7, 26–33. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Morim, J.; Hemer, M.; Wang, X.L.; Cartwright, N.; Trenham, C.; Semedo, A.; Young, I.; Bricheno, L.; Camus, P.; Casas-Prat, M.; et al. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Change 2019, 9, 711–718. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.-M.; Burks-Copes, K.A. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Frangopol, D.M. Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties. Eng. Struct. 2015, 83, 198–212. [Google Scholar] [CrossRef]
- Alosairi, Y.; Alsulaiman, N.; Rashed, A.; Al-Houti, D. World record extreme sea surface temperatures in the northwestern Arabian/Persian Gulf verified by in situ measurements. Mar. Pollut. Bull. 2020, 161, 111766. [Google Scholar] [CrossRef] [PubMed]
- Andriani, N.S.; Mucerino, L. Coastal setback zone from coastal hazard to sea-level rise in Pacitan Coastal Area Indonesia. Geosciences 2022, 12, 93. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.C.; Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 2018, 99, e2020943118. [Google Scholar] [CrossRef]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change-driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef]
- Kopp, R.E.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; Tebaldi, C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2014, 2, 383–406. [Google Scholar] [CrossRef]
- Palmer, M.D.; Gregory, J.M.; Bagge, M.; Calvert, D.; Hagedoorn, J.M.; Howard, T.; Klemann, V.; Lowe, J.A.; Roberts, C.D.; Slangen, A.B.A.; et al. Exploring the drivers of global and local sea-level change over the 21st century and beyond. Earth’s Future 2020, 8, e2019EF001413. [Google Scholar] [CrossRef]
- Jackson, L.P.; Jevrejeva, S. A probabilistic approach to 21st century regional sea-level projections using RCP and High-end scenarios. Glob. Planet. Change 2016, 146, 179–189. [Google Scholar] [CrossRef]
- Wada, Y.; Reager, J.T.; Chao, B.F.; Wang, J.; Lo, M.H.; Song, C.; Li, Y.; Gardner, A.S. Recent changes in land water storage and its contribution to sea level variations. Surv. Geophys. 2017, 38, 131–152. [Google Scholar] [CrossRef] [PubMed]
- Young, I.R.; Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef]
- Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; et al. Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bull. Am. Meteorol. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Muis, S.; Apecechea, M.I.; Dullaart, J.; de Lima Rego, J.; Madsen, K.S.; Su, J.; Yan, K.; Verlaan, M. A high-resolution global dataset of extreme sea levels, tides, and storm surges, including future projections. Front. Mar. Sci. 2020, 7, 263. [Google Scholar] [CrossRef]
- Langodan, S.; Cavaleri, L.; Viswanadhapalli, Y.; Hoteit, I. The Red Sea: A natural laboratory for wind and wave modeling. J. Phys. Oceanogr. 2017, 47, 1795–1811. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Hermans, T.H.J.; Tinker, J.; Palmer, M.D.; Katsman, C.A.; Vermeersen, B.L.A.; Slangen, A.B.A. Improving sea-level projections on the Northwestern European shelf using dynamical downscaling. Clim. Dyn. 2020, 54, 1987–2011. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 2009, 90, 1095–1108. [Google Scholar] [CrossRef]
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 1211–1362. [Google Scholar] [CrossRef]
- Hereher, M.E. Assessment of climate change impacts on sea surface temperatures and sea level rise—The Arabian Gulf. Climate 2020, 8, 50. [Google Scholar] [CrossRef]
- Haasnoot, M.; Kwakkel, J.H.; Walker, W.E.; ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 2013, 23, 485–498. [Google Scholar] [CrossRef]
- Bucchignani, E.; Mercogliano, P.; Panitz, H.-J.; Montesarchio, M. Climate change projections for the Middle East–North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Change Res. 2016, 7, 66–80. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Islam, M.N.; Ismail, M.; Klutse, N.A.B.; Siddiqui, M.H. Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst. Environ. 2020, 4, 455–475. [Google Scholar] [CrossRef]
- Tebaldi, C.; Smith, R.L.; Nychka, D.; Mearns, L.O. Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Clim. 2005, 18, 1524–1540. [Google Scholar] [CrossRef]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Change 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Tran, D.T.; Nguyen, H.V.; Le, T.N.; Hoang, M.V. Assessing coastal erosion in the Mekong River Delta using multi-temporal Landsat imagery and a GIS-based approach. Remote Sens. Appl. Soc. Environ. 2021, 22, 100497. [Google Scholar] [CrossRef]
- Dean, J.; Syafrudin, M.; Samat, N.; Ali, M.S.; Nor, A.A.; Razzaq, S.A. Spatio-temporal analysis of shoreline change using multi-temporal satellite images: A case study of Kuala Terengganu, Malaysia. Environ. Monit. Assess. 2019, 191, 640. [Google Scholar]
- El-Bana, M.I.; El-Asmar, H.M. Future shoreline changes of the northern Red Sea coast, Egypt: Implications for coastal management under climate change. Ocean Coast. Manag. 2020, 183, 105001. [Google Scholar] [CrossRef]
- Hereher, M.E.; Almazroui, M. Coastal vulnerability to sea-level rise in Saudi Arabia: A review. Environ. Sci. Pollut. Res. 2020, 27, 1127–1143. [Google Scholar]
- Young, I.R.; Ribal, A. Ocean wave climate projections for the 21st century: A multi-model ensemble approach. J. Clim. 2020, 33, 759–773. [Google Scholar] [CrossRef]
- Wasa, R.; Kurosaki, Y.; Mori, N.; Yasuda, T.; Mase, H. Global wave climate projections based on CMIP6 models. Sci. Rep. 2021, 11, 1–11. [Google Scholar]
- Alyafi, N.; Alawad, H. Wind and wave characteristics in the Red Sea. J. Mar. Sci. Eng. 2017, 5, 52. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Brown, S.; Hinkel, J.; Vafeidis, A.T.; Wong, P.P. Sea-level rise impacts on sandy coastlines of Australia: A review. J. Coast. Res. 2022, 38, 435–452. [Google Scholar] [CrossRef]
- Alothman, A.O.; Bos, M.; Fernandes, R.; Radwan, A.M.; Rashwan, M. Annual sea level variations in the Red Sea observed using GNSS. Geophys. J. Int. 2020, 221, 826–834. [Google Scholar] [CrossRef]
- Wang, H.; Wu, D.; Zhu, S.; Jia, Y. Erosion potential of the Yangtze Delta under sediment starvation and climate change. Coast. Eng. 2014, 88, 112–123. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Sun, Z.; Zhang, Y. Alarming coastal vulnerability of the deltaic and sandy beaches of North Africa: A case study of the Nile Delta. Ocean Coast. Manag. 2023, 231, 106399. [Google Scholar] [CrossRef]
- Hussain, M.; Butt, A.R.; Uzma, F.; Ahmed, R.; Irshad, S.; Rehman, A.; Yousaf, B. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ. Monit. Assess. 2020, 192, 48. [Google Scholar] [CrossRef] [PubMed]
- Hinkel, J.; Aerts, J.C.J.H.; Brown, S.; Jiménez, J.A.; Lincke, D.; Nicholls, R.J.; Scussolini, P.; Sanchez-Arcilla, A.; Vafeidis, A.; Addo, K.A. The ability of societies to adapt to twenty-first-century sea-level rise. Nat. Clim. Change 2018, 8, 570–578. [Google Scholar] [CrossRef]










| Scenario | Time Horizon | Mean (m) | 95% CI (m) | Total Uncert. (m) | Confidence (%) |
|---|---|---|---|---|---|
| SSP1-2.6 | Short-term | [, ] | 72 | ||
| Medium-term | [, ] | 68 | |||
| Long-term | [, ] | 62 | |||
| SSP2-4.5 | Short-term | [, ] | 69 | ||
| Medium-term | [, ] | 63 | |||
| Long-term | [, ] | 56 | |||
| SSP5-8.5 | Short-term | [, ] | 65 | ||
| Medium-term | [, ] | 58 | |||
| Long-term | [, ] | 49 |
| Scenario | Time Horizon | Mean (m) | 95% CI (m) | Total Uncert. (m) | Confidence (%) |
|---|---|---|---|---|---|
| SSP1-2.6 | Short-term | 1.35 | [1.17, 1.53] | 85 | |
| Medium-term | 1.42 | [1.19, 1.65] | 78 | ||
| Long-term | 1.48 | [1.20, 1.76] | 71 | ||
| SSP2-4.5 | Short-term | 1.38 | [1.18, 1.58] | 82 | |
| Medium-term | 1.55 | [1.28, 1.82] | 74 | ||
| Long-term | 1.72 | [1.38, 2.06] | 65 | ||
| SSP5-8.5 | Short-term | 1.41 | [1.19, 1.63] | 79 | |
| Medium-term | 1.68 | [1.37, 1.99] | 68 | ||
| Long-term | 1.95 | [1.55, 2.35] | 58 |
| Scenario | Time Horizon | Mean (cm) | 95% CI (cm) | Total Uncert. (cm) | Confidence (%) |
|---|---|---|---|---|---|
| SSP1-2.6 | Short-term | 8.50 | [5.00, 12.00] | 88 | |
| Medium-term | 15.20 | [10.00, 20.40] | 82 | ||
| Long-term | 22.10 | [15.40, 28.80] | 76 | ||
| SSP2-4.5 | Short-term | 9.80 | [5.90, 13.70] | 84 | |
| Medium-term | 21.50 | [13.70, 29.30] | 76 | ||
| Long-term | 35.40 | [23.80, 47.00] | 68 | ||
| SSP5-8.5 | Short-term | 11.20 | [6.70, 15.70] | 80 | |
| Medium-term | 28.60 | [18.70, 38.50] | 70 | ||
| Long-term | 48.30 | [32.50, 64.10] | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamery, E.R.; El Melki, M.N.; Faqeih, K.Y.; Alamri, S.M.; Alamry, J.Y.; Alasiri, F.M.M. Bayesian Projections of Shoreline Retreat Under Climate Change Along the Arid Coast of Duba, Saudi Arabia. Sustainability 2025, 17, 10401. https://doi.org/10.3390/su172210401
Alamery ER, El Melki MN, Faqeih KY, Alamri SM, Alamry JY, Alasiri FMM. Bayesian Projections of Shoreline Retreat Under Climate Change Along the Arid Coast of Duba, Saudi Arabia. Sustainability. 2025; 17(22):10401. https://doi.org/10.3390/su172210401
Chicago/Turabian StyleAlamery, Eman Rafi, Mohamed Nejib El Melki, Khadeijah Yahya Faqeih, Somayah Moshrif Alamri, Jamilah Yahya Alamry, and Fayez Mohammed M. Alasiri. 2025. "Bayesian Projections of Shoreline Retreat Under Climate Change Along the Arid Coast of Duba, Saudi Arabia" Sustainability 17, no. 22: 10401. https://doi.org/10.3390/su172210401
APA StyleAlamery, E. R., El Melki, M. N., Faqeih, K. Y., Alamri, S. M., Alamry, J. Y., & Alasiri, F. M. M. (2025). Bayesian Projections of Shoreline Retreat Under Climate Change Along the Arid Coast of Duba, Saudi Arabia. Sustainability, 17(22), 10401. https://doi.org/10.3390/su172210401

