Quantifying GHG Emissions of Korean Domestic Tourism: Spend-Based Multiregional EEIO Approach to Category 6 of Scope 3
Abstract
1. Introduction
2. Background
2.1. Tourism’s Carbon Footprint
| Studies | [21] | [15] | [8] | [9] | [16] | [3] |
|---|---|---|---|---|---|---|
| Subjects | Italy Lake District AHI Travel case study | Spanish tourism | EPFL Academic Air Travel | Australian hotel business | Iceland | Global Tourism (160 countries) |
| Period | 2023 | 1995–2007 | 2014–2016 | 2015 | 2010–2012 | 2009–2013 |
| GHG Methods | · GHG Protocol Activity-Based -Land based | · LCA–IO | · Activity-based (DEFRA) | · EEIO vs. LCA | · Eora MRIO-based (Consumption-based) | · MRIO + TSA (Consumption-based) |
| Main Results | · Economy Class: ~50% off · 5-star to 4-star accommodations: 57% off | · Large contribution from construction, infrastructure, and imported machinery/equipment | · Aviation accounts for ~1/3 of corporate CO2eq · The top 10% causes ~60% | · LCA 3.890 vs. EEIO 3.488 kgCO2eq (similar) | · National: 22.5 t/person, ~55% increase compared to PBCF | · Tourism CF 3.9→4.5 GtCO2eq · ~8% of the global total · Transportation, Shopping, Food and Beverage |
| Studies | [22] | [4] | [5] | [7] | [19] | [6] |
|---|---|---|---|---|---|---|
| Subjects | Iceland | G20 Tourism | Gansu Province Tourism, China | Inter-provincial China | Jeju Island Eco-Tourism Course | Busan tourism industry |
| Period | 2010–2015 | 2019–2021 | 1997–2016 | 2002–2022 | 2014 | 2015 |
| GHG Methods | · Hybrid (LCA/IO + Activity) | · Country TSA/OECD + MRIO | · Inter-provincial EEIO and Eco-efficiency | · EEIO + Super-SBM | · LCA | · Energy IO, · Tourist Satellite Account (TSA) |
| Main Results | · Average 1.35 tCO2eq/person · Total 0.6→1.8 MtCO2eq · Aviation 50–82% | · A sharp decline in 2020 · A variably recovering economy in 2021 · Transportation dominates. | · Hotels dominate indirect emissions · Food and tobacco manufacturing contribute significantly | · Main sources of indirect emissions: food and tobacco · Decoupling in progress | · Accommodation (235,939 tCO2eq) Transportation (20,798 tCO2eq) Ecotourism (4178 tCO2eq) | · Wholesale and retail and commodity brokerage services > Road transport > Air transport |
2.2. GHG Accounting Frameworks: Scope 3, Category 6
2.3. Measuring Carbon Footprints in Category 6
| Criteria | Spend-Based | Activity-Based | LCA | Hybrid |
|---|---|---|---|---|
| Method | Expenditure × industry/service-specific EF | · Distance-based: travel distance × transport mode EF · Fuel-based: fuel consumption × fuel EF | Apply product/service full life cycle | Combine two or more methods |
| Pros | · Easy data collection · Fast calculation | · Higher accuracy · Can reflect transport mode, route, seat class · Easier verification | · Covers the entire supply chain · Detailed analysis by material/energy flows | · Balances accuracy with data availability · Allows optimal method per segment |
| Cons | · Lower accuracy · Affected by exchange rates and inflation · Limited reflection of regional/service characteristics | · High data collection burden · High cost to build data/model · Lack of LCI data · Cannot calculate if key details are missing | · High cost to build data/model · Lack of LCI data | · Consistency in boundaries and assumptions is challenging · More complex to implement |
| Data required | · Financial expenditure records · Mapped to economic sectors · Industry average emissions per monetary unit | · Detailed physical activity data · Example: fuel consumed, kWh electricity, km traveled, tonnes of material, etc. | · Comprehensive life cycle inventory data for products/processes · inputs, outputs, energy use, transport at each stage of the product’s life cycle | · A mix of data: supplier or process-specific activity data, secondary data (either process-based or economic input-output factors |
| Typical Bias | · Emission intensity not reflected · sensitive to price fluctuations | · Risk of underestimation if data is missing · difficulty in covering all supply chain activities | · Truncation errors due to boundary setting | · Some of the drawbacks of both methods · Complex data linking, potential double-counting, or distortion |
| Suitability at the provincial scale | Suitable at the provincial scale, but constructing provincial EEIO may be challenging for a country | Suitable, but collecting local data is a challenge | Not suitable due to data limitations | Suitable, if combining Spend-based and Activity-based, while still challenging to collect provincial data. |
| Example | MIT business travel (transport/accommodation/food) by [20] | Business travel emissions by distance from airline/rail data (e.g., WRI practical case) | Flight life cycle analysis to estimate route-specific emissions (e.g., ICAO LCA study) | Flights via activity-based, accommodation & meals via spend-based (e.g., [29]) |
2.4. Provincial-Level EEIO Model
3. Research Framework, Data, and Methodology
3.1. Data Collection, Preparation, and Sectoral Mapping
3.2. Korean Multiregional EEIO Model
4. Results
4.1. GHG Emissions by Expenditure Type, Region, and Industry
4.2. Sensitivity Analysis
4.3. Validation
5. Conclusions
6. Limitations and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Industry Sector (Code) | Transportation Services (21) | Wholesale and Retail Trade (20) | Food and Accommodation Services (22) | ||
|---|---|---|---|---|---|
| Region | Emission Factors | Emission Factors | Emission Factors | Total Output | |
| F&B | Accommodation | ||||
| Seoul | 0.0003798 | 0.0000073 | 0.0000068 | 35,188,338 | 2,716,661 |
| Incheon | 0.0001536 | 0.0000114 | 0.0000117 | 7,806,353 | 439,647 |
| Gyeonggi | 0.0010281 | 0.0000104 | 0.0000101 | 36,492,712 | 1,386,632 |
| Daejeon | 0.0011509 | 0.0000110 | 0.0000118 | 4,191,821 | 140,762 |
| Sejong | 0.0016237 | 0.0000100 | 0.0000147 | 1,037,475 | 20,521 |
| Chungbuk | 0.0014400 | 0.0000149 | 0.0000141 | 4,669,232 | 217,162 |
| Chungnam | 0.0011509 | 0.0000112 | 0.0000103 | 6,149,014 | 362,270 |
| Gwangju | 0.0010995 | 0.0000091 | 0.0000084 | 3,817,299 | 140,857 |
| Jeonbuk | 0.0014937 | 0.0000152 | 0.0000157 | 5,630,093 | 232,706 |
| Jeonnam | 0.0005771 | 0.0000135 | 0.0000140 | 4,448,247 | 481,084 |
| Daegu | 0.0007613 | 0.0000101 | 0.0000100 | 5,674,588 | 167,567 |
| Gyeongbuk | 0.0013508 | 0.0000151 | 0.0000128 | 6,503,272 | 535,329 |
| Busan | 0.0002398 | 0.0000100 | 0.0000095 | 8,975,198 | 650,762 |
| Ulsan | 0.0004831 | 0.0000156 | 0.0000151 | 3,332,740 | 147,265 |
| Gyeongnam | 0.0012298 | 0.0000126 | 0.0000134 | 8,349,256 | 501,038 |
| Gangwon | 0.0009983 | 0.0000217 | 0.0000230 | 5,290,096 | 1,144,031 |
| Jeju | 0.0008816 | 0.0000150 | 0.0000156 | 2,883,051 | 860,496 |
| Industry Code | Industrial Sectors | Industry Code | Industrial Sectors |
|---|---|---|---|
| 1 | Agricultural, forestry and fishery products | 18 | Water, waste disposal and recycling services |
| 2 | Mining products | 19 | Construction |
| 3 | Food products | 20 | Wholesale, retail trade and brokerage services |
| 4 | Textile and leather products | 21 | Transportation services |
| 5 | Wood, paper, and printing | 22 | Food and accommodation services |
| 6 | Coal and petroleum products | 23 | Information and communication services |
| 7 | Chemical products | 24 | Financial and insurance services |
| 8 | Non-metallic mineral products | 25 | Real Estate Services |
| 9 | Primary metal products | 26 | Professional, scientific and technical services |
| 10 | Fabricated metal products | 27 | Business support services |
| 11 | Computers, electronic and optical equipment | 28 | Public administration, defense and social security |
| 12 | Electrical equipment | 29 | Education services |
| 13 | Machinery and equipment | 30 | Health and social welfare services |
| 14 | Transportation equipment | 31 | Arts, sports, and leisure-related services |
| 15 | Other manufactured products | 32 | Other services |
| 16 | Manufacturing, processing, and repair of industrial equipment | 33 | Etc. |
| 17 | Electricity, gas, and steam |
| (1) | |||||||||
| Industry Code | Seoul | Incheon | Gyeonggi | Daejeon | Sejong | Chungbuk | Chungnam | Gwangju | Jeonbuk |
| 1 | 0.505 | 0.819 | 12.345 | 0.227 | 0.733 | 5.688 | 15.364 | 0.485 | 11.363 |
| 2 | 0.030 | 0.017 | 0.078 | 0.074 | 0.015 | 0.022 | 0.002 | 0.025 | 0.076 |
| 3 | 0.039 | 2.004 | 1.307 | 0.070 | 0.037 | 1.199 | 0.891 | 0.082 | 0.788 |
| 4 | 0.014 | 0.009 | 0.224 | 0.009 | 0.000 | 0.035 | 0.032 | 0.001 | 0.057 |
| 5 | 0.016 | 0.114 | 0.319 | 0.218 | 0.037 | 0.094 | 0.212 | 0.041 | 0.055 |
| 6 | 1.086 | 1.941 | 0.656 | 0.393 | 0.017 | 0.169 | 13.649 | 0.131 | 0.128 |
| 7 | 0.022 | 2.070 | 0.273 | 0.196 | 0.044 | 0.257 | 6.415 | 0.095 | 0.195 |
| 8 | 0.111 | 0.052 | 0.197 | 0.000 | 0.024 | 5.005 | 1.070 | 0.082 | 0.240 |
| 9 | 0.015 | 0.123 | 0.065 | 0.005 | 0.001 | 0.052 | 5.746 | 0.001 | 0.107 |
| 10 | 0.002 | 0.117 | 1.065 | 0.012 | 0.009 | 0.188 | 0.237 | 0.052 | 0.139 |
| 11 | 0.246 | 0.011 | 0.783 | 0.085 | 0.003 | 0.275 | 0.033 | 0.014 | 0.006 |
| 12 | 0.290 | 0.208 | 0.665 | 0.104 | 0.019 | 0.423 | 0.184 | 0.187 | 0.072 |
| 13 | 0.104 | 0.011 | 0.061 | 0.039 | 0.000 | 0.045 | 0.021 | 0.014 | 0.027 |
| 14 | 0.016 | 0.014 | 0.164 | 0.106 | 0.002 | 0.747 | 0.160 | 0.029 | 0.250 |
| 15 | 0.309 | 0.014 | 0.160 | 0.030 | 0.000 | 0.152 | 0.009 | 0.011 | 0.035 |
| 16 | 0.465 | 0.012 | 0.054 | 0.021 | 0.001 | 0.149 | 0.057 | 0.011 | 0.058 |
| 17 | 0.544 | 134.326 | 24.116 | 0.202 | 5.058 | 1.048 | 76.549 | 0.148 | 1.602 |
| 18 | 0.813 | 0.589 | 4.691 | 1.061 | 0.864 | 6.650 | 6.463 | 0.190 | 2.781 |
| 19 | 0.009 | 0.005 | 0.017 | 0.002 | 0.000 | 0.006 | 0.011 | 0.003 | 0.008 |
| 20 | 1.486 | 0.255 | 0.993 | 0.174 | 0.014 | 0.469 | 0.783 | 0.144 | 0.901 |
| 21 | 31.093 | 8.826 | 149.388 | 22.754 | 8.644 | 81.012 | 135.183 | 15.631 | 168.524 |
| 22 | 0.711 | 1.004 | 3.714 | 0.449 | 0.148 | 2.035 | 3.639 | 0.214 | 4.206 |
| 23 | 0.300 | 0.005 | 0.153 | 0.009 | 0.005 | 0.028 | 0.044 | 0.006 | 0.043 |
| 24 | 0.408 | 0.040 | 0.132 | 0.033 | 0.003 | 0.020 | 0.025 | 0.030 | 0.077 |
| 25 | 0.320 | 0.077 | 0.235 | 0.027 | 0.015 | 0.058 | 0.109 | 0.046 | 0.059 |
| 26 | 0.675 | 0.035 | 0.154 | 0.022 | 0.002 | 0.015 | 0.012 | 0.022 | 0.022 |
| 27 | 0.191 | 0.056 | 0.139 | 0.032 | 0.003 | 0.046 | 0.046 | 0.041 | 0.058 |
| 28 | 0.001 | 0.001 | 0.003 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.001 |
| 29 | 0.003 | 0.001 | 0.004 | 0.002 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 |
| 30 | 0.017 | 0.004 | 0.015 | 0.005 | 0.000 | 0.005 | 0.006 | 0.004 | 0.007 |
| 31 | 0.032 | 0.003 | 0.024 | 0.002 | 0.000 | 0.003 | 0.005 | 0.002 | 0.006 |
| 32 | 0.045 | 0.007 | 0.051 | 0.007 | 0.001 | 0.012 | 0.022 | 0.009 | 0.031 |
| 33 | 0.003 | 0.002 | 0.005 | 0.001 | 0.000 | 0.002 | 0.003 | 0.000 | 0.004 |
| Region total | 39.922 | 152.773 | 202.247 | 26.369 | 15.701 | 105.909 | 266.985 | 17.752 | 191.925 |
| (2) | |||||||||
| Industry Code | Jeonnam | Daegu | Gyeongbuk | Busan | Ulsan | Gyeongnam | Gangwon | Jeju | Industry Total |
| 1 | 27.050 | 0.837 | 18.512 | 4.982 | 3.660 | 13.521 | 9.153 | 3.938 | 129.184 |
| 2 | 0.001 | 0.016 | 0.072 | 0.060 | 0.000 | 0.054 | 0.170 | 0.049 | 0.760 |
| 3 | 0.867 | 0.102 | 0.662 | 0.656 | 0.254 | 2.252 | 1.378 | 0.266 | 12.852 |
| 4 | 0.020 | 0.151 | 0.157 | 0.023 | 0.001 | 0.042 | 0.000 | 0.000 | 0.775 |
| 5 | 0.018 | 0.211 | 0.141 | 0.002 | 0.073 | 0.132 | 0.004 | 0.012 | 1.697 |
| 6 | 5.098 | 0.450 | 0.337 | 0.453 | 19.387 | 0.612 | 0.405 | 0.005 | 44.918 |
| 7 | 8.733 | 0.016 | 0.549 | 0.051 | 7.270 | 0.266 | 0.011 | 0.006 | 26.468 |
| 8 | 1.999 | 0.005 | 1.254 | 0.011 | 0.054 | 0.135 | 11.169 | 0.011 | 21.421 |
| 9 | 6.866 | 0.014 | 6.611 | 0.107 | 0.328 | 0.092 | 0.000 | 0.000 | 20.134 |
| 10 | 0.083 | 0.037 | 0.184 | 0.045 | 0.235 | 0.305 | 0.012 | 0.000 | 2.721 |
| 11 | 0.014 | 0.039 | 1.162 | 0.216 | 0.169 | 0.007 | 0.114 | 0.001 | 3.176 |
| 12 | 0.163 | 0.190 | 0.466 | 0.879 | 2.346 | 0.198 | 0.321 | 0.025 | 6.741 |
| 13 | 0.041 | 0.035 | 0.046 | 0.033 | 0.031 | 0.033 | 0.118 | 0.006 | 0.665 |
| 14 | 0.653 | 0.127 | 0.422 | 0.053 | 0.141 | 0.321 | 1.327 | 0.000 | 4.530 |
| 15 | 0.095 | 0.026 | 0.080 | 0.022 | 0.034 | 0.013 | 0.569 | 0.077 | 1.637 |
| 16 | 0.279 | 0.044 | 0.115 | 0.032 | 0.023 | 0.030 | 0.754 | 0.081 | 2.185 |
| 17 | 32.711 | 2.950 | 1.492 | 10.375 | 4.146 | 45.663 | 18.165 | 3.058 | 362.153 |
| 18 | 10.520 | 0.692 | 6.989 | 4.954 | 1.283 | 3.189 | 2.030 | 2.195 | 55.954 |
| 19 | 0.008 | 0.003 | 0.010 | 0.002 | 0.002 | 0.011 | 0.008 | 0.003 | 0.108 |
| 20 | 1.340 | 0.209 | 1.145 | 0.615 | 0.158 | 1.207 | 3.040 | 1.365 | 14.300 |
| 21 | 109.506 | 19.325 | 202.710 | 26.985 | 10.514 | 213.015 | 233.581 | 402.553 | 1839.243 |
| 22 | 6.525 | 0.394 | 5.108 | 2.608 | 0.655 | 5.321 | 17.843 | 8.675 | 63.246 |
| 23 | 0.055 | 0.009 | 0.062 | 0.016 | 0.005 | 0.041 | 0.202 | 0.055 | 1.038 |
| 24 | 0.053 | 0.036 | 0.039 | 0.057 | 0.011 | 0.049 | 0.136 | 0.080 | 1.229 |
| 25 | 0.162 | 0.026 | 0.122 | 0.096 | 0.024 | 0.223 | 0.375 | 0.300 | 2.274 |
| 26 | 0.021 | 0.030 | 0.046 | 0.060 | 0.023 | 0.040 | 0.094 | 0.052 | 1.323 |
| 27 | 0.068 | 0.034 | 0.062 | 0.062 | 0.024 | 0.056 | 0.123 | 0.070 | 1.113 |
| 28 | 0.003 | 0.001 | 0.002 | 0.002 | 0.000 | 0.002 | 0.012 | 0.007 | 0.036 |
| 29 | 0.002 | 0.001 | 0.002 | 0.001 | 0.001 | 0.002 | 0.004 | 0.003 | 0.029 |
| 30 | 0.014 | 0.005 | 0.011 | 0.008 | 0.003 | 0.011 | 0.026 | 0.020 | 0.163 |
| 31 | 0.007 | 0.002 | 0.006 | 0.009 | 0.001 | 0.012 | 0.023 | 0.047 | 0.183 |
| 32 | 0.027 | 0.012 | 0.028 | 0.019 | 0.006 | 0.029 | 0.090 | 0.088 | 0.484 |
| 33 | 0.007 | 0.001 | 0.004 | 0.004 | 0.001 | 0.005 | 0.035 | 0.020 | 0.096 |
| Region total | 213.009 | 26.030 | 248.607 | 53.498 | 50.864 | 286.886 | 301.291 | 423.069 | 2622.837 |
References
- Sun, Y.Y.; Faturay, F.; Lenzen, M.; Gössling, S.; Higham, J. Drivers of global tourism carbon emissions. Nat. Commun. 2024, 15, 10384. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Annex VII: Glossary; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Lenzen, M.; Sun, Y.Y.; Faturay, F.; Ting, Y.P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Change 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Tsutsumi, A.; Furukawa, R.; Kitamura, Y.; Itsubo, N. G20 tourism carbon footprint and COVID-19 impact. Sustainability 2024, 16, 2222. [Google Scholar] [CrossRef]
- Xia, B.; Dong, S.; Li, Z.; Zhao, M.; Sun, D.; Zhang, W.; Li, Y. Eco-efficiency and its drivers in tourism sectors with respect to carbon emissions from the supply chain: An integrated EEIO and DEA approach. Int. J. Environ. Res. Public Health 2022, 19, 6951. [Google Scholar] [CrossRef]
- Hong, S.-K.; Kim, N.-J. A study on the estimation of carbon emissions in the tourism industry in Busan: Focusing on the top-down methodology using local tourism satellite accounts. J. Tour. Sci. 2023, 47, 45–63. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, B. Carbon emissions and its efficiency of tourist hotels in China from the supply chain based on the input–output method and super-SBM model. Sustainability 2024, 16, 9489. [Google Scholar] [CrossRef]
- Ciers, J.; Mandic, A.; Toth, L.D.; Op’t Veld, G. Carbon footprint of academic air travel: A case study in Switzerland. Sustainability 2018, 11, 80. [Google Scholar] [CrossRef]
- Demeter, C.; Lin, P.C.; Sun, Y.Y.; Dolnicar, S. Assessing the carbon footprint of tourism businesses using environmentally extended input–output analysis. J. Sustain. Tour. 2021, 30, 128–144. [Google Scholar] [CrossRef]
- World Resources Institute; World Business Council for Sustainable Development. Technical Guidance for Calculating Scope 3 Emissions; Version 1.0; Greenhouse Gas Protocol; World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- Ministry of Culture, Sports and Tourism (MCST); Korea Culture & Tourism Institute (KCTI). 2023 National Travel Survey [Data Set]. 2023. Available online: https://know.tour.go.kr/main/main.do (accessed on 12 October 2025).
- MUREPA KOREA. MUREPA Environmental Regional Input–Output Model Guidebook V.1.1; MUREPA PRESS: Seongnam-si, Republic of Korea, 2024; Available online: https://www.murepa.com (accessed on 22 October 2025).
- Minx, J.C.; Wiedmann, T.; Wood, R.; Peters, G.P.; Lenzen, M.; Owen, A.; Ackerman, F. Input–output analysis and carbon footprinting: An overview of applications. Econ. Syst. Res. 2009, 21, 187–216. [Google Scholar] [CrossRef]
- Huang, Y.A.; Weber, C.L.; Matthews, H.S. Categorization of scope 3 emissions for streamlined enterprise carbon footprinting. Environ. Sci. Technol. 2009, 43, 8509–8515. [Google Scholar] [CrossRef]
- Cadarso, M.Á.; Tobarra, M.Á.; García-Alaminos, Á.; Ortiz, M.; Gómez, N.; Zafrilla, J. The input–output method for calculating the carbon footprint of tourism: An application to the Spanish tourism industry. In Advances of Footprint Family for Sustainable Energy and Industrial Systems; Springer International Publishing: Cham, Switzerland, 2021; pp. 35–57. [Google Scholar]
- Clarke, J.C. The Carbon Footprint of an Icelander: A Consumption-Based Assessment Using the Eora MRIO Database. Ph.D. Thesis, University of Iceland, Reykjavík, Iceland, 2017. [Google Scholar]
- Hertwich, E.G.; Peters, G.P. Carbon footprint of nations: A global, trade-linked analysis. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef]
- Peters, G.P.; Minx, J.C.; Weber, C.L.; Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl. Acad. Sci. USA 2011, 108, 8903–8908. [Google Scholar] [CrossRef]
- Lee, W.; Lim, C.-H.; Yoo, S.; Lee, W.-K. Estimating the carbon dioxide emission in Jeju ecotourism. J. Clim. Change Res. 2019, 10, 79–87. [Google Scholar] [CrossRef]
- Goldberg, B.; Gregory, J.; Cheng, Y.; DeMartino, G. MIT Scope 3 Greenhouse Gas Documentation: Business Travel—Emissions Calculation Documentation; Massachusetts Institute of Technology, Office of Sustainability: Cambridge, MA, USA, 2024. [Google Scholar]
- Boychuck, S.; Curaming, W.; Martin, R.; Zarif, A. A Carbon Footprint Analysis of Travel. Ph.D. Thesis, Duke University, Durham, NC, USA, 2025. [Google Scholar]
- Sharp, H.; Grundius, J.; Heinonen, J. Carbon footprint of inbound tourism to Iceland: A consumption-based life-cycle assessment including direct and indirect emissions. Sustainability 2016, 8, 1147. [Google Scholar] [CrossRef]
- World Resources Institute; World Business Council for Sustainable Development. A Corporate Accounting and Reporting Standard (Revised Edition); Greenhouse Gas Protocol; World Resources Institute: Washington, DC, USA, 2004. [Google Scholar]
- Issa-Zadeh, S.B.; López-Gutiérrez, J.S.; Esteban, M.D.; Fernández-Sánchez, G.; Garay-Rondero, C.L. A framework for accurate carbon footprint calculation in seaports: Methodology proposal. J. Mar. Sci. Eng. 2023, 11, 1007. [Google Scholar] [CrossRef]
- Gordon, P.; Park, J.Y.; Richardson, H.W. Modeling economic impacts in light of substitutions in household sector final demand. Econ. Model. 2009, 26, 696–701. [Google Scholar] [CrossRef]
- Park, J.Y.; Gordon, P.; Moore, J.E., II; Richardson, H.W. A new approach to quantifying the impact of hurricane-disrupted oil refinery operations utilizing secondary data. Group Decis. Negot. 2017, 26, 1125–1144. [Google Scholar] [CrossRef]
- Park, J.Y.; Richardson, H.W. Refining the Isard multiregional input–output model theory. In Regional Science Matters: Studies Dedicated to Walter Isard; Nijkamp, P., Rose, A., Kourtit, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 35–54. [Google Scholar]
- Park, C.; Park, J. COVID-19 and the Korean economy: When, how, and what changes? Asian J. Innov. Policy 2020, 9, 187. [Google Scholar]
- Stridsland, T.; Stounbjerg, A.; Sanderson, H. A hybrid approach to a more complete emissions inventory: A case study of Aarhus University. Carbon Manag. 2023, 14, 2275579. [Google Scholar] [CrossRef]
- Munksgaard, J.; Pedersen, K.A. CO2 accounts for open economies: Producer or consumer responsibility? Energy Policy 2001, 29, 327–334. [Google Scholar] [CrossRef]
- Peters, G.P. From production-based to consumption-based national emission inventories. Ecol. Econ. 2008, 65, 13–23. [Google Scholar] [CrossRef]
- Korea Culture & Tourism Institute (KCTI). 2023 National Travel Survey: Statistical Volume [Report]. 2024. Available online: https://know.tour.go.kr/main/main.do (accessed on 12 October 2025).
- Bank of Korea. 2020 Regional Input–Output Tables (Producer’s Prices; Large-Sized Classification) [Data Set]. 2 July 2025. Available online: https://www.bok.or.kr/portal/bbs/B0000501/view.do?menuNo=201264&nttId=10092264 (accessed on 12 October 2025).
- Yeo, Y.; Cho, H.; Jung, H. Industry Impacts and Responses to the Introduction of the Carbon Border Adjustment Mechanism. Natl. Future Strategy Insight 2021, 27; National Assembly Futures Institute (in Korean). Available online: https://share.google/GaKyhxXpCtd1bBFn4 (accessed on 22 October 2025).
- Miller, R.E.; Blair, P.D. Input–Output Analysis: Foundations and Extensions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Park, Y.J.; Park, Y.M.; Park, C.K. A study on establishing an ecosystem service evaluation system in response to climate change focusing on garden value evaluation indicators. Asian J. Innov. Policy 2023, 12, 277–303. [Google Scholar]
- Ingwersen, W.W.; Li, M.; Young, B.; Vendries, J.; Birney, C. USEEIO v2.0, the US environmentally-extended input–output model v2.0. Sci. Data 2022, 9, 194. [Google Scholar] [CrossRef] [PubMed]
- EPA. US Environmentally-Extended Input-Output (USEEIO) Models. 2024. Available online: https://www.epa.gov/land-research/us-environmentally-extended-input-output-useeio-models (accessed on 1 September 2025).
- Korea Culture & Tourism Institute (KCTI). 2023 National Travel Survey: User Guide [Technical Report]. Investigation Period: 2023-01-01–2023-12-31; Korea Culture & Tourism Institute, 2023; Available online: https://know.tour.go.kr/main/main.do (accessed on 12 October 2025).




| Criteria | Trans | Accom | F&B | Restaurant | Grocery | Region Total |
|---|---|---|---|---|---|---|
| Seoul | 48.58 | 17.13 | 85.52 | 73.53 | 11.98 | 151.22 |
| Incheon | 26.96 | 16.60 | 76.53 | 65.78 | 10.75 | 120.09 |
| Gyeonggi | 113.59 | 69.12 | 327.38 | 282.84 | 44.54 | 510.09 |
| Daejeon | 15.91 | 6.39 | 36.94 | 29.61 | 7.32 | 59.24 |
| Sejong | 4.58 | 1.25 | 9.51 | 8.39 | 1.12 | 15.34 |
| Chungbuk | 51.37 | 32.39 | 135.17 | 109.13 | 26.04 | 218.93 |
| Chungnam | 109.46 | 91.80 | 317.68 | 256.19 | 61.49 | 518.94 |
| Gwangju | 11.19 | 4.32 | 22.89 | 17.64 | 5.25 | 38.40 |
| Jeonbuk | 106.43 | 66.54 | 247.12 | 197.65 | 49.47 | 420.09 |
| Jeonnam | 180.96 | 134.70 | 413.01 | 327.83 | 85.18 | 728.66 |
| Daegu | 21.24 | 4.94 | 39.94 | 31.85 | 8.09 | 66.11 |
| Gyeongbuk | 140.00 | 109.61 | 351.41 | 285.10 | 66.31 | 601.02 |
| Busan | 98.87 | 81.56 | 221.09 | 188.39 | 32.70 | 401.52 |
| Ulsan | 19.33 | 5.77 | 44.47 | 36.29 | 8.18 | 69.56 |
| Gyeongnam | 163.07 | 108.48 | 363.54 | 281.80 | 81.74 | 635.10 |
| Gangwon | 223.33 | 284.54 | 602.59 | 485.85 | 116.74 | 1110.46 |
| Jeju | 447.29 | 222.68 | 402.41 | 329.68 | 72.73 | 1072.38 |
| Type total | 1782.16 | 1257.82 | 3697.18 | 3007.57 | 689.61 | 6737.16 |
| Expenditure Item Types | Korean Industry Classification Sectors | ||
|---|---|---|---|
| Code | Industry Sector Name | ||
| Transportation | 21 | Transportation | |
| Accommodation | 22 | Food services and accommodation | |
| Food and Beverage (F&B) | Restaurant | 22 | Food services and accommodation |
| Grocery | 20 | Wholesale and retail trade | |
| Expenditure Type | Trans | F&B | Accom | Region Total (A + B + C + D) | ||
|---|---|---|---|---|---|---|
| F&B Total | Grocery Expenditure | Restaurant Expenditure | - | |||
| Industrial Sector | Transportation Services (A) | (B) + (C) | Wholesale and Retail Trade (B) | Food Services and Accommodation | ||
| Food Services Part (C) | Accom part (D) | |||||
| Seoul | 31.093 | 2.146 | 1.486 | 0.660 | 0.051 | 33.290 |
| Incheon | 8.826 | 1.206 | 0.255 | 0.951 | 0.054 | 10.086 |
| Gyeonggi | 149.388 | 4.571 | 0.993 | 3.578 | 0.136 | 154.095 |
| Daejeon | 22.754 | 0.608 | 0.174 | 0.434 | 0.015 | 23.376 |
| Sejong | 8.644 | 0.159 | 0.014 | 0.145 | 0.003 | 8.806 |
| Chungbuk | 81.012 | 2.413 | 0.469 | 1.945 | 0.090 | 83.516 |
| Chungnam | 135.183 | 4.220 | 0.783 | 3.436 | 0.202 | 139.605 |
| Gwangju | 15.631 | 0.351 | 0.144 | 0.207 | 0.008 | 15.990 |
| Jeonbuk | 168.524 | 4.940 | 0.901 | 4.039 | 0.167 | 173.631 |
| Jeonnam | 109.506 | 7.228 | 1.340 | 5.888 | 0.637 | 117.371 |
| Daegu | 19.325 | 0.591 | 0.209 | 0.382 | 0.011 | 19.927 |
| Gyeongbuk | 202.710 | 5.864 | 1.145 | 4.719 | 0.388 | 208.962 |
| Busan | 26.985 | 3.046 | 0.615 | 2.431 | 0.176 | 30.208 |
| Ulsan | 10.514 | 0.785 | 0.158 | 0.627 | 0.028 | 11.327 |
| Gyeongnam | 213.015 | 6.227 | 1.207 | 5.020 | 0.301 | 219.543 |
| Gangwon | 233.581 | 17.710 | 3.040 | 14.670 | 3.173 | 254.464 |
| Jeju | 402.553 | 8.046 | 1.365 | 6.681 | 1.994 | 412.593 |
| Type total | 1839.243 | 70.112 | 14.300 | 55.813 | 7.434 | 1916.789 |
| Criteria | 1st Industry (Total GHG) | 2nd Industry (Total GHG) | 3rd Industry (Total GHG) | 4th Industry (Total GHG) | 5th Industry (Total GHG) |
|---|---|---|---|---|---|
| Seoul | Transportation (31.1) | Wholesale & Retail (1.5) | Coal & Petroleum (1.1) | Water & Waste Mgmt. (0.8) | Accommodation & Food (0.7) |
| Incheon | Electricity & Gas (134.3) | Transportation (8.8) | Chemicals (2.1) | Food & Beverage (2.0) | Coal & Petroleum (1.9) |
| Gyeonggi | Transportation (149.4) | Electricity & Gas (24.1) | Agriculture (12.3) | Water & Waste Mgmt. (4.7) | Accommodation & Food (3.7) |
| Daejeon | Transportation (22.8) | Water & Waste Mgmt. (1.1) | Accommodation & Food (0.4) | Coal & Petroleum (0.4) | Agriculture (0.2) |
| Sejong | Transportation (8.6) | Electricity & Gas (5.1) | Water & Waste Mgmt. (0.9) | Agriculture (0.7) | Accommodation & Food (0.1) |
| Chungbuk | Transportation (81.0) | Water & Waste Mgmt. (6.7) | Agriculture (5.7) | Non-metallic Minerals (5.0) | Accommodation & Food (2.0) |
| Chungnam | Transportation (135.2) | Electricity & Gas (76.5) | Agriculture (15.4) | Coal & Petroleum (13.6) | Water & Waste Mgmt. (6.5) |
| Gwangju | Transportation (15.6) | Agriculture (0.5) | Accommodation & Food (0.2) | Water & Waste Mgmt. (0.2) | Electrical Equip. (0.2) |
| Jeonbuk | Transportation (168.5) | Agriculture (11.4) | Accommodation & Food (4.2) | Water & Waste Mgmt. (2.8) | Electricity & Gas (1.6) |
| Jeonnam | Transportation (109.5) | Electricity & Gas (32.7) | Agriculture (27.1) | Water & Waste Mgmt. (10.5) | Chemicals (8.7) |
| Daegu | Transportation (19.3) | Electricity & Gas (3.0) | Agriculture (0.8) | Water & Waste Mgmt. (0.7) | Coal & Petroleum (0.5) |
| Gyeongbuk | Transportation (202.7) | Agriculture (18.5) | Water & Waste Mgmt. (7.0) | Primary Metals (6.6) | Accommodation & Food (5.1) |
| Busan | Transportation (27.0) | Electricity & Gas (10.4) | Agriculture (5.0) | Water & Waste Mgmt. (5.0) | Accommodation & Food (2.6) |
| Ulsan | Coal & Petroleum (19.7) | Transportation (10.5) | Chemicals (7.3) | Electricity & Gas (4.1) | Agriculture (3.7) |
| Gyeongnam | Transportation (213.0) | Electricity & Gas (45.7) | Agriculture (13.5) | Accommodation & Food (5.3) | Water & Waste Mgmt. (3.2) |
| Gangwon | Transportation (233.6) | Electricity & Gas (18.2) | Accommodation & Food (17.8) | Non-metallic Minerals (11.2) | Agriculture (9.2) |
| Jeju | Transportation (402.6) | Accommodation & Food (8.7) | Agriculture (3.9) | Electricity & Gas (3.1) | Water & Waste Mgmt. (2.2) |
| Industry Sector | Transportation | Accommodation & Food | Wholesale & Retail Trade | Total GHG | ΔGHG | ΔGHG (%) |
|---|---|---|---|---|---|---|
| Scenario 1-1 | +5% | +10% | +5% | 2785 | 162 | +6.2% |
| Scenario 1-2 | −5% | −10% | −5% | 2460 | −162 | −6.2% |
| Scenario 2-1 | +5% | +5% | +10% | 2758 | 135 | +5.15% |
| Scenario 2-2 | −5% | −5% | −10% | 2488 | −135 | −5.15% |
| Scenario 3-1 | +10% | +5% | +5% | 2850 | 227 | +8.66% |
| Scenario 3-2 | −10% | −5% | −5% | 2396 | −227 | −8.66% |
| Expenditure Share (%) | GHG Emissions Share (%) | Differences (KNT-MIT) (%) | ||||
|---|---|---|---|---|---|---|
| KNT | MIT | KNT | MIT | Expenditure | GHG | |
| Transportation | 26.45 | 48 | 95.95 | 78 | −21.55 | 17.95 |
| Accommodation | 18.67 | 28 | 0.39 | 16 | −9.33 | −15.61 |
| F&B | 54.88 | 8 | 3.66 | 6 | 46.88 | −2.34 |
| Others | N.A. | 16 | N.A. | 0 | N.A. | N.A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, D.; Park, C.; Lee, Y.; Park, S.; Park, J. Quantifying GHG Emissions of Korean Domestic Tourism: Spend-Based Multiregional EEIO Approach to Category 6 of Scope 3. Sustainability 2025, 17, 10174. https://doi.org/10.3390/su172210174
Jeong D, Park C, Lee Y, Park S, Park J. Quantifying GHG Emissions of Korean Domestic Tourism: Spend-Based Multiregional EEIO Approach to Category 6 of Scope 3. Sustainability. 2025; 17(22):10174. https://doi.org/10.3390/su172210174
Chicago/Turabian StyleJeong, Dasom, ChangKeun Park, Yongbin Lee, Soomin Park, and JiYoung Park. 2025. "Quantifying GHG Emissions of Korean Domestic Tourism: Spend-Based Multiregional EEIO Approach to Category 6 of Scope 3" Sustainability 17, no. 22: 10174. https://doi.org/10.3390/su172210174
APA StyleJeong, D., Park, C., Lee, Y., Park, S., & Park, J. (2025). Quantifying GHG Emissions of Korean Domestic Tourism: Spend-Based Multiregional EEIO Approach to Category 6 of Scope 3. Sustainability, 17(22), 10174. https://doi.org/10.3390/su172210174

