Linking Land Uses and Ecosystem Services Through a Bipartite Spatial Network: A Framework for Urban CO2 Mitigation
Abstract
1. Introduction
- Create a bipartite spatial network connecting eco-districts and land-use types, weighting edges based on land-use-specific CO2 emissions derived from Urban Atlas data and parameters identified in the literature.
- Identify influential eco-districts and top-emitting land uses using centrality metrics to identify interdependencies that create emissions patterns.
- Suggest intervention hotspots and recommend spatial actions.
2. Literature Review
3. Methodology
Network Construction and Visualization
- There are two types of nodes:
- ○
- Eco-districts;
- ○
- Land-use categories.
- Nodes are weighted according to the total emissions of each eco-district or land-use category.
- Edges indicate the emissions contribution of each land-use type within an eco-district.
- The weights of the edges are determined by calculating the total CO2 emissions generated by a land-use type in a specific district.
- Degree centrality, representing the number of neighboring districts directly connected through shared borders;
- Weighted degree, expressing the total strength of adjacency-based connections for each district, reflecting the magnitude of emission linkages with its neighbors;
- Eigenvector centrality, measuring the overall influence of a district within the network, considering both its direct connections and the importance of its connected neighbors.
4. Results
- Industrial, commercial, public, military, and private units (Total: ~524.7 million kg CO2);
- Continuous urban fabric (S.L. > 80%) (Total: ~428.9 million kg CO2);
- Discontinuous dense urban fabric (S.L. 50–80%) (Total: ~401.5 million kg CO2);
- Other roads and associated land (Total: ~250.9 million kg CO2);
- Fast transit roads and associated land (Total: ~250.9 million kg CO2).
5. Discussion
5.1. Interconnected Nature of Urban Emissions
5.2. Multiscale Implications for Urban Planning
5.3. Methodological Reflection and Scientific Contribution
5.4. Limitations and Future Research
5.5. Approaches for Urban Planning to Address Carbon Emissions
- Targeted Land Use Reconfiguration
- Localized Retrofitting and Densification Control
- Ecological Compensation Across the District
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crippa, M.; Guizzardi, D.; Pisoni, E.; Solazzo, E.; Guion, A.; Muntean, M.; Florczyk, A.; Schiavina, M.; Melchiorri, M.; Hutfilter, A.F. Global Anthropogenic Emissions in Urban Areas: Patterns, Trends, and Challenges. Environ. Res. Lett. 2021, 16, 074033. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme. Urban Climate Action: The Urban Content of the NDCs—Global Review 2022; UN-Habitat: Nairobi, Kenya, 2023. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, Y.; Wang, P. Driving Effects of Urbanization on City-Level Carbon Dioxide Emissions: From Multiple Perspectives of Urbanization. Int. J. Urban Sci. 2022, 26, 108–128. [Google Scholar] [CrossRef]
- Creutzig, F.; Baiocchi, G.; Bierkandt, R.; Pichler, P.-P.; Seto, K.C. Global Typology of Urban Energy Use and Potentials for an Urbanization Mitigation Wedge. Proc. Natl. Acad. Sci. USA 2015, 112, 6283–6288. [Google Scholar] [CrossRef] [PubMed]
- Zarco-Soto, I.M.; Zarco-Periñán, P.J.; Sánchez-Durán, R. Influence of Cities Population Size on Their Energy Consumption and CO2 Emissions: The Case of Spain. Environ. Sci. Pollut. Res. 2021, 28, 28146–28167. [Google Scholar] [CrossRef]
- Garschagen, M.; Romero-Lankao, P. Exploring the Relationships between Urbanization Trends and Climate Change Vulnerability. Clim. Change 2015, 133, 37–52. [Google Scholar] [CrossRef]
- Das, S.; Choudhury, M.R.; Chatterjee, B.; Das, P.; Bagri, S.; Paul, D.; Bera, M.; Dutta, S. Unraveling the Urban Climate Crisis: Exploring the Nexus of Urbanization, Climate Change, and Their Impacts on the Environment and Human Well-Being–A Global Perspective. AIMS Public Health 2024, 11, 963. [Google Scholar] [CrossRef]
- Eichhorn, S.; Rusche, K.; Weith, T. Integrative Governance Processes towards Sustainable Spatial Development—Solving Conflicts between Urban Infill Development and Climate Change Adaptation. J. Environ. Plan. Manag. 2021, 64, 2233–2256. [Google Scholar] [CrossRef]
- Grafakos, S.; Trigg, K.; Landauer, M.; Chelleri, L.; Dhakal, S. Analytical Framework to Evaluate the Level of Integration of Climate Adaptation and Mitigation in Cities. Clim. Change 2019, 154, 87–106. [Google Scholar] [CrossRef]
- OECD. Decarbonising Urban Mobility with Land Use and Transport Policies: The Case of Auckland, New Zealand; OECD Publishing: Paris, France, 2020. [Google Scholar] [CrossRef]
- Ghorbany, S.; Hu, M. Urban Embodied Carbon Assessment: Methodology and Insights from Analyzing over a Million Buildings in Chicago. Carbon Manag. 2024, 15, 2382993. [Google Scholar] [CrossRef]
- Kılkış, Ş. Urban Emissions and Land Use Efficiency Scenarios for Avoiding Increments of Global Warming. Energy 2024, 307, 132174. [Google Scholar] [CrossRef]
- Wang, S.-H.; Huang, S.-L.; Huang, P.-J. Can Spatial Planning Really Mitigate Carbon Dioxide Emissions in Urban Areas? A Case Study in Taipei, Taiwan. Landsc. Urban Plan. 2018, 169, 22–36. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Panahi, H. Exploring an Integrated Spatially Model for Land-Use Scenarios Simulation in a Metropolitan Region. Environ. Dev. Sustain. 2021, 23, 13628–13649. [Google Scholar] [CrossRef]
- Raimbault, J. An Interdisciplinary Bibliometric Analysis of Models for Land-Use and Transport Interactions. arXiv 2021, arXiv:2102.13501. [Google Scholar] [CrossRef]
- Stokes, E.C.; Seto, K.C. Climate Change and Urban Land Systems: Bridging the Gaps between Urbanism and Land Science. J. Land Use Sci. 2016, 11, 698–708. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and Valuing Ecosystem Services for Urban Planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. A Global View of Regulatory Ecosystem Services: Existed Knowledge, Trends, and Research Gaps. Ecol. Process. 2020, 9, 40. [Google Scholar] [CrossRef]
- Skrzypczak, D.; Gorazda, K.; Mikula, K.; Mironiuk, M.; Kominko, H.; Sawska, K.; Evrard, D.; Trzaska, K.; Moustakas, K.; Chojnacka, K. Towards Carbon Neutrality: Enhancing CO2 Sequestration by Plants to Reduce Carbon Footprint. Sci. Total Environ. 2025, 966, 178763. [Google Scholar] [CrossRef]
- Keith, H.; Vardon, M.; Lindenmayer, D.; Mackey, B. Accounting for Carbon Stocks and Flows: Storage and Sequestration Are Both Ecosystem Services. In Proceedings of the 25th Meeting of the London Group on Environmental Accounting, Melbourne, Australia, 7–10 October 2019; pp. 7–10. [Google Scholar]
- Kim, J.; Kang, Y.; Kim, D.; Son, S.; Kim, E.J. Carbon Storage and Sequestration Analysis by Urban Park Grid Using I-Tree Eco and Drone-Based Modeling. Forests 2024, 15, 683. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A Quantitative Review of Urban Ecosystem Service Assessments: Concepts, Models, and Implementation. AMBIO 2014, 43, 413–433. [Google Scholar] [CrossRef]
- Park, C.; Jeong, S.; Park, M.-S.; Park, H.; Yun, J.; Lee, S.-S.; Park, S.-H. Spatiotemporal Variations in Urban CO2 Flux with Land-Use Types in Seoul. Carbon Balance Manag. 2022, 17, 3. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, C.; Sohrabi, P.; Hamdy, N. Spatializing Social Networking Analysis to Capture Local Innovation Flows towards Inclusive Transition. Sustainability 2022, 14, 3000. [Google Scholar] [CrossRef]
- Sahu, P.; Debsarma, C. Climate Change and Urban Environment Sustainability: Issues and Challenges. In Climate Change and Urban Environment Sustainability; Disaster Resilience and Green Growth; Pathak, B., Dubey, R.S., Eds.; Springer Nature: Singapore, 2023; pp. 1–13. ISBN 978-981-19-7617-9. [Google Scholar]
- Pan, H.; Page, J.; Shi, R.; Cong, C.; Cai, Z.; Barthel, S.; Thollander, P.; Colding, J.; Kalantari, Z. Contribution of Prioritized Urban Nature-Based Solutions Allocation to Carbon Neutrality. Nat. Clim. Change 2023, 13, 862–870. [Google Scholar] [CrossRef]
- World Wide Fund for Nature (WWF) Nature Based Solutions for Mitigation and Adaptation towards Climate Change. Available online: https://wwfeu.awsassets.panda.org/downloads/2023_wwf_report_nbs.pdf (accessed on 16 April 2025).
- OECD. Global Monitoring of Policies for Decarbonising Buildings: A Multi-Level Approach; OECD Urban Studies; OECD: Paris, France, 2024; ISBN 978-92-64-45449-1. [Google Scholar]
- Sabet, S.; Farooq, B. Exploring the Combined Effects of Major Fuel Technologies, Eco-Routing, and Eco-Driving for Sustainable Traffic Decarbonization in Downtown Toronto. Transp. Res. Part A Policy Pract. 2025, 192, 104385. [Google Scholar] [CrossRef]
- Shen, J.; Zheng, F.; Ma, Y.; Deng, W.; Zhang, Z. Urban Travel Carbon Emission Mitigation Approach Using Deep Reinforcement Learning. Sci. Rep. 2024, 14, 27778. [Google Scholar] [CrossRef]
- Saarikoski, H.; Primmer, E.; Saarela, S.-R.; Antunes, P.; Aszalós, R.; Baró, F.; Berry, P.; Blanko, G.G.; Goméz-Baggethun, E.; Carvalho, L. Institutional Challenges in Putting Ecosystem Service Knowledge in Practice. Ecosyst. Serv. 2018, 29, 579–598. [Google Scholar] [CrossRef]
- Eraydin, A. “Resilience Thinking” for Planning. In Resilience Thinking in Urban Planning; Springer: Dordrecht, The Netherlands, 2012; pp. 17–37. ISBN 978-94-007-5476-8. [Google Scholar]
- Chen, S.; Liu, Z.; Chen, B.; Zhu, F.; Fath, B.D.; Liang, S.; Su, M.; Yang, J. Dynamic Carbon Emission Linkages Across Boundaries. Earth’s Future 2019, 7, 197–209. [Google Scholar] [CrossRef]
- Milnar, M.; Ramaswami, A. Impact of Urban Expansion and In Situ Greenery on Community-Wide Carbon Emissions: Method Development and Insights from 11 US Cities. Environ. Sci. Technol. 2020, 54, 16086–16096. [Google Scholar] [CrossRef]
- Gallotti, R.; Sacco, P.; De Domenico, M. Complex Urban Systems: Challenges and Integrated Solutions for the Sustainability and Resilience of Cities. Complexity 2021, 2021, 1782354. [Google Scholar] [CrossRef]
- Hamdy, N.; Bevilacqua, C. Assessing the Role of the Blue Economy in the Comprehensive Development of Lagging Coastal Areas. A Case Study of Calabria. In New Metropolitan Perspectives; Smart Innovation, Systems and Technologies; Bevilacqua, C., Balland, P.-A., Kakderi, C., Provenzano, V., Eds.; Springer: Cham, Switzerland, 2023; Volume 639, pp. 21–45. ISBN 978-3-031-34210-3. [Google Scholar]
- UN-Habitat World Cities Report 2022: Envisaging the Future of Cities. Available online: https://unhabitat.org/world-cities-report-2022-envisaging-the-future-of-cities (accessed on 23 October 2024).
- URBACT II. Sustainable Regeneration in Urban Areas: URBACT II Capitalisation. Available online: https://www.dotaceeu.cz/Dotace/media/SF/FONDY%20EU/2014-2020/Programy/URBACT/Pokyny%20pro%20p%C5%99%C3%ADjemce%2031_12_2016/Sustainable-regeneration-in-urban-areas_1.pdf (accessed on 13 January 2025).
- Yang, Y.; Zhang, J.; Huang, J.; Zhao, Y.; Zhao, Q. Urban Density and Spatial Carbon Emission Performance of Megacities in China. Sci. Rep. 2024, 14, 23862. [Google Scholar] [CrossRef]
- Yang, Y.; Takase, T. Spatial Characteristics of Carbon Dioxide Emission Intensity of Urban Road Traffic and Driving Factors: Road Network and Land Use. Sustain. Cities Soc. 2024, 113, 105700. [Google Scholar] [CrossRef]
- Yaacob, N.F.F.; Yazid, M.R.M.; Abdul Maulud, K.N.; Khahro, S.H.; Javed, Y. Spatio-Temporal Analysis of CO2 Emissions from Vehicles in Urban Areas: A Satellite Imagery Approach. Sustainability 2024, 16, 10765. [Google Scholar] [CrossRef]
- Wagner, F.; Nachtigall, F.; Franken, L.; Milojevic-Dupont, N.; Pereira, R.H.M.; Koch, N.; Runge, J.; Gonzalez, M.; Creutzig, F. Using Machine Learning to Understand Causal Relationships between Urban Form and Travel CO2 Emissions across Continents. arXiv 2023, arXiv:2308.16599. [Google Scholar] [CrossRef]
- Tang, M.; Hu, F. Land Urbanization and Urban CO2 Emissions: Empirical Evidence from Chinese Prefecture-Level Cities. Heliyon 2023, 9, e19834. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Sun, J.; Zheng, J. Spatiotemporal Analysis of Urban Carbon Metabolism and Its Response to Land Use Change: A Case Study of Beijing, China. Atmosphere 2023, 14, 1305. [Google Scholar] [CrossRef]
- Wei, L.; Zeng, B. Urban Technology Transfer, Spatial Spillover Effects, and Carbon Emissions in China. Sustainability 2024, 16, 9662. [Google Scholar] [CrossRef]
- Fu, H.; Li, B.; Liu, X.; Zheng, J.; Yin, S.; Jiang, H. Spatio-Temporal Coupling Evolution of Urbanisation and Carbon Emission in the Yangtze River Economic Belt. Int. J. Environ. Res. Public Health 2023, 20, 4483. [Google Scholar] [CrossRef]
- Lu, Y.; Zhai, G.; Zhou, S.; Shi, Y. Risk Reduction through Urban Spatial Resilience: A Theoretical Framework. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 921–937. [Google Scholar] [CrossRef]
- Zetterberg, L.; Eriksson, M.; Ravry, C.; Santosa, A.; Ng, N. Neighbourhood Social Sustainable Development and Spatial Scale: A Qualitative Case Study in Sweden. Local Environ. 2023, 28, 793–810. [Google Scholar] [CrossRef]
- Ye, Y. Sino-Singapore Tianjin Eco-City (Case: CHN-Tianjin). Available online: https://atlasofurbantech.org/cases/chn-tianjin/ (accessed on 22 April 2025).
- Shi, Y.; Zheng, B.; Wang, Z.; Zheng, J. Mixed Land Use and Its Relationship with CO2 Emissions: A Comparative Analysis Based on Several Typical Development Zones in Shanghai. Land 2023, 12, 1675. [Google Scholar] [CrossRef]
- Chuai, X.; Xu, H.; Liu, Z.; Xiang, A.; Luo, Y.; Mao, W.; Wang, T.; Ye, X.; Miao, L.; Zhao, R. Promoting Low-Carbon Land Use: From Theory to Practical Application through Exploring New Methods. Humanit. Soc. Sci. Commun. 2024, 11, 727. [Google Scholar] [CrossRef]
- Li, Q.; Chen, X.; Jiao, S.; Song, W.; Zong, W.; Niu, Y. Can Mixed Land Use Reduce CO2 Emissions? A Case Study of 268 Chinese Cities. Sustainability 2022, 14, 15117. [Google Scholar] [CrossRef]
- Morelli, C.; Maranzano, P.; Otto, P. Spatiotemporal Clustering of GHGs Emissions in Europe: Exploring the Role of Spatial Component. arXiv 2025, arXiv:2503.11909. [Google Scholar] [CrossRef]
- Baur, A.H.; Förster, M.; Kleinschmit, B. The Spatial Dimension of Urban Greenhouse Gas Emissions: Analyzing the Influence of Spatial Structures and LULC Patterns in European Cities. Landsc. Ecol. 2015, 30, 1195–1205. [Google Scholar] [CrossRef]
- EEA Urban Atlas Land Cover/Land Use 2018 (Vector), Europe, 6-Yearly, July 2021. Available online: https://sdi.eea.europa.eu/catalogue/copernicus/api/records/fb4dffa1-6ceb-4cc0-8372-1ed354c285e6 (accessed on 23 March 2025).
- ENEA SIAPE—Sistema Informativo sugli Attestati di Prestazione Energetica. Available online: https://siape.enea.it/ (accessed on 22 January 2025).
- International Union of Railways (UIC) Carbon Footprint of Railway Infrastructure: Comparing Existing Methodologies on Typical Corridors; Recommendations for a Harmonised Approach. Available online: https://uic.org/IMG/pdf/carbon_footprint_of_railway_infrastructure.pdf (accessed on 13 March 2025).
- Enea, D.; Mastrilli, A. Sustainable Planning: The Case Study of the Strait of Messina Ports. Environ. Sci. Pollut. Res. 2024, 31, 15348–15363. [Google Scholar] [CrossRef] [PubMed]
- Fregola, R.A.; Ciccolella, A.; Festa, V.; Ruggieri, G.; Schingaro, E.; Tursi, F.; Ventruti, G. Review of Polymetallic Mineralization in the Sila and Serre Massifs (Calabria, Southern Italy). Minerals 2023, 13, 439. [Google Scholar] [CrossRef]
- Ralph, J.; Von Bargen, D.; Martynov, P.; Zhang, J.; Que, X.; Prabhu, A.; Morrison, S.M.; Li, W.; Ma, X. Metropolitan City of Reggio Calabria, Calabria, Italy. Available online: https://www.mindat.org/loc-31470.html (accessed on 3 February 2025).
- Brilli, L.; Toscano, P.; Carotenuto, F.; Di Lonardo, S.; Di Tommasi, P.; Magliulo, V.; Manco, A.; Vitale, L.; Zaldei, A.; Gioli, B. Long-Term Investigation of Methane and Carbon Dioxide Emissions in Two Italian Landfills. Heliyon 2024, 10, e29356. [Google Scholar] [CrossRef]
- Weigert, M.; Melnyk, O.; Winkler, L.; Raab, J. Carbon Emissions of Construction Processes on Urban Construction Sites. Sustainability 2022, 14, 12947. [Google Scholar] [CrossRef]
- Groth, P.; Miller, R.; Nadkarni, N.; Riley, M.; Shoup, L. Quantifying the Greenhouse Gas Benefits of Urban Parks. Available online: http://cloud.tpl.org/pubs/benefits_greenhouse_gases_and_parks_whitepaper.pdf (accessed on 22 July 2025).
- European Climate Change Programme (ECCP) Agricultural Soils-Final Report. Available online: https://climate.ec.europa.eu/system/files/2016-11/finalreport_agricsoils_en.pdf (accessed on 13 February 2025).
- Lopez-Bellido, P.J.; Lopez-Bellido, L.; Fernandez-Garcia, P.; Muñoz-Romero, V.; Lopez-Bellido, F.J. Assessment of Carbon Sequestration and the Carbon Footprint in Olive Groves in Southern Spain. Carbon Manag. 2016, 7, 161–170. [Google Scholar] [CrossRef]
- Scandellari, F.; Caruso, G.; Liguori, G.; Meggio, F.; Palese, A.M.; Zanotelli, D.; Celano, G.; Gucci, R.; Inglese, P.; Pitacco, A. A Survey of Carbon Sequestration Potential of Orchards and Vineyards in Italy. Eur. J. Hortic. Sci. 2016, 81, 106–114. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC) Land Use, Land-Use Change, and Forestry—Chapter 3: Projecting Land-Use Change. Available online: https://archive.ipcc.ch/ipccreports/sres/land_use/index.php?idp=28 (accessed on 2 March 2025).
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, B.; Xu, Q.; Gao, D.; Zuo, H.; Ren, R.; Diao, K.; Chen, Z. Enhanced Carbon Storage in Mixed Coniferous and Broadleaf Forest Compared to Pure Forest in the North Subtropical–Warm Temperate Transition Zone of China. Forests 2024, 15, 1520. [Google Scholar] [CrossRef]
- Gratani, L.; Varone, L.; Ricotta, C.; Catoni, R. Mediterranean Shrublands Carbon Sequestration: Environmental and Economic Benefits. Mitig. Adapt. Strateg. Glob. Change 2013, 18, 1167–1182. [Google Scholar] [CrossRef]
- Canu, D.M.; Ghermandi, A.; Nunes, P.A.; Lazzari, P.; Cossarini, G.; Solidoro, C. Estimating the Value of Carbon Sequestration Ecosystem Services in the Mediterranean Sea: An Ecological Economics Approach. Glob. Environ. Change 2015, 32, 87–95. [Google Scholar] [CrossRef]
- Taylor, S.; Gilbert, P.J.; Cooke, D.A.; Deary, M.E.; Jeffries, M.J. High Carbon Burial Rates by Small Ponds in the Landscape. Front. Ecol. Environ. 2019, 17, 25–31. [Google Scholar] [CrossRef]
- Malak, D.A.; Marín, A.I.; Trombetti, M.; Roman, S.S. Carbon Pools and Sequestration Potential of Wetlands in the European Union; ETC/ULS Report No. 10/2021; European Topic Centre on Urban, Land and Soil Systems: Viena, Austria; Malaga, Spain, 2021; ISBN 978-3-200-07433-0. [Google Scholar] [CrossRef]









| Code | Classification Name | Parameter | Source |
|---|---|---|---|
| 11100 | Continuous urban fabric (S.L. > 80%) | 37.5 kg CO2/m2/yr × 100% | [56] |
| 11210 | Discontinuous dense urban fabric (S.L. 50–80%) | 37.5 kg CO2/m2/yr × 65% | |
| 11220 | Discontinuous medium density urban fabric (S.L. 30–50%) | 37.5 kg CO2/m2/yr × 40% | |
| 11230 | Discontinuous low dens. Urban fabric (S.L. 10–30%) | 37.5 kg CO2/m2/yr × 20% | |
| 11240 | Discontinuous very low-density urban fabric (S.L. < 10%) | 37.5 kg CO2/m2/yr × 5% | |
| 11300 | Isolated structures | 37.5 kg CO2/m2/yr × 1% | |
| 12100 | Industrial, commercial, public, military, and private units | 62.8 kg CO2/m2/yr | |
| 12210 | Fast transit roads and associated land | Regional road transport CO2 emissions downscaled to Reggio Calabria FUA, distributed per capita, then allocated to roads based on area. | |
| 12220 | Other roads and associated land | ||
| 12230 | Railways and associated land | 50 kgCO2/m2/yr | [57] |
| 12300 | Port Areas | Villa San Giovanni port emissions ~ 10,640 tCO2/yr Reggio Calabria port emissions ~ 950 tCO2/yr | [58] |
| 12400 | Airports | 72,104 tCO2/yr | Author’s calculations based on data retrieved from the airport’s official website (flight schedules and destinations), Flightradar24 (air traffic monitoring), and emission factors by destination/travel distance. |
| 13100 | Mineral extraction and dump sites | Landfills: 0.88–2.08 kg CO2/m2/yr | There are no active mining activities in Reggio Calabria [59,60]; therefore, the parameter applies only to landfills [61]. |
| 13300 | Construction sites | 9.31 kg CO2/m2 | [62] |
| 13400 | Land without current use | 0 | |
| 14100 | Green urban areas | −1.06 kg CO2/m2/yr | [63] |
| 14200 | Sports and leisure facilities | 75.9 kg CO2/m2/yr | [56] |
| 21000 | Arable land (annual crops) | −0.1 to −0.3 kg CO2/m2/yr | [64] |
| 22000 | Permanent crops | −0.22 to −2.17 kg CO2 m2 yr1 | [65,66] |
| 23000 | Pastures | −0.2 to −0.7 kg CO2/m2/yr | [64] |
| 24000 | Complex and mixed cultivation | −0.15 to −0.5 kg CO2/m2/year | |
| 25000 | Orchards | There are no Orchards in Reggio Calabria FUA | |
| 31000 | Forests | −1.36 kg CO2/m2/yr | [67,68,69] |
| 32000 | Herbaceous vegetation associations | −0.22 to −2.17 kg CO2 m2/yr | [70] |
| 33000 | Open spaces with little or no vegetation | 0 | |
| 40000 | Wetlands | There are no wetlands in Reggio Calabria FUA. | |
| 50000 | Water | Beaches: −0.007 kg CO2/m2/year | [71] |
| Small lakes and ponds: −0.52 kg CO2/m2/year | [72] | ||
| Rivers: −0.65 kg CO2/m2/year | [73] | ||
| 91000 | No data | 0 | |
| 92000 | No data | 0 | |
| Total CO2 Emissions (million kg) | 2222.49 |
| Total CO2 Sequestration (million kg) | −368.96 |
| Net Emissions (million kg) | 1853.53 |
| Number of Eco-Districts | 232 |
| Number of Net Emitter Eco-Districts | 109 |
| Number of Net Sequestering Eco-Districts | 123 |
| Eco-District ID | Total Emissions (Million kg) | Most Dominant Land Use |
|---|---|---|
| 94 | 165.8 | Continuous urban fabric (S.L.: >80%) |
| 82 | 133.9 | Industrial, commercial, public, military, and private units |
| 107 | 98.0 | Continuous urban fabric (S.L.: >80%) |
| 108 | 93.3 | Continuous urban fabric (S.L.: >80%) |
| 72 | 87.4 | Airports |
| Eco-District’s Id | Emissions | Eigenvector Centrality | Degree | Weighted Degree |
|---|---|---|---|---|
| 94 | 1.66 × 108 | 0.603356371 | 4 | 16 |
| 82 | 1.34 × 108 | 0.618014525 | 4 | 16 |
| 107 | 9.80 × 107 | 0.540203015 | 4 | 16 |
| 108 | 9.33 × 107 | 0.723252115 | 4 | 16 |
| 72 | 8.74 × 107 | 0.720772309 | 4 | 16 |
| Land-Use Category | Total Emissions (Million kg CO2) | % of Total Emissions | Eco-Districts Frequency |
|---|---|---|---|
| Continuous urban fabric (S.L.: >80%) | 428.92 | 20% | 63 |
| Discontinuous dense urban fabric (S.L.: 50–80%) | 401.45 | 19% | 115 |
| Discontinuous medium-density urban fabric (S.L.: 30–50%) | 125.27 | 6% | 112 |
| Discontinuous low-density urban fabric (S.L.: 10–30%) | 34.10 | 2% | 106 |
| Discontinuous very low-density urban fabric (S.L.: <10%) | 3.46 | 0% | 74 |
| Isolated structures | 1.13 | 0% | 158 |
| Industrial, commercial, public, military, and private units | 524.71 | 25% | 113 |
| Fast transit roads and associated land | 250.90 | 12% | 189 |
| Other roads and associated land | 250.90 | 12% | 189 |
| Railways and associated land | 2.53 | 0% | 38 |
| Port areas | 16.68 | 1% | 6 |
| Airports | 72.07 | 3% | 4 |
| Mineral extraction and dump sites | 2.34 | 0% | 49 |
| Construction sites | 5.03 | 0% | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bevilacqua, C.; Hamdy, N.; Sohrabi, P. Linking Land Uses and Ecosystem Services Through a Bipartite Spatial Network: A Framework for Urban CO2 Mitigation. Sustainability 2025, 17, 10113. https://doi.org/10.3390/su172210113
Bevilacqua C, Hamdy N, Sohrabi P. Linking Land Uses and Ecosystem Services Through a Bipartite Spatial Network: A Framework for Urban CO2 Mitigation. Sustainability. 2025; 17(22):10113. https://doi.org/10.3390/su172210113
Chicago/Turabian StyleBevilacqua, Carmelina, Nourhan Hamdy, and Poya Sohrabi. 2025. "Linking Land Uses and Ecosystem Services Through a Bipartite Spatial Network: A Framework for Urban CO2 Mitigation" Sustainability 17, no. 22: 10113. https://doi.org/10.3390/su172210113
APA StyleBevilacqua, C., Hamdy, N., & Sohrabi, P. (2025). Linking Land Uses and Ecosystem Services Through a Bipartite Spatial Network: A Framework for Urban CO2 Mitigation. Sustainability, 17(22), 10113. https://doi.org/10.3390/su172210113

