Consumers’ Perspectives on Government-Oriented Integrated Energy Services: A Case Study of Pilot Areas in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Survey Instrument
2.3. Data Collection
2.4. Data Analysis
3. Results and Discussion
3.1. Descriptive Analysis
3.2. Significant and Non-Significant Correlations Identified by Spearman Rho Analysis
3.3. High-Correlation Pathways for Mediation Analysis
3.3.1. The Impact of PAD on SPE Is Mediated by OAM
3.3.2. The Impact of SEF on SAP Is Mediated by SQU
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IES | Integrated Energy Services |
| IEA | International Energy Agency |
| CED | Conventional Energy Disadvantages |
| IESA | IES Advantages |
| PAD | Planning And Design |
| OAM | Operation and Maintenance |
| SPE | Service Performance |
| SEF | Service Efficiency |
| CI | Confidence Interval |
| LLCI | Lower-level Confidence Interval |
| ULCI | Upper-level Confidence Interval |
| SE | Standard Error |
References
- Durmus Senyapar, H.N.; Aksoz, A. Empowering sustainability: A consumer-centric analysis based on advanced electricity consumption predictions. Sustainability 2024, 16, 2958. [Google Scholar] [CrossRef]
- Certini, G.; Scalenghe, R. The crucial interactions between climate and soil. Sci. Total Environ. 2023, 856, 159169. [Google Scholar] [CrossRef] [PubMed]
- Wyrzykowska, B.; Czech, A.; Dąbrowska, A.; Rytko, A. Pro-ecological consumer behavior versus energy reduction and sustainable consumption: A case from Poland. Sustainability 2024, 16, 7556. [Google Scholar] [CrossRef]
- Mišík, M. The EU needs to improve its external energy security. Energy Policy 2022, 165, 112930. [Google Scholar] [CrossRef]
- Csutora, M.; Harangozo, G.; Szigeti, C. Factors behind the consumer acceptance of sustainable business models in pandemic times. Sustainability 2022, 14, 9450. [Google Scholar] [CrossRef]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Breyer, C. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Yakymchuk, A.; Rataj, M.A. Economic analysis of fossil CO2 emissions: A European perspective on sustainable development. Energies 2025, 18, 2106. [Google Scholar] [CrossRef]
- International Energy Agency. CO2 Emissions in 2023: Analysis; IEA: Paris, France, 2024; Available online: https://www.iea.org/reports/co2-emissions-in-2023 (accessed on 19 September 2025).
- Financial Times. Clean Tech Investment Set to Hit $2 tn in 2024. Financial Times, 26 June 2024. Available online: https://www.ft.com/ (accessed on 19 September 2025).
- Statistical Review of World Energy. Global Energy Consumption Share: Conventional Energy 2023; Energy Institute: London, UK, 2024; Available online: https://www.energyinst.org/statistical-review (accessed on 19 September 2025).
- Wei, Y.; Xu, W.; Chen, Y.; Peng, Y.; Ke, H.; Zhan, L.; Lan, J.; Li, H.; Zhang, Y. Evaluation of greenhouse gas emission and reduction potential of high-food-waste-content municipal solid waste landfills: A case study of a landfill in the east of China. Waste Manag. 2024, 189, 290–299. [Google Scholar] [CrossRef]
- Daudu, C.D.; Adefemi, A.; Adekoya, O.O.; Okoli, C.E.; Ayorinde, O.B.; Daraojimba, A.I. LNG and climate change: Evaluating its carbon footprint in comparison to other fossil fuels. Eng. Sci. Technol. J. 2024, 5, 412–426. [Google Scholar] [CrossRef]
- Wiatros-Motyka, M. Global Electricity Review 2023; Ember: London, UK, 2023; Available online: https://ember-energy.org/ (accessed on 19 September 2025).
- Gandomi, S.; Barzegar, M.; Zolghadri, S.; Rahimpour, M.R. The future of fossil fuel supply and impacts on sustainability. Encycl. Renew. Energy Sustain. Environ. 2024, 121, 121–129. [Google Scholar]
- Stennikov, V.; Barakhtenko, E.; Mayorov, G.; Sokolov, D.; Zhou, B. Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach. Appl. Energy 2022, 309, 118487. [Google Scholar] [CrossRef]
- Haghgoo, M.; Dognini, A.; Storek, T.; Plamanescu, R.; Rahe, U.; Gheorghe, S.; Müller, D. A cloud-based service-oriented architecture to unlock smart energy services. Energy Inform. 2021, 4, 8. [Google Scholar] [CrossRef]
- Stermieri, L.; Kober, T.; McKenna, R.; Schmidt, T.J.; Panos, E. Impacts of digitalization and societal changes on energy transition: A novel socio-techno-economic energy system model. Energy Strategy Rev. 2023, 50, 101224. [Google Scholar] [CrossRef]
- Buffa, S.; Fouladfar, M.H.; Franchini, G.; Lozano Gabarre, I.; Andres Chicote, M. Advanced control and fault detection strategies for district heating and cooling systems—A review. Appl. Sci. 2021, 11, 455. [Google Scholar] [CrossRef]
- Zhou, H.; Xue, J.; Gao, H.; Ma, N. Hydrogen-fueled gas turbines in future energy systems. Int. J. Hydrogen Energy 2024, 64, 569–582. [Google Scholar] [CrossRef]
- Wang, M.; Yu, H.; Yang, Y.; Lin, X.; Guo, H.; Li, C.; Jing, R. Unlocking emerging impacts of carbon tax on integrated energy systems through supply and demand co-optimization. Appl. Energy 2021, 302, 117579. [Google Scholar] [CrossRef]
- Ben Jebli, M.; Chaouali, I. The influence of renewable energy integration and service value-added on carbon dioxide emissions in China. Environ. Prog. Sustain. Energy 2025, 44, e14630. [Google Scholar] [CrossRef]
- Li, L.; Lin, J.; Wu, N.; Xie, S.; Meng, C.; Zheng, Y.; Zhao, Y. Review and outlook on the international renewable energy development. Energy Built Environ. 2022, 3, 139–157. [Google Scholar] [CrossRef]
- Tu, T.T.; Anh, N.V.P.; Phuong, N.V.H. Low-carbon pathways for Ho Chi Minh City, Vietnam. IOP Conf. Ser. Earth Environ. Sci. 2025, 1540, 012009. [Google Scholar] [CrossRef]
- Zeng, S.; Su, B.; Zhang, M.; Gao, Y.; Liu, J.; Luo, S.; Tao, Q. Analysis and forecast of China’s energy consumption structure. Energy Policy 2021, 159, 112630. [Google Scholar] [CrossRef]
- Luo, G.; Liu, Y.; Zhang, L.; Xu, X.; Guo, Y. Do governmental subsidies improve the financial performance of China’s new energy power generation enterprises? Energy 2021, 227, 120432. [Google Scholar] [CrossRef]
- Kishore, T.S.; Kumar, P.U.; Ippili, V. Review of global sustainable solar energy policies: Significance and impact. Innovation and Green Development 2025, 4, e100224. [Google Scholar] [CrossRef]
- China State Council Information Office. China’s Energy Transition [White Paper]; National Energy Administration: Beijing, China, 2024. Available online: https://www.nea.gov.cn/2024-08/29/c_1310785406.htm (accessed on 19 September 2025).
- Shrestha, B.; Tiwari, S.R.; Bajracharya, S.B.; Keitsch, M.M.; Rijal, H.B. Review on the importance of gender perspective in household energy-saving behavior and energy transition for sustainability. Energies 2021, 14, 7571. [Google Scholar] [CrossRef]
- Sousa, J. A policy and evaluation framework for sustainable transitions—An energy policy approach. Adv. Environ. Eng. Res. 2024, 5, 003. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, J.; Lei, Y.; Liu, C.; Shi, X.; Lai, L.L. Robust dynamic dispatch strategy for multi-uncertainties integrated energy microgrids based on enhanced hierarchical model predictive control. Appl. Energy 2025, 381, 125141. [Google Scholar] [CrossRef]
- Song, D.; Meng, W.; Dong, M.; Yang, J.; Wang, J.; Chen, X.; Huang, L. A critical survey of integrated energy system: Summaries, methodologies, and analysis. Energy Convers. Manag. 2022, 266, 115863. [Google Scholar] [CrossRef]
- Luo, F.; Xu, J.; Zhang, T. Quantitative evaluation of power supply reliability improvement in distribution network by customer-side integrated energy system. Energy Rep. 2021, 7, 233–241. [Google Scholar] [CrossRef]
- Salisu, A.A.; Olaniran, A.O.; Vo, X.V. Geopolitical risk, climate risk, and financial innovation in the energy market. Energy 2025, 315, 134365. [Google Scholar] [CrossRef]
- Li, J.; Dong, K.; Dong, X. Green energy as a new determinant of green growth in China: The role of green technological innovation. Energy Econ. 2022, 114, 106260. [Google Scholar] [CrossRef]
- Ober, J.; Karwot, J. Pro-ecological behavior: Empirical analysis on the example of Polish consumers. Energies 2022, 15, 1690. [Google Scholar] [CrossRef]
- Prisecaru, P. The war in Ukraine and the overhaul of EU energy security. Glob. Econ. Obs. 2022, 10, 45–52. [Google Scholar]
- Huang, Z.; Gong, W.; Duan, J. TBDQN: A novel two-branch deep Q-network for crude oil and natural gas futures trading. Appl. Energy 2023, 347, 121321. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable energy transition for renewable and low-carbon grid electricity generation and supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.; Li, W.; Liu, M. Industrial policies of integrated energy services in China: A perspective of qualitative analysis. Heliyon 2023, 9, e22360. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, D.; Oyewo, A.S.; Mensah, T.N.O.; Nishida, Y.; Saito, T.; Aikawa, T.; Breyer, C. Energy transition for Japan: Pathways towards a 100% renewable energy system in 2050. IET Renew. Power Gener. 2023, 17, 3298–3324. [Google Scholar] [CrossRef]
- State Council of the People’s Republic of China. The 14th Five-Year Plan for National Economic and Social Development and the Long-Range Objectives Through the Year 2035; The Central People’s Government of the PRC: Beijing, China, 2021.
- GB/T 40010-2021; Technical Guidelines for Evaluation of Energy Performance Contracting Service. Standardization Administration of China SAC: Beijing, China, 2021.
- National Energy Administration. Promotion of 100 Smart Energy Demonstration Projects; NEA: Beijing, China, 2021. [Google Scholar]
- Beijing Municipal People’s Government. The 14th Five-Year Plan for Beijing’s Energy Development; BMPG: Beijing, China, 2022.
- Shanghai Municipal People’s Government. The 14th Five-Year Plan for Shanghai’s Energy Development; SMPG: Shanghai, China, 2022.
- Tianjin Development and Reform Commission. The 14th Five-Year Plan for Tianjin’s Energy Development; TDRC: Tianjin, China, 2022.
- Yang, L.; Danwana, S.B.; Yassaanah, I.F.L. An empirical study of renewable energy technology acceptance in Ghana using an extended technology acceptance model. Sustainability 2021, 13, 10791. [Google Scholar] [CrossRef]
- Fett, D.; Dehler-Holland, J.; Schmutz, M. A survey on the user acceptance of PV battery storage systems. Sustain. Manag. Forum Nachhalt. 2021, 29, 161–171. [Google Scholar] [CrossRef]
- Zharova, A.; Lee, H.E. Understanding user perception and intention to use smart homes for energy efficiency: A survey. arXiv 2022, arXiv:2212.05019. [Google Scholar] [CrossRef]
- Zainal Ariffin, Z.; Isa, N.; Lokman, M.Q.; Ahmad Ludin, N.; Jusoh, S.; Ibrahim, M.A. Consumer acceptance of renewable energy in Peninsular Malaysia. Sustainability 2022, 14, 14627. [Google Scholar] [CrossRef]
- Tran, T.H.H.; Vu, T.D. Enhancing renewable energy product consumption of young customers through sustainable development goals knowledge: An application of the theory of planned behavior. Sustainability 2025, 17, 3784. [Google Scholar] [CrossRef]
- Berjawi, A.E.H.; Walker, S.L.; Patsios, C.; Hosseini, S.H.R. An evaluation framework for future integrated energy systems: A whole energy systems approach. Renew. Sustain. Energy Rev. 2021, 145, 111163. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Homepage. Available online: http://www.stats.gov.cn/ (accessed on 15 June 2025).
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Homepage. Available online: http://www.mohurd.gov.cn (accessed on 15 June 2025).
- National Bureau of Statistics of China. China Statistical Yearbook 2024; China Statistics Press: Beijing, China, 2024.
- Zhao, B.; Wang, K. The differences between county, county-level city and municipal district in the system of administrative divisions in China. J. Geogr. Res. Maǧallaẗ Al-Buḥūṯ Al-Ǧuġrāfiyyaẗ 2022, 5, 25–38. [Google Scholar] [CrossRef]
- Lu, W.W.; Tsai, K.S. Picking places and people: Centralizing provincial governance in China. China Q. 2021, 248, 957–986. [Google Scholar] [CrossRef]
- Fabbrizzi, S.; Papadopoulos, S.; Ntoutsi, E.; Kompatsiaris, I. A survey on bias in visual datasets. Comput. Vis. Image Underst. 2022, 223, 103552. [Google Scholar] [CrossRef]
- Liang, F.; Liu, J.; Liu, M.; Zeng, J.; Yang, L.; He, J. Scale-dependent impacts of urban morphology on commercial distribution: A case study of Xi’an, China. Land 2021, 10, 170. [Google Scholar] [CrossRef]
- Jamieson, S. Likert scales: How to (ab)use them? Med. Educ. 2004, 38, 1217–1218. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Kester, J.; Noel, L.; de Rubens, G.Z. The demographics of decarbonizing transport: The influence of gender, education, occupation, age, and household size on electric mobility preferentableces in the Nordic region. Glob. Environ. Change 2018, 52, 86–100. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Evensen, D.; Baum, C.M.; Fritz, L.; Low, S. Demographics shape public preferences for carbon dioxide removal and solar geoengineering interventions across 30 countries. Commun. Earth Environ. 2024, 5, 642. [Google Scholar] [CrossRef]
- Hasan, M.K.H.; Kumar, L.K. Determining adequate sample size for social survey research: Sample size for social survey research. J. Bangladesh Agric. Univ. 2024, 22, 146–157. [Google Scholar] [CrossRef]
- Watson, G.S. William Gemmell Cochran 1909–1980. Ann. Stat. 1982, 10, 1–10. [Google Scholar] [CrossRef]
- Connelly, L.M. Research Roundtable. Cronbach’s Alpha. Medsurg Nurs. 2011, 20, 45–47. [Google Scholar]
- Fitzner, K. Reliability and validity: A quick review. Diabetes Educ. 2007, 33, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H. Reliability and validity. Educ. Assess. 2005, 10, 10–12. [Google Scholar]
- Clark, R.G.; Steel, D.G. Sampling within households in household surveys. J. R. Stat. Soc. A Stat. Soc. 2007, 170, 63–82. [Google Scholar] [CrossRef]
- Smyth, J.D.; Olson, K.; Stange, M. Within-household selection methods: A critical review and experimental examination. In Experimental Methods in Survey Research: Techniques that Combine Random Sampling with Random Assignment; Springer: Cham, Switzerland, 2019; pp. 23–45. [Google Scholar]
- Etikan, I.; Bala, K. Sampling and sampling methods. Biom. Biostat. Int. J. 2017, 5, 149. [Google Scholar] [CrossRef]
- Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 2014, 9, e97122. [Google Scholar] [CrossRef]
- Xu, Y.; Goodacre, R. On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2018, 2, 249–262. [Google Scholar] [CrossRef]
- Singh, A.S.; Masuku, M.B. Sampling techniques and determination of sample size in applied statistics research: An overview. Int. J. Econ. Commer. Manag. 2014, 2, 1–22. [Google Scholar]
- Rashid, A.; Rasheed, R.; Amirah, N.A.; Yusof, Y.; Khan, S.; Agha, A.A. A quantitative perspective of systematic research: Easy and step-by-step initial guidelines. Turk. Online J. Qual. Inq. 2021, 12, 45–60. [Google Scholar]
- Alvi, M. A Manual for Selecting Sampling Techniques in Research (MPRA Paper 70218); University of Karachi: Karachi, Pakistan, 2016. [Google Scholar]
- Acharya, A.S.; Prakash, A.; Saxena, P.; Nigam, A. Sampling: Why and how of it. Indian J. Med. Spec. 2013, 4, 330–333. [Google Scholar] [CrossRef]
- Bhardwaj, P. Types of sampling in research. J. Pract. Cardiovasc. Sci. 2019, 5, 157–163. [Google Scholar] [CrossRef]
- Marshall, G.; Jonker, L. An introduction to descriptive statistics: A review and practical guide. Radiography 2010, 16, e1–e7. [Google Scholar] [CrossRef]
- Alabi, O.; Bukola, T. Introduction to descriptive statistics. In Recent Advances in Biostatistics; IntechOpen: London, UK, 2023; pp. 1–15. [Google Scholar]
- De Winter, J.C.; Gosling, S.D.; Potter, J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychol. Methods 2016, 21, 273–290. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Hotelling, H.; Pabst, M.R. Rank correlation and tests of significance involving no assumption of normality. Ann. Math. Stat. 1936, 7, 29–43. [Google Scholar] [CrossRef]
- Zimmerman, D.W.; Zumbo, B.D.; Williams, R.H. Bias in estimation and hypothesis testing of correlation. Psicológica 2003, 24, 17–41. [Google Scholar]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Steffener, J. Power of mediation effects using bootstrap resampling. arXiv 2021, arXiv:2106.02482. [Google Scholar] [CrossRef]
- Fritz, M.S.; MacKinnon, D.P. Required sample size to detect the mediated effect. Psychol. Sci. 2007, 18, 233–239. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef]
- Götz, M.; O’Boyle, E.H.; Gonzalez-Mulé, E.; Banks, G.C.; Bollmann, S.S. The “Goldilocks Zone”: (Too) many confidence intervals in tests of mediation just exclude zero. Psychol. Bull. 2021, 147, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Igartua, J.J.; Hayes, A.F. Mediation, moderation, and conditional process analysis: Concepts, computations, and some common confusions. Span. J. Psychol. 2021, 24, e49. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.K. Case Study Research and Applications, 6th ed.; Sage: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Flyvbjerg, B. Five misunderstandings about case-study research. Qual. Inq. 2006, 12, 219–245. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Griffiths, S. Culture and low-carbon energy transitions. Nat. Sustain. 2020, 3, 685–693. [Google Scholar] [CrossRef]
- Niesten, E.; Alkemade, F. How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects. Renew. Sustain. Energy Rev. 2016, 53, 629–638. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L. SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Ali Abd Al-Hameed, K. Spearman’s correlation coefficient in statistical analysis. Int. J. Nonlinear Anal. Appl. 2022, 13, 3249–3255. [Google Scholar]
- Roscia, M.; Lazaroiu, G.C.; Dancu, V.S. The positive energy transition through consumer awareness. In Energy Transition Holistic Impact Challenge (ETHIC): A New Environmental and Climatic Era; Springer: Cham, Switzerland, 2024; pp. 441–456. [Google Scholar]
- Li, Y.; Chen, Z. Evaluation index system and evaluation method of China’s regional potential for electrical energy substitution. Math. Probl. Eng. 2018, 2018, 3834921. [Google Scholar] [CrossRef]
- Choi, J.W.; Sohn, C.S.; Lee, H.J. The impact of multi-dimensional trust for customer satisfaction. Manag. Sci. Financ. Eng. 2010, 16, 81–97. [Google Scholar]
- Kostka, G. Barriers to the implementation of environmental policies at the local level in China. World Bank Policy Res. Work. Pap. 2014, 7016, 29–32. [Google Scholar]
- Xiangyu, X.; Zainordin, N.S.; Sharaai, A.H.; Ab Rahim, N.N.R.N. Policy drivers of China’s integrated energy services: A current status review. Plan. Malays. 2024, 22, 45–60. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, S.; Pan, Q.; Nie, C.C. Development trends and solutions for comprehensive energy services in the context of green and low-carbon initiatives. Energy & Environment Management 2025, 1, 1–11. [Google Scholar] [CrossRef]
- Wang, Z. Study of psychological and behavioral factors influencing public acceptability of sustainable energy transition in China. In New Energy and Future Energy Systems; IOS Press: Amsterdam, The Netherlands, 2022; pp. 217–226. [Google Scholar]
- Hauke, J.; Kossowski, T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest. Geogr. 2011, 30, 87–93. [Google Scholar] [CrossRef]
- Stepanov, A. Comparison of correlation coefficients. Sankhya A 2025, 87, 191–218. [Google Scholar] [CrossRef]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1987, 100, 441–471. [Google Scholar] [CrossRef]
- Suen, C.; Ma, J.; Lin, X.; Thomas, R.J.; Westover, M.B.; Stone, K.; Zhang, C. Linking sleep microstructure, blood markers of inflammation and metabolism, and cognition: Mediation analysis in the osteoporotic fractures in men study. GeroScience 2025, 1–13. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 2013. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Pardo, A.; Román, M. Reflections on the Baron and Kenny model of statistical mediation. An. Psicol. 2013, 29, 614–623. [Google Scholar]
- Brady, M.K.; Cronin, J.J., Jr. Some new thoughts on conceptualizing perceived service quality: A hierarchical approach. J. Mark. 2001, 65, 34–49. [Google Scholar] [CrossRef]
- Verbich, D. Affordable and Fair? Analyzing Transit Fare Purchases, Service Quality, and Affordability and Their Implications for Social Equity. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2016. [Google Scholar]
- Jain, T.K.; Jain, N. Service quality in the energy sector and its impact on sustainability. In Affordable and Clean Energy; Springer: Cham, Switzerland, 2020; pp. 1–9. [Google Scholar]
- Bolin, J.H. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Press: New York, NY, USA, 2014. [Google Scholar]
- Parise, L. Service continuity in complex power systems: Safety, operation and maintenance. Energies 2014, 7, 1234–1248. [Google Scholar]
- Faria, N.; Mendes, L. Organizational image’s partial mediation role between quality and users’ satisfaction. Serv. Ind. J. 2013, 33, 1275–1293. [Google Scholar] [CrossRef]
- Lukic, R. The impact of energy efficiency on performance in service sector. Econ. Environ. Stud. 2016, 16, 169–190. [Google Scholar]
- Yao, J.; Xiao, E.; Jian, X.; Shu, L. Service quality and the share of renewable energy in electricity generation. Util. Policy 2021, 69, 101164. [Google Scholar] [CrossRef]
- Lukic, R. Energy efficiency and profitability in the service sector: A comparative study. J. Energy Environ. Policy Options 2021, 4, 8–14. [Google Scholar]
- Wu, N.; Zhang, F.; Wang, J.; Wang, X.; Wu, J.; Huang, J.; Zhao, Y. A review on modelling methods, tools, and services of integrated energy systems in China. Prog. Energy 2023, 5, 032003. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, M.; Wang, P.; Wang, Y.; Li, F.; Hou, H. A review of carbon reduction pathways and policy–market mechanisms in integrated energy systems in China. Sustainability 2025, 17, 2802. [Google Scholar] [CrossRef]
- Shu, Y.; Dai, Y. The synergetic competition of cross-regional integrated energy systems with low-carbon technology heterogeneity under carbon emission trading mechanisms to achieve carbon reduction targets. Renew. Energy 2024, 236, 121394. [Google Scholar] [CrossRef]






| Beijing | Tianjin | Shanghai | |
|---|---|---|---|
| Location | Low Carbon Park | Jinzhong Street | Zhangjiang Town |
| Population | 70,582 | 100,536 | 108,597 |
| Type of area | Urban | Urban | Urban |
| Type of population | Resident | Resident | Resident |
| Economic activities | Retail, Catering, Service industry, Real estate services | ||
| ρ (rho) | Strength of Correlation | Significance (p-Value) | Academic Implication |
|---|---|---|---|
| 0.00–0.30 | Low correlation | If p > 0.05 → null | Cautiously interpretable |
| 0.30–0.50 | Moderate correlation | p < 0.05 required | Worth further analysis |
| 0.50–0.70 | High correlation | p < 0.01 recommended | Meaningful |
| 0.70–0.90 | Very high correlation | p < 0.01 | Strong theoretical support |
| >0.90 | Near perfect correlation | p < 0.01 | Typically, same construct |
| Effect Size (β) | Strength | Significance (CI/p-Value) | Academic Implication |
|---|---|---|---|
| <0.05 | Negligible | CI includes 0/p > 0.05 | No evidence of mediation |
| 0.05–0.10 | Small | CI excludes 0/p < 0.05 | Weak mediation |
| 0.10–0.25 | Moderate | CI excludes 0/p < 0.01 | Meaningful mediation |
| 0.25–0.40 | Large | CI excludes 0/p < 0.01 | Strong mediation |
| >0.40 | Very large | CI excludes 0/p < 0.001 | Robust theoretical support |
| Beijing | Tianjin | Shanghai | |
|---|---|---|---|
| Distribution of Respondents | 105 | 156 | 189 |
| Items | Percentage (%) | ||
| Gender: | |||
| Male | 48.00 | 47.00 | 48.00 |
| Female | 52.00 | 53.00 | 52.00 |
| Marital status: | |||
| Single | 21.00 | 15.00 | 20.00 |
| Married | 79.00 | 85.00 | 80.00 |
| Age: | |||
| Under 34 | 29.00 | 22.00 | 23.00 |
| 35–54 | 38.00 | 45.00 | 49.00 |
| Over 55 | 33.00 | 33.00 | 28.00 |
| Occupation: | |||
| Public sector/Company | 23.00 | 22.00 | 22.00 |
| Private Company/Individual | 66.00 | 67.00 | 63.00 |
| Unemployed | 11.00 | 11.00 | 15.00 |
| Highest educational level: | |||
| Under Secondary School | 29.00 | 33.00 | 31.00 |
| Academy & Bachelor | 67.00 | 59.00 | 63.00 |
| Master & Ph.D. | 5.00 | 8.00 | 6.00 |
| Monthly Salary (RMB): | |||
| Under 5000 | 55.00 | 68.00 | 65.00 |
| 5001–15,000 | 37.00 | 28.00 | 30.00 |
| Over 15,001 | 8.00 | 4.00 | 5.00 |
| Section | Category | Items (I) | N Total | Missing Value | Median | Min | Max |
|---|---|---|---|---|---|---|---|
| Consumer Awareness | CED | I1: Conventional energy pollutes environment | 450 | 0 | 4 | 1 | 5 |
| I2: Conventional energy reserves are limited | 450 | 0 | 4 | 1 | 5 | ||
| I3: Conventional energy is unsustainable | 450 | 0 | 4 | 1 | 5 | ||
| I4: Conventional energy generates greenhouse gases | 450 | 0 | 4 | 1 | 5 | ||
| I5: Conventional energy causes global warming | 450 | 0 | 4 | 1 | 5 | ||
| IESA | I1: IES include renewable energy | 450 | 0 | 4 | 1 | 5 | |
| I2: IES conserve energy | 450 | 0 | 4 | 1 | 5 | ||
| I3: IES reduce reliance on conventional energy | 450 | 0 | 3 | 1 | 5 | ||
| I4: IES reduce greenhouse gas emissions | 450 | 0 | 4 | 1 | 5 | ||
| I5: IES reduce air pollution | 450 | 0 | 4 | 1 | 5 | ||
| I6: IES include domestic energy supply | 450 | 0 | 4 | 1 | 5 | ||
| I7: IES enhance environmental quality | 450 | 0 | 4 | 1 | 5 | ||
| I8: IES drive growth in renewable energy | 450 | 0 | 4 | 1 | 5 | ||
| I9: There are incentive policies for IES | 450 | 0 | 4 | 1 | 5 | ||
| IES Provider’s capabilities | PAD | I1: Strong IES abilities | 450 | 0 | 4 | 1 | 5 |
| I2: IES design includes consumers’ input | 450 | 0 | 4 | 1 | 5 | ||
| I3: IES provide reliable energy supply | 450 | 0 | 4 | 1 | 5 | ||
| I4: IES provide secure energy supply | 450 | 0 | 4 | 1 | 5 | ||
| I5: IES provide variety of energy forms | 450 | 0 | 4 | 1 | 5 | ||
| OAM | I1: Price list for IES | 450 | 0 | 4 | 1 | 5 | |
| I2: IES operation guidelines | 450 | 0 | 4 | 1 | 5 | ||
| I3: IES maintenance guidelines | 450 | 0 | 4 | 1 | 5 | ||
| I4: IES energy-saving measures | 450 | 0 | 4 | 1 | 5 | ||
| I5: IES 24-h energy operation | 450 | 0 | 4 | 1 | 5 | ||
| I6: IES 24-h energy usage tracking | 450 | 0 | 4 | 1 | 5 | ||
| SPE | I1: IES energy usage billings | 450 | 0 | 4 | 1 | 5 | |
| I2: IES notification on service interruptions | 450 | 0 | 4 | 1 | 5 | ||
| I3: IES system update | 450 | 0 | 4 | 1 | 5 | ||
| I4: IES consultation on energy usage | 450 | 0 | 4 | 1 | 5 | ||
| I5: IES consumer feedback channels | 450 | 0 | 4 | 1 | 5 | ||
| I6: IES environmentally friendly practices | 450 | 0 | 4 | 1 | 5 | ||
| Consumer Satisfaction | SEF | I1: Replying with feedback in timely manner | 450 | 0 | 3 | 1 | 5 |
| I2: Communicating with consumers friendly | 450 | 0 | 3 | 1 | 5 | ||
| I3: Communicating with consumers in advance | 450 | 0 | 3 | 1 | 5 | ||
| I4: Solving all energy issues within a short time | 450 | 0 | 3 | 1 | 5 | ||
| I5: Solving energy problems attentively | 450 | 0 | 3 | 1 | 5 | ||
| SQU | I1: Collect all consumers’ feedback in various ways | 450 | 0 | 3 | 1 | 5 | |
| I2: Staffs are well-trained in resolving issues | 450 | 0 | 3 | 1 | 5 | ||
| I3: Effective consulting services | 450 | 0 | 3 | 1 | 5 | ||
| I4: Stable energy supply | 450 | 0 | 3 | 1 | 5 | ||
| SAP | I1: Clear and attractive system client interface | 450 | 0 | 3 | 1 | 5 | |
| I2: Consumer service system is easy to use | 450 | 0 | 3 | 1 | 5 | ||
| I3: The price list is reasonable | 450 | 0 | 3 | 1 | 5 | ||
| I4: Service guidelines are easily found | 450 | 0 | 3 | 1 | 5 | ||
| I5: Service guidelines are visually pleasing | 450 | 0 | 3 | 1 | 5 | ||
| I6: Service guidelines are easy to understand | 450 | 0 | 3 | 1 | 5 |
| Beijing | ||||||||
| CED | IESA | PAD | OAM | SPE | SEF | SQU | SAP | |
| CED | 1 | 0.649 ** | 0.531 ** | 0.399 ** | 0.396 ** | 0.226 * | 0.324 ** | 0.159 |
| IESA | 1 | 0.423 * | 0.233 * | 0.338 ** | 0.158 | 0.196 * | 0.138 | |
| PAD | 1 | 0.656 ** | 0.741 ** | 0.084 | 0.251 * | 0.045 | ||
| OAM | 1 | 0.584 ** | 0.120 | 0.237 * | 0.069 | |||
| SPE | 1 | 0.183 | 0.306 * | 0.123 | ||||
| SEF | 1 | 0.641 ** | 0.706 ** | |||||
| SQU | 1 | 0.612 ** | ||||||
| SAP | 1 | |||||||
| Tianjin | ||||||||
| CED | IESA | PAD | OAM | SPE | SEF | SQU | SAP | |
| CED | 1 | 0.571 ** | 0.230 ** | 0.124 | 0.192 * | 0.240 ** | 0.178 * | 0.185 * |
| IESA | 1 | 0.268 ** | 0.152 | 0.242 ** | 0.240 ** | 0.248 ** | 0.269 ** | |
| PAD | 1 | 0.725 ** | 0.637 ** | 0.130 | 0.151 | 0.077 | ||
| OAM | 1 | 0.630 ** | 0.084 | 0.153 | 0.029 | |||
| SPE | 1 | 0.069 | 0.121 | 0.127 | ||||
| SEF | 1 | 0.733 ** | 0.850 ** | |||||
| SQU | 1 | 0.733 ** | ||||||
| SAP | 1 | |||||||
| Shanghai | ||||||||
| CED | IESA | PAD | OAM | SPE | SEF | SQU | SAP | |
| CED | 1 | 0.601 ** | 0.244 ** | 0.349 ** | 0.362 ** | 0.291 ** | 0.229 ** | 0.296 ** |
| IESA | 1 | 0.143 * | 0.226 ** | 0.237 ** | 0.287 ** | 0.310 ** | 0.289 ** | |
| PAD | 1 | 0.529 ** | 0.597 ** | 0.109 | 0.083 | 0.176 * | ||
| OAM | 1 | 0.578 ** | 0.056 | 0.071 | 0.070 | |||
| SPE | 1 | 0.088 | 0.084 | 0.112 | ||||
| SEF | 1 | 0.737 ** | 0.811 ** | |||||
| SQU | 1 | 0.631 ** | ||||||
| SAP | 1 | |||||||
| Cities | Indirect Effect | Direct Effect | ||||
|---|---|---|---|---|---|---|
| Effect | LLCI | ULCI | Effect | SE | p | |
| Beijing | 0.2918 | 0.1709 | 0.4253 | 0.5298 | 0.0820 | 0.0000 |
| Tianjin | 0.4059 | 0.2890 | 0.5408 | 0.3894 | 0.0788 | 0.0000 |
| Shanghai | 0.1851 | 0.0866 | 0.2985 | 0.4569 | 0.0712 | 0.0000 |
| Cities | Indirect Effect | Direct Effect | ||||
|---|---|---|---|---|---|---|
| Effect | LLCI | ULCI | Effect | SE | p | |
| Beijing | 0.2313 | 0.0566 | 0.4258 | 0.5314 | 0.0928 | 0.0000 |
| Tianjin | 0.1819 | 0.0787 | 0.2995 | 0.6954 | 0.0619 | 0.0000 |
| Shanghai | 0.2630 | 0.1645 | 0.3830 | 0.6040 | 0.0511 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zainordin, N.S.; Sharaai, A.H.; Nik Ab Rahim, N.N.R. Consumers’ Perspectives on Government-Oriented Integrated Energy Services: A Case Study of Pilot Areas in China. Sustainability 2025, 17, 10158. https://doi.org/10.3390/su172210158
Xu X, Zainordin NS, Sharaai AH, Nik Ab Rahim NNR. Consumers’ Perspectives on Government-Oriented Integrated Energy Services: A Case Study of Pilot Areas in China. Sustainability. 2025; 17(22):10158. https://doi.org/10.3390/su172210158
Chicago/Turabian StyleXu, Xiangyu, Nazatul Syadia Zainordin, Amir Hamzah Sharaai, and Nik Nor Rahimah Nik Ab Rahim. 2025. "Consumers’ Perspectives on Government-Oriented Integrated Energy Services: A Case Study of Pilot Areas in China" Sustainability 17, no. 22: 10158. https://doi.org/10.3390/su172210158
APA StyleXu, X., Zainordin, N. S., Sharaai, A. H., & Nik Ab Rahim, N. N. R. (2025). Consumers’ Perspectives on Government-Oriented Integrated Energy Services: A Case Study of Pilot Areas in China. Sustainability, 17(22), 10158. https://doi.org/10.3390/su172210158

