Spatiotemporal Patterns and Influencing Factors of the “Three Modernizations” Integrated Development in China’s Oil and Gas Industry
Abstract
1. Introduction
- Methodological contribution: It develops a unified, quantifiable framework for evaluating integrated HIG development, enriching analytical tools for industrial modernization research.
- Empirical evidence: It documents spatial heterogeneity and convergence dynamics in China’s oil and gas industry under the “dual carbon” agenda.
- Mechanism insights: It identifies interactive pathways through which policy, innovation, and environmental constraints collectively facilitate integrated transformation.
2. Literature Review
2.1. Spatial Inequality and Regional Convergence
2.2. Industrial Modernization and Policy-Driven Mechanisms
2.3. Green Transformation and the Energy Industry
3. Measurement of the Integrated Development Level of the “Three Modernizations” in China’s Oil and Gas Industry
3.1. Definition of the Connotation of “Three Modernizations” Integration
3.2. Construction of the Indicator System for Measuring “Three Modernizations” Integration
3.3. Measurement Methods
3.4. Data Sources
4. Spatiotemporal Pattern Analysis of the “Three Modernizations” Integration in China’s Oil and Gas Industry
4.1. Temporal Evolution Characteristics
4.2. Spatial Evolution Characteristics
4.3. Regional Differences and Their Sources
- (1)
- Intra-Regional Gini Coefficients
- (2)
- Interregional Gini Coefficients
- (3)
- Overall Gini Coefficients
4.4. Spatial Convergence Analysis
4.4.1. σ-Convergence Analysis
4.4.2. β-Convergence Analysis
5. Analysis of Factors Influencing the “Three Modernizations” Integration in China’s Oil and Gas Industry
5.1. Research Hypotheses
5.2. Model Construction
5.2.1. Direct Effect Model
5.2.2. Mediating Effect Model
5.3. Variable Selection
5.3.1. Independent Variables
5.3.2. Dependent Variables
5.3.3. Control Variables
5.3.4. Descriptive Statistics of Variables
5.4. Mechanism Analysis
5.4.1. Direct Effect Analysis
5.4.2. Mediating Effect Analysis
- (1)
- Mediating Effect of Policy Support
- (2)
- Mediating Effect of Technological Innovation
- (3)
- Mediating Effect of Carbon Emission Constraints
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
|---|---|---|---|---|---|---|---|---|---|
| HIG | HIG-1 | ADV | INT | GRN | |||||
| ADV | 0.349 *** (23.09) | - | - | 0.374 ** (18.33) | - | - | - | - | - |
| INT | - | 0.263 *** (10.88) | - | - | 0.189 *** (9.63) | - | - | - | - |
| GRN | - | - | 0.118 *** (8.51) | - | - | 0.293 *** (11.22) | - | - | - |
| PSP | - | - | - | - | - | - | 0.403 *** (13.90) | - | - |
| TIS | - | - | - | - | - | - | - | 0.023 *** (2.40) | - |
| CEC | - | - | - | - | - | - | - | - | 0.230 * (1.87) |
| Control Variables | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Province Fixed Effects | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year Fixed Effects | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Intercept | 0.181 *** (4.22) | 0.227 *** (4.01) | 0.154 *** (2.61) | 0.399 ** (2.19) | 0.238 *** (4.54) | 0.263 * (2.88) | −0.020 (−0.18) | 0.399 *** (5.69) | −0.982 *** (−1.76) |
| N | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 |
| Adj-R2 | 0.655 | 0.400 | 0.348 | 0.487 | 0.411 | 0.452 | 0.354 | 0.369 | 0.383 |
5.4.3. Heterogeneity Analysis
- (1)
- Industrial Chain Segment Heterogeneity Analysis
- (2)
- Regional Heterogeneity Analysis
- (3)
- City-Type Heterogeneity Analysis
6. Conclusions and Policy Recommendations
6.1. Conclusions
- (1)
- Steady improvement with persistent regional disparities
- (2)
- Narrowing regional gaps with convergence trends
- (3)
- Multiple factors jointly drive integration
- (4)
- Path dependence and regional heterogeneity remain significant
6.2. Policy Recommendations
- (1)
- Strengthen Policy Guidance and Institutional Support Based on Regional Characteristics
- (2)
- Accelerate Technological Innovation and Domestic Equipment Development
- (3)
- Promote Intelligent Infrastructure Construction According to Regional Needs
- (4)
- Deepen Green and Low-Carbon Transformation
- (5)
- Promote Regional Coordination and Differentiated Development
- (6)
- Establish a Long-Term Monitoring and Evaluation Mechanism
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Region | Province/City | 11th FYP | Stage | 12th FYP | Stage | 13th FYP | Stage | 14th FYP | Stage |
|---|---|---|---|---|---|---|---|---|---|
| Eastern | Beijing | 0.54 | IV | 0.55 | IV | 0.55 | IV | 0.52 | IV |
| Tianjin | 0.59 | IV | 0.54 | IV | 0.53 | IV | 0.53 | IV | |
| Hebei | 0.42 | III | 0.44 | III | 0.46 | III | 0.45 | III | |
| Shanghai | 0.54 | IV | 0.47 | III | 0.49 | III | 0.50 | IV | |
| Jiangsu | 0.46 | III | 0.47 | III | 0.48 | III | 0.47 | III | |
| Zhejiang | 0.45 | III | 0.44 | III | 0.46 | III | 0.46 | III | |
| Fujian | 0.39 | II | 0.39 | II | 0.38 | II | 0.40 | III | |
| Shandong | 0.47 | III | 0.49 | III | 0.52 | IV | 0.51 | IV | |
| Guangdong | 0.5 | IV | 0.50 | IV | 0.50 | IV | 0.52 | IV | |
| Hainan | 0.32 | II | 0.35 | II | 0.35 | II | 0.37 | II | |
| Central | Hubei | 0.41 | III | 0.4 | III | 0.42 | III | 0.43 | III |
| Anhui | 0.34 | II | 0.36 | II | 0.39 | II | 0.40 | III | |
| Hunan | 0.37 | II | 0.37 | II | 0.39 | II | 0.40 | III | |
| Jiangxi | 0.32 | II | 0.31 | II | 0.34 | II | 0.35 | II | |
| Shanxi | 0.48 | III | 0.44 | III | 0.47 | III | 0.4 | III | |
| Henan | 0.42 | III | 0.4 | III | 0.42 | III | 0.43 | III | |
| Northeast | Liaoning | 0.46 | III | 0.46 | III | 0.46 | III | 0.45 | III |
| Jilin | 0.38 | II | 0.38 | II | 0.40 | III | 0.36 | II | |
| Heilongjiang | 0.48 | III | 0.49 | III | 0.50 | IV | 0.52 | IV | |
| Western | Guangxi | 0.44 | III | 0.45 | III | 0.46 | III | 0.50 | IV |
| Inner Mongolia | 0.31 | II | 0.30 | II | 0.30 | II | 0.33 | II | |
| Chongqing | 0.38 | II | 0.35 | II | 0.37 | II | 0.38 | II | |
| Sichuan | 0.4 | III | 0.42 | III | 0.47 | III | 0.47 | III | |
| Guizhou | 0.32 | II | 0.33 | II | 0.31 | II | 0.32 | II | |
| Yunnan | 0.34 | II | 0.35 | II | 0.34 | II | 0.35 | II | |
| Shaanxi | 0.51 | IV | 0.48 | III | 0.48 | III | 0.46 | III | |
| Gansu | 0.46 | III | 0.44 | III | 0.42 | III | 0.41 | III | |
| Qinghai | 0.42 | III | 0.40 | III | 0.39 | II | 0.37 | II | |
| Ningxia | 0.43 | III | 0.42 | III | 0.41 | III | 0.44 | III | |
| Xinjiang | 0.41 | III | 0.37 | II | 0.36 | II | 0.39 | II |
Appendix B
| Year | Eastern Region | Northeast Region | Central Region | Western Region |
|---|---|---|---|---|
| 2009 | 0.093 | 0.054 | 0.082 | 0.080 |
| 2010 | 0.087 | 0.055 | 0.071 | 0.082 |
| 2011 | 0.074 | 0.072 | 0.063 | 0.090 |
| 2012 | 0.067 | 0.057 | 0.071 | 0.097 |
| 2013 | 0.081 | 0.048 | 0.060 | 0.071 |
| 2014 | 0.066 | 0.055 | 0.045 | 0.075 |
| 2015 | 0.082 | 0.050 | 0.053 | 0.072 |
| 2016 | 0.074 | 0.056 | 0.044 | 0.080 |
| 2017 | 0.070 | 0.048 | 0.064 | 0.089 |
| 2018 | 0.066 | 0.048 | 0.067 | 0.089 |
| 2019 | 0.070 | 0.043 | 0.053 | 0.084 |
| 2020 | 0.067 | 0.050 | 0.048 | 0.084 |
| 2021 | 0.068 | 0.061 | 0.044 | 0.074 |
| 2022 | 0.059 | 0.085 | 0.038 | 0.082 |
| 2023 | 0.058 | 0.081 | 0.031 | 0.087 |
| Average | 0.072 | 0.058 | 0.056 | 0.082 |
| Year | East—Northeast | East—Central | East—West | Northeast—Central | Northeast—West | Central—West |
|---|---|---|---|---|---|---|
| 2009 | 0.087 | 0.105 | 0.097 | 0.084 | 0.080 | 0.083 |
| 2010 | 0.084 | 0.099 | 0.097 | 0.076 | 0.082 | 0.080 |
| 2011 | 0.075 | 0.088 | 0.096 | 0.087 | 0.099 | 0.082 |
| 2012 | 0.066 | 0.085 | 0.096 | 0.083 | 0.098 | 0.089 |
| 2013 | 0.080 | 0.095 | 0.091 | 0.063 | 0.069 | 0.069 |
| 2014 | 0.065 | 0.079 | 0.080 | 0.068 | 0.078 | 0.069 |
| 2015 | 0.084 | 0.098 | 0.095 | 0.058 | 0.069 | 0.067 |
| 2016 | 0.072 | 0.083 | 0.090 | 0.063 | 0.083 | 0.072 |
| 2017 | 0.067 | 0.083 | 0.097 | 0.069 | 0.090 | 0.082 |
| 2018 | 0.064 | 0.081 | 0.095 | 0.069 | 0.088 | 0.083 |
| 2019 | 0.068 | 0.081 | 0.101 | 0.058 | 0.086 | 0.076 |
| 2020 | 0.067 | 0.078 | 0.097 | 0.056 | 0.085 | 0.075 |
| 2021 | 0.074 | 0.084 | 0.089 | 0.056 | 0.074 | 0.067 |
| 2022 | 0.067 | 0.068 | 0.083 | 0.063 | 0.086 | 0.069 |
| 2023 | 0.066 | 0.069 | 0.088 | 0.066 | 0.094 | 0.072 |
| Average | 0.072 | 0.085 | 0.093 | 0.068 | 0.084 | 0.076 |
| Year | Gini Coefficient | Contribution Rate (%) | |||||
|---|---|---|---|---|---|---|---|
| Indicator | Hyper-Variability Density | Between Regions | Overall | Within Regions | Between Regions | Hyper-Variability Density | |
| 2009 | 0.041 | 0.029 | 0.025 | 0.096 | 26.106 | 43.162 | 30.732 |
| 2010 | 0.044 | 0.026 | 0.024 | 0.094 | 25.865 | 46.887 | 27.248 |
| 2011 | 0.045 | 0.027 | 0.023 | 0.095 | 24.649 | 47.392 | 27.959 |
| 2012 | 0.044 | 0.026 | 0.023 | 0.093 | 25.138 | 47.198 | 27.664 |
| 2013 | 0.045 | 0.020 | 0.022 | 0.087 | 25.078 | 51.592 | 23.330 |
| 2014 | 0.040 | 0.020 | 0.020 | 0.080 | 24.808 | 50.606 | 24.587 |
| 2015 | 0.050 | 0.019 | 0.022 | 0.090 | 24.225 | 55.165 | 20.610 |
| 2016 | 0.041 | 0.024 | 0.021 | 0.086 | 24.949 | 47.539 | 27.512 |
| 2017 | 0.045 | 0.023 | 0.022 | 0.090 | 24.870 | 49.717 | 25.413 |
| 2018 | 0.044 | 0.023 | 0.022 | 0.089 | 24.979 | 49.677 | 25.344 |
| 2019 | 0.051 | 0.018 | 0.021 | 0.091 | 23.579 | 56.092 | 20.329 |
| 2020 | 0.048 | 0.019 | 0.021 | 0.088 | 23.738 | 54.565 | 21.697 |
| 2021 | 0.046 | 0.019 | 0.020 | 0.085 | 23.627 | 53.866 | 22.507 |
| 2022 | 0.034 | 0.026 | 0.020 | 0.080 | 24.788 | 42.906 | 32.306 |
| 2023 | 0.041 | 0.024 | 0.020 | 0.084 | 23.661 | 48.427 | 27.911 |
| Average | 0.044 | 0.023 | 0.022 | 0.089 | 24.671 | 49.653 | 25.677 |
References
- Wang, Y.; Fan, S. Does the Integrated Development of High-End, Intelligent, and Green Manufacturing in China Influence Regional Dual Control of Carbon Emissions?—An Analysis Based on Impact Mechanisms and Spatial Effects. Sustainability 2025, 17, 3659. [Google Scholar] [CrossRef]
- Barro, R.J.; Sala-i-Martin, X. Convergence. J. Political Econ. 1992, 100, 223–251. [Google Scholar] [CrossRef]
- Rey, S.J.; Montouri, B.D. US regional income convergence: A spatial econometric perspective. Reg. Stud. 1999, 33, 143–156. [Google Scholar] [CrossRef]
- Chang, J.; Wang, W.; Liu, J. Industrial upgrading and its influence on green land use efficiency. Sci. Rep. 2023, 13, 2813. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Liang, H.; Gao, Z.; Luo, X.; Ren, J. Spatial distribution of China’ s renewable energy industry: Regional features and implications for a harmonious development future. Renew. Sustain. Energy Rev. 2016, 58, 1521–1531. [Google Scholar] [CrossRef]
- Porter, M.E. Towards a dynamic theory of strategy. Strateg. Manag. J. 1991, 12, 95–117. [Google Scholar] [CrossRef]
- Song, Y.; Yang, L.; Sindakis, S.; Aggarwal, S.; Chen, C. Analyzing the role of high-tech industrial agglomeration in green transformation and up-grading of manufacturing industry: The case of China. J. Knowl. Econ. 2023, 14, 3847–3877. [Google Scholar] [CrossRef]
- Chang, X.; Fu, K.; Conteh, M. How Digitalization Impacts the High-Quality Development of the Manufacturing Industry: Evidence from China. Sustainability 2025, 17, 5586. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Shen, W.; Shi, J.; Meng, Q.; Chen, X.; Liu, Y.; Cheng, K.; Liu, W. Influences of environmental regulations on industrial green technology innovation efficiency in China. Sustainability 2022, 14, 4717. [Google Scholar] [CrossRef]
- Li, L.; Msaad, H.; Sun, H.; Tan, M.X.; Lu, Y.; Lau, A.K. Green innovation and business sustainability: New evidence from energy intensive industry in China. Int. J. Environ. Res. Public Health 2020, 17, 7826. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hu, A.; Tian, Z. Digital transformation and electricity consumption: Evidence from the Broadband China pilot policy. Energy Econ. 2022, 115, 106346. [Google Scholar] [CrossRef]
- İşler, B.; Şener, U.; Tokgözlü, A.; Aslan, Z.; Heise, R. Spatio-Temporal Variation in Solar Irradiance in the Mediterranean Region: A Deep Learning Approach. Sustainability 2025, 17, 6696. [Google Scholar] [CrossRef]
- Meng, D.; Yang, X.; Wang, Z.; Liu, Y.; Zhang, J.; Liu, X.; Liu, B. Spatial Distribution and Differentiation Analysis of Coastal Aquaculture in China Based on Remote Sensing Monitoring. Remote Sens. 2024, 16, 1585. [Google Scholar] [CrossRef]
- Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Yao, M.C.; Zhang, R.J.; Dong, H.Z. Analysis of the spatiotemporal convergence effect and influencing factors of industrial green technology innovation efficiency in the Yangtze River Economic Belt in China. J. Knowl. Econ. 2025, 16, 9430–9465. [Google Scholar] [CrossRef]
- Gao, H.; Meng, Z. Research on the spillover effect of different types of technological innovation on new energy industry: Taking china’s solar photovoltaic as an example. Sustainability 2023, 15, 8067. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, R.; Zhang, D.; Zhou, C. Urban agglomerations in China: Characteristics and influencing factors of population agglomeration. Chin. Geogr. Sci. 2023, 33, 719–735. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Lues, R. Anaerobic digestion of lignocellulosic biomass: Substrate characteristics (challenge) and innovation. Fermentation 2023, 9, 755. [Google Scholar] [CrossRef]
- Vermeulen, B.; Pyka, A. The twin digital and green transition: Paradigm shift or tech fix? J. Innov. Econ. Manag. 2024, 45, 1–29. [Google Scholar]
- Sheng, S.; Li, Y.; Zhao, Z. How does regional policy coordination help achieve the low-carbon development?: A study of theoretical mechanisms and empirical analysis from China. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, S. Research on the Impact of Green Technology Innovation on Carbon Emission Reduction Maturity in China: Heterogeneity and Mediating Effect. Pol. J. Environ. Stud. 2025, 1–14. [Google Scholar] [CrossRef]





| Primary Indicator | Secondary Indicator | Tertiary Indicator | Attribute |
|---|---|---|---|
| High-end Development (ADV) | Industrial Base (IND) | Regional Energy Reserves (RER) | Positive |
| Oil and Gas Industry Investment (OGI) | Positive | ||
| Industrial Scale (SCL) | Total Industry Profit (TPI) | Positive | |
| Industrial GDP (GIO) | Positive | ||
| Average Employee Salary (ASE) | Positive | ||
| Industrial Efficiency (EFF) | Total Assets (TAI) | Positive | |
| Number of Employees (NEI) | Positive | ||
| Intelligent Development (INT) | Intelligent Infrastructure (INF) | Share of R&D Personnel (RDP) | Positive |
| Internet Penetration Rate (IPR) | Positive | ||
| Intelligent Investment (INX) | R&D Expenditure (RDX) | Positive | |
| Intelligent Output (INP) | Patent Applications and Grants (NPG) | Positive | |
| Technology Market Transaction Value (TMT) | Positive | ||
| Green Development (GRN) | Green Production (GPR) | Coal Production (RCO) | Negative |
| Crude Oil Production (COO) | Negative | ||
| Natural Gas Production (NGO) | Positive | ||
| Pollution Emission (PEM) | Total Carbon Emissions (TCE) | Negative | |
| Carbon Intensity (CEI) | Negative | ||
| Pollution Control (PCO) | Industrial Solid Waste Utilization Rate (ISW) | Positive | |
| Pollution Control Investment as % of GDP (PCI) | Positive |
| Year | National σ | Eastern Region σ | Northeastern Region σ | Central Region σ | Western Region σ |
|---|---|---|---|---|---|
| 2009 | 7.114 | 7.643 | 4.549 | 5.674 | 5.711 |
| 2010 | 7.100 | 7.290 | 4.876 | 4.877 | 5.996 |
| 2011 | 6.815 | 6.198 | 6.540 | 4.455 | 6.279 |
| 2012 | 6.326 | 5.445 | 4.991 | 4.973 | 6.601 |
| 2013 | 5.756 | 6.639 | 3.726 | 4.055 | 4.831 |
| 2014 | 6.779 | 5.304 | 4.573 | 3.057 | 5.210 |
| 2015 | 6.779 | 7.060 | 3.865 | 3.734 | 4.975 |
| 2016 | 6.159 | 5.966 | 4.521 | 3.272 | 5.550 |
| 2017 | 6.691 | 5.989 | 3.989 | 4.733 | 6.094 |
| 2018 | 6.666 | 5.766 | 4.056 | 5.013 | 6.184 |
| 2019 | 6.863 | 6.359 | 3.686 | 3.963 | 5.831 |
| 2020 | 6.752 | 6.161 | 4.392 | 3.650 | 5.969 |
| 2021 | 6.241 | 5.767 | 4.687 | 3.098 | 5.236 |
| 2022 | 6.074 | 5.211 | 6.968 | 2.918 | 5.911 |
| 2023 | 6.350 | 5.093 | 6.992 | 2.472 | 6.103 |
| Year | 2009–2010 (11th FYP) | 2011–2015 (12th FYP) | 2016–2020 (13th FYP) | 2021–2023 (14th FYP) | |||||
|---|---|---|---|---|---|---|---|---|---|
| Parameter | Intercept | β | Intercept | β | Intercept | β | Intercept | β | |
| General | Estimated Value | −0.604 *** | −0.703 *** | −0.694 *** | −0.786 *** | −0.624 *** | −0.744 *** | −0.735 *** | −0.859 *** |
| t-value | −5.09 | −5.24 | −9.54 | −9.69 | −9.05 | −9.21 | −8.00 | −8.00 | |
| R2 | 0.337 | 0.388 | 0.364 | 0.426 | |||||
| N | 60 | 150 | 150 | 90 | |||||
| Eastern | Estimated Value | −0.869 *** | −1.128 *** | −0.747 *** | −0.959 *** | −0.866 *** | −1.124 *** | −0.764 *** | −1.012 *** |
| t-value | −4.56 | −4.68 | −6.74 | −6.93 | −11.96 | −12.12 | −5.36 | −5.47 | |
| R2 | 0.563 | 0.500 | 0.557 | 0.517 | |||||
| N | 20 | 50 | 50 | 30 | |||||
| Central | Estimated Value | −1.176 * | −1.421 * | −0.945 *** | −1.145 *** | −1.180 *** | −1.452 *** | −1.239 *** | −1.495 *** |
| t-value | −2.25 | −2.16 | −4.24 | −4.36 | −9.05 | −9.15 | −4.01 | −4.10 | |
| R2 | 0.608 | 0.593 | 0.717 | 0.706 | |||||
| N | 6 | 15 | 15 | 9 | |||||
| Northeast | Estimated Value | −1.198 *** | −1.275 *** | −0.807 *** | −0.832 *** | −0.960 *** | −1.019 *** | −0.990 *** | −1.080 *** |
| t-value | −4.04 | −4.08 | −4.27 | −4.28 | −8.41 | −8.51 | −4.41 | −4.42 | |
| R2 | 0.649 | 0.395 | 0.512 | 0.550 | |||||
| N | 12 | 30 | 30 | 18 | |||||
| Western | Estimated Value | −1.038 *** | −1.123 *** | −0.924 *** | −0.977 *** | −0.956 *** | −1.011 *** | −1.179 *** | −1.282 *** |
| t-value | −4.85 | −4.87 | −6.94 | −7.06 | −11.28 | −11.39 | −7.67 | −7.72 | |
| R2 | 0.555 | 0.485 | 0.501 | 0.658 | |||||
| N | 22 | 55 | 55 | 33 | |||||
| Variable | Definition | Max | Min | Mean | Std. Dev. | Expected Sign | |
|---|---|---|---|---|---|---|---|
| Dependent Variables | Oil and Gas Industry HIG Level (HIG) | China oil and gas industry high-end, intelligent, and green development index | 0.593 | 0.281 | 0.425 | 0.067 | + |
| High-end Level (ADV) | China oil and gas industry high-end development index | 0.870 | 0.203 | 0.458 | 0.125 | + | |
| Intelligent Level (INT) | China oil and gas industry intelligent development index | 0.866 | 0.119 | 0.493 | 0.178 | + | |
| Green Level (GRN) | China oil and gas industry green development index | 0.924 | 0.060 | 0.270 | 0.197 | + | |
| Explanatory Variables | Oil and Gas Resource Endowment (OGE) | Standardized oil and gas resource output of each region | 1 | 0 | 0.144 | 0.172 | + |
| Policy Support (PSP) | Government expenditure in oil and gas exploration, log-transformed | 6.911 | 2.449 | 4.786 | 0.778 | + | |
| Technological Innovation (TIS) | Proportion of new technologies, equipment, and processes applied in oil and gas industry | 0.531 | 0.004 | 0.159 | 0.110 | + | |
| Carbon Emission Constraint (CEC) | Carbon market price, log-transformed | 4.549 | 4.247 | 4.384 | 0.064 | + | |
| Control Variables | Economic Development Level (FDL) | Per capita GDP, log-transformed | 9.820 | 5.072 | 7.543 | 0.896 | |
| Oil and Gas Resource Consumption (OGC) | Oil and gas consumption of each region, log-transformed | 13.204 | 9.085 | 10.878 | 0.721 | ||
| Industrial Structure (MAR) | Ratio of oil and gas industry output to regional GDP | 0.615 | 0.158 | 0.438 | 0.088 | ||
| Government Regulation (GAC) | Ratio of local fiscal expenditure to GDP | 0.695 | 0.087 | 0.247 | 0.105 | ||
| Environmental Regulation (ENV) | Industrial pollution control intensity | 0.992 | 0.001 | 0.111 | 0.113 | ||
| (1) | (2) | (3) | |
|---|---|---|---|
| HIG | HIG | HIG-1 | |
| OGE | 0.194 *** (12.18) | 0.152 *** (10.70) | 0.114 * (8.83) |
| Control Variables | NO | YES | YES |
| Province Fixed Effects | YES | YES | YES |
| Year Fixed Effects | YES | YES | YES |
| Intercept | 0.397 *** (111.47) | 0.137 *** (2.49) | 0.253 ** (1.87) |
| N | 450 | 450 | 450 |
| Adj-R2 | 0.247 | 0.449 | 0.275 |
| Upstream (Exploration and Production) | ||||
|---|---|---|---|---|
| HIG | ADV | INT | GRN | |
| OGE | 0.512 *** (9.27) | - | - | - |
| PSP | - | 0.043 *** (2.73) | - | - |
| TIS | - | - | 0.582 *** (6.66) | - |
| CEC | - | - | - | −0.609 ** (−1.95) |
| Control Variables | YES | YES | YES | YES |
| Province Fixed Effects | YES | YES | YES | YES |
| Year Fixed Effects | YES | YES | YES | YES |
| Intercept | 0.274 *** (4.31) | −0.116 (−0.49) | 0.486 *** (2.51) | 2.993 *** (2.18) |
| N | 135 | 135 | 135 | 135 |
| Adj-R2 | 0.818 | 0.671 | 0.796 | 0.552 |
| Midstream (Transportation and Storage) | ||||
| HIG | ADV | INT | GRN | |
| OGE | 0.079 *** (4.04) | - | - | - |
| PSP | - | 0.009 *** (0.47) | - | - |
| TIS | - | - | 0.635 *** (9.73) | - |
| CEC | - | - | − | 0.345 * (1.79) |
| Control Variables | YES | YES | YES | YES |
| Province Fixed Effects | YES | YES | YES | YES |
| Year Fixed Effects | YES | YES | YES | YES |
| Intercept | −0.070 *** (−0.62) | 0.429 *** (2.12) | 0.237 *** (1.69) | −1.198 * (−1.59) |
| N | 105 | 105 | 105 | 105 |
| Adj-R2 | 0.657 | 0.506 | 0.834 | 0.744 |
| Downstream (Refining and Marketing/Sales) | ||||
| HIG | ADV | INT | GRN | |
| OGE | 0.155 *** (5.26) | - | - | - |
| PSP | - | 0.027 *** (3.45) | - | - |
| TIS | - | - | 0.651 *** (8.32) | - |
| CEC | - | - | - | 0.436 ** (1.93) |
| Control Variables | YES | YES | YES | YES |
| Province Fixed Effects | YES | YES | YES | YES |
| Year Fixed Effects | YES | YES | YES | YES |
| Intercept | 0.273 *** (3.79) | 0.340 *** (4.78) | 0.467 *** (3.28) | −1.981 *** (−2.17) |
| N | 210 | 210 | 210 | 210 |
| Adj-R2 | 0.582 | 0.654 | 0.808 | 0.517 |
| East | ||||
|---|---|---|---|---|
| HIG | ADV | INT | GRN | |
| OGE | 0.104 *** (5.20) | - | - | - |
| PSP | - | 0.023 * (1.84) | - | - |
| TIS | - | - | 0.680 *** (9.45) | - |
| CEC | - | - | - | 0.002 (0.01) |
| Control Variables | YES | YES | YES | YES |
| Province Fixed Effects | YES | YES | YES | YES |
| Year Fixed Effects | YES | YES | YES | YES |
| Intercept | 0.343 *** (3.64) | 0.177 (0.96) | 0.710 *** (4.06) | −0.022 (−0.03) |
| N | 165 | 165 | 165 | 165 |
| Adj-R2 | 0.402 | 0.645 | 0.760 | 0.228 |
| Middle | ||||
| HIG | ADV | INT | GRN | |
| OGE | 0.284 *** (10.94) | - | - | - |
| PSP | - | −0.114 *** (−3.80) | - | - |
| TIS | - | - | 0.372 *** (5.36) | - |
| CEC | - | - | - | 1.028 *** (1.87) |
| Control Variables | YES | YES | YES | YES |
| Province Fixed Effects | YES | YES | YES | YES |
| Year Fixed Effects | YES | YES | YES | YES |
| Intercept | 0.130 ** (1.91) | 0.803 *** (2.90) | 0.313 *** (2.62) | −3.999 *** (−3.26) |
| N | 120 | 120 | 120 | 120 |
| Adj-R2 | 0.695 | 0.398 | 0.669 | 0.540 |
| West | ||||
| HIG | ADV | INT | GRN | |
| OGE | 0.104 *** (3.81) | - | - | - |
| PSP | - | 0.024 (1.32) | - | - |
| TIS | - | - | 0.177 * (1.44) | - |
| CEC | - | - | - | −0.736 ** (−1.81) |
| Control Variables | YES | YES | YES | YES |
| Province Fixed Effects | YES | YES | YES | YES |
| Year Fixed Effects | YES | YES | YES | YES |
| Intercept | 0.086 (0.90) | −0.203 (−0.94) | 0.250 * (1.48) | 2.983 * (1.77) |
| N | 165 | 165 | 165 | 165 |
| Adj-R2 | 0.326 | 0.648 | 0.552 | 0.292 |
| Resource-Based Cities | ||||
|---|---|---|---|---|
| HIG | ADV | INT | GRN | |
| OGE | 0.107 *** (7.11) | - | - | - |
| PSP | - | 0.038 *** (2.89) | - | - |
| TIS | - | - | 0.422 *** (5.59) | - |
| CEC | - | - | - | 0.149 (0.53) |
| Control Variables | YES | YES | YES | YES |
| Province Fixed Effects | YES | YES | YES | YES |
| Year Fixed Effects | YES | YES | YES | YES |
| Intercept | 0.279 *** (3.65) | 0.334 *** (3.43) | 0.713 *** (5.45) | −1.083 (−0.92) |
| N | 240 | 240 | 240 | 240 |
| Adj-R2 | 0.428 | 0.264 | 0.698 | 0.377 |
| Non-Resource-Based Cities | ||||
| HIG | ADV | INT | GRN | |
| OGE | 0.349 *** (9.27) | - | - | - |
| PSP | - | 0.007 (0.73) | - | - |
| TIS | - | − | 0.704 *** (8.36) | - |
| CEC | - | - | - | 0.083 * (0.88) |
| Control Variables | YES | YES | YES | YES |
| Province Fixed Effects | YES | YES | YES | YES |
| Year Fixed Effects | YES | YES | YES | YES |
| Intercept | 0.102 (1.33) | −0.388 *** (−3.02) | −0.081 (−0.53) | −0.229 ** (−0.52) |
| N | 210 | 210 | 210 | 210 |
| Adj-R2 | 0.574 | 0.193 | 0.764 | 0.186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Fan, S. Spatiotemporal Patterns and Influencing Factors of the “Three Modernizations” Integrated Development in China’s Oil and Gas Industry. Sustainability 2025, 17, 10119. https://doi.org/10.3390/su172210119
Wang Y, Fan S. Spatiotemporal Patterns and Influencing Factors of the “Three Modernizations” Integrated Development in China’s Oil and Gas Industry. Sustainability. 2025; 17(22):10119. https://doi.org/10.3390/su172210119
Chicago/Turabian StyleWang, Yi, and Shuo Fan. 2025. "Spatiotemporal Patterns and Influencing Factors of the “Three Modernizations” Integrated Development in China’s Oil and Gas Industry" Sustainability 17, no. 22: 10119. https://doi.org/10.3390/su172210119
APA StyleWang, Y., & Fan, S. (2025). Spatiotemporal Patterns and Influencing Factors of the “Three Modernizations” Integrated Development in China’s Oil and Gas Industry. Sustainability, 17(22), 10119. https://doi.org/10.3390/su172210119

