Investigation of Water Storage Dynamics and Delayed Hydrological Responses Using GRACE, GLDAS, ERA5-Land and Meteorological Data in the Kızılırmak River Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. GRACE/GRACE-FO Data
2.2.2. GLDAS-Noah Land Surface Model Data
2.2.3. ERA5-Land Reanalyzed Data
2.2.4. Local Meteorological Data
2.2.5. Software and Tools
2.3. Research Method
2.3.1. Performance Metrics
- The numerator calculates the covariance between the two series, specifically assessing how deviations from their respective means align after applying the lag. This is done by comparing means and , where T is the lag applied to the observed series.
- The denominator normalizes this covariance by the product of the standard deviations of both series, obtained by calculating the square root of the sum of squared deviations from their means.
2.3.2. Uncertainty Assessment of GWSA Estimation
3. Results
3.1. Spatial Distribution of GRACE-Derived Total Water Storage Anomalies (TWSA)
3.2. Temporal Variations in Water Storage Components
3.3. Validation of ERA5-Land and Local Meteorological Datasets
3.3.1. Validation of ERA5-Land Precipitation Data with Local Meteorological Precipitation
3.3.2. Validation of ERA5-Land Temperature Data with Local Meteorological Temperature
3.4. Delayed Response of ERA5-Land Hydrological Variables to GRACE/GRACE-FO TWSA
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CC | Pearson Correlation Coefficient |
| C3S | Copernicus Climate Change Service |
| CRI | Coastal Resolution Improvement |
| DLR | German Aerospace Center |
| ECMWF | European Center for Medium-Range Weather Forecasts |
| ERA5-Land | Fifth Generation ECMWF Atmospheric Reanalysis for Land Applications |
| ET | Evapotranspiration |
| ETA | Evapotranspiration Anomaly |
| GFZ | German Research Centre for Geosciences |
| GLDAS | Global Land Data Assimilation System |
| GRACE | Gravity Recovery and Climate Experiment |
| GRACE-FO | Gravity Recovery and Climate Experiment Follow-On |
| GSFC | Goddard Space Flight Center |
| GWS | Ground Water Storage |
| GWSA | Ground Water Storage Anomaly |
| IPCC | Intergovernmental Panel on Climate Change |
| JPL | Jet Propulsion Laboratory |
| JPL-M | JPL Mascon Data |
| LSM | Land Surface Model |
| MAE | Mean Absolute Error |
| MBE | Mean Bias Error |
| MGM | Turkish State Meteorological Service |
| NASA | National Aeronautics and Space Administration |
| NCEP | National Centers for Environmental Prediction |
| P | Precipitation |
| PA | Precipitation Anomaly |
| PCSW | Plant Canopy Surface Water |
| RMSE | Root Mean Square Error |
| RO | Runoff |
| ROA | Runoff Anomaly |
| SM | Soil Moisture |
| SMS | Soil Moisture Storage |
| STD | Standard Deviation |
| SWE | Snow Water Equivalent |
| TWS | Terrestrial Water Storage |
| TWSA | Total/Terrestrial Water Storage Anomaly |
| UN | United Nations |
| WSC | Water Storage Change |
| WSCA | Water Storage Change Anomaly |
| WTF | Water Table Function |
References
- Shiklomanov, I.A. World Water Resources at the Beginning of the Twenty-First Century; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2003; ISBN 0-521-82085-5. [Google Scholar]
- Arora, M.; Dixit, M.; Pateriya, B. Assessment of Water Storage Changes Using Satellite Gravimetry and GLDAS Observations over a Part of Indus Basin, India. Water Conserv. Sci. Eng. 2022, 7, 623–645. [Google Scholar] [CrossRef]
- Moghim, S. Assessment of Water Storage Changes Using GRACE and GLDAS. Water Resour. Manag. 2020, 34, 685–697. [Google Scholar] [CrossRef]
- Abd-Elbaky, M.; Jin, S. Hydrological Mass Variations in the Nile River Basin from GRACE and Hydrological Models. Geodesy Geodyn. 2019, 10, 430–438. [Google Scholar] [CrossRef]
- Nazari, A.; Zaryab, A.; Ahmadi, A. Estimation of Groundwater Storage Change in the Helmand River Basin (Afghanistan) Using GRACE Satellite Data. Earth Sci. Inform. 2023, 16, 579–589. [Google Scholar] [CrossRef]
- Rao, W.; Sun, W. Runoff Variations in the Yangtze River Basin and Sub-Basins Based on GRACE, Hydrological Models, and in-Situ Data. Earth Planet. Phys. 2022, 6, 228–240. [Google Scholar] [CrossRef]
- Salam, M.; Masud Cheema, M.J.; Zhang, W.; Hussain, S.; Khan, A.; Bilal, M.; Arshad, A.; Ali, S.; Zaman, M.A. Groundwater Storage Change Estimation Using Grace Satellite Data in Indus Basin. Big Data Water Resour. Eng. (BDWRE) 2020, 1, 10–15. [Google Scholar] [CrossRef]
- Sun, A.Y.; Green, R.; Rodell, M.; Swenson, S. Inferring Aquifer Storage Parameters Using Satellite and in Situ Measurements: Estimation under Uncertainty. Geophys. Res. Lett. 2010, 37, L10401. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, B.; Yao, Y.; Yin, J.; Wang, H.; Ran, Q. Jointly Using the GLDAS 2.2 Model and GRACE to Study the Severe Yangtze Flooding of 2020. J. Hydrol. 2022, 610, 127927. [Google Scholar] [CrossRef]
- Soltani, K.; Azari, A. Forecasting Groundwater Anomaly in the Future Using Satellite Information and Machine Learning. J. Hydrol. 2022, 612, 128052. [Google Scholar] [CrossRef]
- Landerer, F.W.; Cooley, S.S.; Humphrey, V.; Reager, J.T.; Srinivasan, M.M. GRACE Follow-On (GRACE-FO) Level-3 Data Product User Handbook; GRACE D-103133; NASA Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2021. [Google Scholar]
- Behrangi, A.; Gardner, A.S.; Wiese, D.N. Comparative Analysis of Snowfall Accumulation over Antarctica in Light of Ice Discharge and Gravity Observations from Space. Environ. Res. Lett. 2020, 15, 104010. [Google Scholar] [CrossRef]
- Ran, J.; Ditmar, P.; Klees, R.; Farahani, H.H. Statistically Optimal Estimation of Greenland Ice Sheet Mass Variations from GRACE Monthly Solutions Using an Improved Mascon Approach. J. Geodesy 2018, 92, 299–319. [Google Scholar] [CrossRef]
- Sabzehee, F.; Nafisi, V.; Iran Pour, S.; Vishwakarma, B.D. Investigation of the Correlation between GRACE TWS and Soil Moisture in Sarakhs Catchment. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-4/W18, 931–934. [Google Scholar] [CrossRef]
- Tangdamrongsub, N.; Han, S.-C.; Decker, M. On the Use of GRACE Intersatellite Tracking Data for Improved Estimation of Soil Moisture and Groundwater in Australia. Hydrol. Earth Syst. Sci. Discuss. 2017, 22, 1811–1829. [Google Scholar] [CrossRef]
- Proulx, R.A.; Knudson, M.D.; Kirilenko, A.; Vanlooy, J.A.; Zhang, X. Significance of Surface Water in the Terrestrial Water Budget: A Case Study in the Prairie Coteau Using GRACE, GLDAS, Landsat, and Groundwater Well Data. Water Resour. Res. 2013, 49, 5756–5764. [Google Scholar] [CrossRef]
- Śliwińska, J.; Birylo, M.; Rzepecka, Z.; Nastula, J. Analysis of Groundwater and Total Water Storage Changes in Poland Using GRACE Observations, In-situ Data, and Various Assimilation and Climate Models. Remote Sens. 2019, 11, 2949. [Google Scholar] [CrossRef]
- Wada, Y.; Wisser, D.; Bierkens, M.F.P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam. 2014, 5, 15–40. [Google Scholar] [CrossRef]
- Mohammed, H.K.; Alwan, I.A.; Al-Khafaji, M.S. Comparative Analysis of Spatiotemporal Variability of Groundwater Storage in Iraq Using GRACE Satellite Data. Hydrology 2025, 12, 69. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Q.; Gu, X.; Duan, R.; Wang, Q.; You, X. Responses of Terrestrial Water Storage to Climate Change in the Closed Alpine Qaidam Basin. Hydrology 2025, 12, 105. [Google Scholar] [CrossRef]
- Rzepecka, Z.; Birylo, M.; Jarsjö, J.; Cao, F.; Pietról, J. Groundwater Storage Variations across Climate Zones from Southern Poland to Arctic Sweden: Comparing GRACE-GLDAS Models with Well Data. Remote Sens. 2024, 16, 2104. [Google Scholar] [CrossRef]
- Xu, H.; Liu, D. Study on Groundwater Storage Changes in Henan Province Based on GRACE and GLDAS. Sustainability 2025, 17, 6316. [Google Scholar] [CrossRef]
- Kim, J.S.; Seo, K.W.; Chen, J.; Wilson, C. Uncertainty in GRACE/GRACE-follow on global ocean mass change estimates due to mis-modeled glacial isostatic adjustment and geocenter motion. Sci. Rep. 2022, 12, 6617. [Google Scholar] [CrossRef]
- Ludwigsen, C.B.; Andersen, O.B.; Marzeion, B.; Malles, J.H.; Müller Schmied, H.; Döll, P.; Watson, C.; King, M.A. Global and Regional Ocean Mass Budget Closure since 2003. Nat. Commun. 2024, 15, 1416. [Google Scholar] [CrossRef]
- Abhishek; Kinouchi, T. Multidecadal Land Water and Groundwater Drought Evaluation in Peninsular India. Remote Sens. 2022, 14, 1486. [Google Scholar] [CrossRef]
- Mucia, A.J. Analysis of Gravity Recovery and Climate Experiment (GRACE) Satellite-Derived Data as a Groundwater and Drought Monitoring Tool. Master’s Thesis, University of Nebraska–Lincoln, Lincoln, NE, USA, 2018. [Google Scholar]
- Wu, T.; Zheng, W.; Yin, W.; Zhang, H. Spatiotemporal Characteristics of Drought and Driving Factors Based on the GRACE-Derived Total Storage Deficit Index: A Case Study in Southwest China. Remote Sens. 2020, 13, 79. [Google Scholar] [CrossRef]
- Murzintcev, N.; Nietullaeva, S.; Berdimbetov, T.; Pushpawela, B.; Tureniyazova, A.; Shelton, S.; Aytmuratov, B.; Gafforov, K.; Parakhatov, K.; Erdashov, A.; et al. Reconstruction of Water Storage Variability in the Aral Sea Region. Climate 2025, 13, 182. [Google Scholar] [CrossRef]
- Liu, X.; Wang, N.; Wang, Y.; Meng, N.; Wang, Y.; Qiao, B.; Lu, R.; Yang, D. Research on Groundwater Drought and Sustainability in Badain Jaran Desert and Surrounding Areas Based on GRACE Satellite. Land 2025, 14, 173. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, L.; Li, Y.; Yao, C.; Meng, J.; Zou, Z.; Lu, Y. GRACE/GFO and Swarm Observation Analysis of the 2023–2024 Extreme Drought in the Amazon River Basin. Remote Sens. 2025, 17, 2765. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, B.; Jiang, Z.; Zhao, Y. Quantifying Water Storage Changes and Groundwater Drought in the Huaihe River Basin of China Based on GRACE Data. Sustainability 2024, 16, 8437. [Google Scholar] [CrossRef]
- Shah, D.; Mishra, V. Strong Influence of Changes in Terrestrial Water Storage on Flood Potential in India. J. Geophys. Res. Atmos. 2021, 126, e2020JD033566. [Google Scholar] [CrossRef]
- Behrangi, A.; Gardner, A.; Reager, J.T.; Fisher, J.B.; Yang, D.; Huffman, G.J.; Adler, R.F. Using GRACE to Estimate Snowfall Accumulation and Assess Gauge Undercatch Corrections in High Latitudes. J. Clim. 2018, 31, 8689–8704. [Google Scholar] [CrossRef]
- Forman, B.A.; Reichle, R.H.; Rodell, M. Assimilation of Terrestrial Water Storage from GRACE in a Snow-Dominated Basin. Water Resour. Res. 2012, 48, W01507. [Google Scholar] [CrossRef]
- Ahi, G.O.; Jin, S. Hydrologic Mass Changes and Their Implications in Mediterranean-Climate Turkey from GRACE Measurements. Remote Sens. 2019, 11, 120. [Google Scholar] [CrossRef]
- Hassan, A.; Jin, S. Water Storage Changes and Balances in Africa Observed by GRACE and Hydrologic Models. Geodesy Geodyn. 2016, 7, 39–49. [Google Scholar] [CrossRef]
- Longuevergne, L.; Scanlon, B.R.; Wilson, C.R. GRACE Hydrological Estimates for Small Basins: Evaluating Processing Approaches on the High Plains Aquifer, USA. Water Resour. Res. 2010, 46, W11517. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J. Global Evaluation of New GRACE Mascon Products for Hydrologic Applications. Water Resour. Res. 2016, 52, 9412–9429. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Reedy, R.C.; Pool, D.R.; Save, H.; Long, D.; Chen, J.; Wolock, D.M.; Conway, B.D.; Winester, D. Hydrologic Implications of GRACE Satellite Data in the Colorado River Basin. Water Resour. Res. 2015, 51, 9891–9903. [Google Scholar] [CrossRef]
- Rzepecka, Z.; Birylo, M. Groundwater Storage Changes Derived from GRACE and GLDAS on Smaller River Basins—A Case Study in Poland. Geosciences 2020, 10, 124. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data Discuss. 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Yu, Y.; Zhao, W.; Yang, Q.; Liu, J. Evaluation of groundwater sustainability in the arid Hexi Corridor of Northwestern China, using GRACE, GLDAS and measured groundwater data products. Sci. Total Environ. 2020, 705, 135829. [Google Scholar] [CrossRef]
- Nikraftar, Z.; Parizi, E.; Saber, M.; Hosseini, S.M.; Ataie-Ashtiani, B.; Simmons, C.T. Groundwater Sustainability Assessment in the Middle East Using GRACE/GRACE-FO Data. Hydrogeol. J. 2024, 32, 321–337. [Google Scholar] [CrossRef]
- Zhang, L.; Geng, Y.; Ma, J.; Zhao, H.; He, J.; Chen, J. Separating Climatic and Anthropogenic Drivers of Groundwater Change in an Arid Inland Basin: Insights from the Shule River Basin, Northwest China. Remote Sens. 2025, 17, 3188. [Google Scholar] [CrossRef]
- Deliry, S.I.; Pekkan, E.; Avdan, U. GIS-Based Water Budget Estimation of the Kizilirmak River Basin Using GLDAS-2.1 Noah and CLSM Models and Remote Sensing Observations. J. Indian. Soc. Remote Sens. 2022, 50, 1191–1209. [Google Scholar] [CrossRef]
- Khorrami, B.; Gündüz, O. GRACE/GRACE-FO Gözlemleri ve Yüksek Çözünürlüklü FLDAS Hidroloji Modeline Dayalı Havza Bazlı Kuraklık Değerlendirmesi (Basin-Wise Drought Assessment Based on GRACE/GRACE-FO Observations and Fine Resolution FLDAS Hydrologic Model). In Proceedings of the HIDRO’2023: Ulusal Hidrojeoloji ve Su Kaynakları Sempozyumu, Trabzon, Türkiye, 25–27 May 2023. [Google Scholar]
- Khorrami, B.; Pirasteh, S.; Ali, S.; Sahin, O.G.; Vaheddoost, B. Statistical Downscaling of GRACE TWSA Estimates to a 1-Km Spatial Resolution for a Local-Scale Surveillance of Flooding Potential. J. Hydrol. 2023, 624, 129929. [Google Scholar] [CrossRef]
- Köse, İ. İklim Değişikliği Müzakereleri: Türkiye’nin Paris Anlaşmasını İmza Süreci. Ege Strat. Araştırmalar Derg. 2018, 9, 55–81. [Google Scholar] [CrossRef]
- World Water Assessment Programme (United Nations); UN-Water; UNESCO. Partnerships and Cooperation for Water; UNESCO: Paris, France, 2023; ISBN 9789231005763. [Google Scholar]
- UNESCO; World Water Assessment Programme (United Nations); UN-Water. Water and Jobs; UNESCO: Paris, France, 2016; ISBN 9789231001468. [Google Scholar]
- Karl, B. Hille NASA Finds Drought in Eastern Mediterranean Worst of Past 900 Years. Available online: https://www.nasa.gov/technology/nasa-finds-drought-in-eastern-mediterranean-worst-of-past-900-years/ (accessed on 4 September 2024).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change Information for Regional Impact and for Risk Assessment. In Climate Change 2021–The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; pp. 1767–1926. [Google Scholar]
- Gumus, B.; Oruc, S.; Yucel, I.; Yilmaz, M.T. Impacts of Climate Change on Extreme Climate Indices in Türkiye Driven by High-Resolution Downscaled CMIP6 Climate Models. Sustainability 2023, 15, 7202. [Google Scholar] [CrossRef]
- Holli Riebeek Turkey Experiences Intense Drought. Available online: https://earthobservatory.nasa.gov/images/147811/turkey-experiences-intense-drought (accessed on 4 September 2024).
- Arslan, O.; Bilgil, A.; Veske, O. Standart Yağış İndisi Yöntemi ile Kızılırmak Havzası’nın Meteorolojik Kuraklık Analizi (Standardized Precipitation Index Method for Meteorological Drought Analysis of the Kızılırmak Basin). Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg. 2016, 5, 188–194. [Google Scholar] [CrossRef]
- Ercan, B.; Yüce, M.İ. Kızılırmak Havzasının Hidrometeorolojik Verilerinin Trend Analizi. Nevşehir Bilim. Ve Teknol. Derg. 2017, 6, 333–340. [Google Scholar] [CrossRef]
- Terzi, Ö.; İlker, A. Yağış Verilerinin Trend Analizi: Kızılırmak Havzası Örneği. Acad. Platf. J. Eng. Sci. 2021, 9, 371–377. [Google Scholar] [CrossRef]
- SYGM. Kızılırmak Drought Management Plan; General Directorate of Water Management (SYGM): Ankara, Türkiye, 2023. [Google Scholar]
- Oğuztürk, G. Kızılırmak Havzası’nda SYİ Ile Kuraklık Analizi ve YSA Yöntemi Ile Kuraklık Tahmini. Master’s Thesis, Kirikkale University, Kirikkale, Türkiye, 2010. [Google Scholar]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Behling, R.; Roessner, S.; Foerster, S.; Saemian, P.; Tourian, M.J.; Portele, T.C.; Lorenz, C. Interrelations of Vegetation Growth and Water Scarcity in Iran Revealed by Satellite Time Series. Sci. Rep. 2022, 12, 20784. [Google Scholar] [CrossRef]
- Chen, J.; Tapley, B.; Rodell, M.; Seo, K.W.; Wilson, C.; Scanlon, B.R.; Pokhrel, Y. Basin-Scale River Runoff Estimation from GRACE Gravity Satellites, Climate Models, and In Situ Observations: A Case Study in the Amazon Basin. Water Resour. Res. 2020, 56, e2020WR028032. [Google Scholar] [CrossRef]
- Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.; Chambers, D.P.; et al. Contributions of GRACE to Understanding Climate Change. Nat. Clim. Change 2019, 9, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-Resolution CSR GRACE RL05 Mascons. J. Geophys. Res. Solid. Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J.; Milly, P.C.D. Estimated Accuracies of Regional Water Storage Variations Inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2003, 39, 1223. [Google Scholar] [CrossRef]
- Yi, S.; Sneeuw, N. Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis. J. Geophys. Res. Solid. Earth 2021, 126, e2020JB021227. [Google Scholar] [CrossRef]
- Landerer, F.W.; Swenson, S.C. Accuracy of Scaled GRACE Terrestrial Water Storage Estimates. Water Resour. Res. 2012, 48, W04531. [Google Scholar] [CrossRef]
- Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and Reducing Leakage Errors in the JPL RL05M GRACE Mascon Solution. Water Resour. Res. 2016, 52, 7490–7502. [Google Scholar] [CrossRef]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.N.; Boening, C.; Landerer, F.W. Improved Methods for Observing Earth’s Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons. J. Geophys. Res. Solid. Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Velicogna, I.; Mohajerani, Y.; Geruo, A.; Landerer, F.; Mouginot, J.; Noel, B.; Rignot, E.; Sutterley, T.; van den Broeke, M.; van Wessem, M.; et al. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica from the GRACE and GRACE Follow-On Missions. Geophys. Res. Lett. 2020, 47, e2020GL087291. [Google Scholar] [CrossRef]
- Lenczuk, A.; Weigelt, M.; Kosek, W.; Mikocki, J. Autoregressive Reconstruction of Total Water Storage within GRACE and GRACE Follow-On Gap Period. Energies 2022, 15, 4827. [Google Scholar] [CrossRef]
- Fang, H.; Beaudoing, H.K.; Rodell, M.; Teng, W.L.; Vollmer, B.E. Global Land Data Assimilation System (GLDAS) Products, Services and Applications from NASA Hydrology Data and Information Services Center (HDISC); NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2009.
- Kumar, S.V.; Peters-Lidard, C.D.; Tian, Y.; Houser, P.R.; Geiger, J.; Olden, S.; Lighty, L.; Eastman, J.L.; Doty, B.; Dirmeyer, P.; et al. Land Information System: An Interoperable Framework for High Resolution Land Surface Modeling. Environ. Model. Softw. 2006, 21, 1402–1415. [Google Scholar] [CrossRef]
- Boergens, E.; Güntner, A.; Dobslaw, H.; Dahle, C. Quantifying the Central European Droughts in 2018 and 2019 With GRACE Follow-On. Geophys. Res. Lett. 2020, 47, e2020GL087285. [Google Scholar] [CrossRef]
- Chen, J.; Cazenave, A.; Dahle, C.; Llovel, W.; Panet, I.; Pfeffer, J.; Moreira, L. Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry. Surv. Geophys. 2022, 43, 305–345. [Google Scholar] [CrossRef] [PubMed]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in Evapotranspiration from Land Surface Modeling, Remote Sensing, and GRACE Satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef]
- Sun, Z.; Long, D.; Yang, W.; Li, X.; Pan, Y. Reconstruction of GRACE Data on Changes in Total Water Storage Over the Global Land Surface and 60 Basins. Water Resour. Res. 2020, 56, e2019WR026250. [Google Scholar] [CrossRef]
- Hennermann, K.B.P. ERA5 Data Documentation. Available online: https://confluence.ecmwf.int/display/CKB/ERA5-Land%3A+data+documentation (accessed on 5 March 2024).
- Mo, S.; Zhong, Y.; Forootan, E.; Mehrnegar, N.; Yin, X.; Wu, J.; Feng, W.; Shi, X. Bayesian Convolutional Neural Networks for Predicting the Terrestrial Water Storage Anomalies during GRACE and GRACE-FO Gap. J. Hydrol. 2022, 604, 127244. [Google Scholar] [CrossRef]
- Li, Q.; Liu, X.; Zhong, Y.; Wang, M.; Zhu, S. Estimation of Terrestrial Water Storage Changes at Small Basin Scales Based on Multi-Source Data. Remote Sens. 2021, 13, 3304. [Google Scholar] [CrossRef]
- Oussou, F.E.; Ndehedehe, C.E.; Oloukoi, J.; Yalo, N.; Boukari, M.; Diaw, A.T. Characterization of the Hydro-Geological Regime of Fractured Aquifers in Benin (West-Africa) Using Multi-Satellites and Models. J. Hydrol. Reg. Stud. 2022, 39, 100987. [Google Scholar] [CrossRef]
- Gerdener, H.; Kusche, J.; Schulze, K.; Döll, P.; Klos, A. The Global Land Water Storage Data Set Release 2 (GLWS2.0) Derived via Assimilating GRACE and GRACE-FO Data into a Global Hydrological Model. J. Geodesy 2023, 97, 73. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS. Water Resour. Res. 2008, 44, W02433. [Google Scholar] [CrossRef]
- Sun, A.Y.; Scanlon, B.R.; Save, H.; Rateb, A. Reconstruction of GRACE Total Water Storage Through Automated Machine Learning. Water Resour. Res. 2021, 57, e2020WR028666. [Google Scholar] [CrossRef]
- Bian, Y.; Yue, J.; Li, Z.; Cong, K.; Li, W.; Xing, Y. Comparisons of Grace and GLDAS Derived Hydrological Loading and the Impact on the Gps Time Series in Europe. Acta Geodyn. Geomater. 2020, 17, 297–310. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Nigatu, Z.M.; Fan, D.; You, W. GRACE Products and Land Surface Models for Estimating the Changes in Key Water Storage Components in the Nile River Basin. Adv. Space Res. 2021, 67, 1896–1913. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z. A First Evaluation of ERA5-Land Reanalysis Temperature Product Over the Chinese Qilian Mountains. Front. Earth Sci. 2022, 10, 907730. [Google Scholar] [CrossRef]
- Landerer, F.W.; Dickey, J.O.; Güntner, A. Terrestrial Water Budget of the Eurasian Pan-Arctic from GRACE Satellite Measurements during 2003–2009. J. Geophys. Res. Atmos. 2010, 115, D23115. [Google Scholar] [CrossRef]
- Zhong, D.; Wang, S.; Li, J. Spatiotemporal Downscaling of Grace Total Water Storage Using Land Surface Model Outputs. Remote Sens. 2021, 13, 900. [Google Scholar] [CrossRef]
- Likando, O.N. Estimation of Groundwater Storage Change and Recharge Using GRACE and GLDAS Data: Fırat Basin, Turkey Case. Master’s Thesis, Eskişehir Technical University, Eskişehir, Türkiye, 2019. [Google Scholar]
- Famiglietti, J.S.; Lo, M.; Ho, S.L.; Bethune, J.; Anderson, K.J.; Syed, T.H.; Swenson, S.C.; De Linage, C.R.; Rodell, M. Satellites Measure Recent Rates of Groundwater Depletion in California’s Central Valley. Geophys. Res. Lett. 2011, 38, L03403. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, K.; Wang, M. Downscaling Groundwater Storage Data in China to a 1-Km Resolution Using Machine Learning Methods. Remote Sens. 2021, 13, 523. [Google Scholar] [CrossRef]
- Girotto, M.; De Lannoy, G.J.M.; Reichle, R.H.; Rodell, M. Assimilation of Gridded Terrestrial Water Storage Observations from GRACE into a Land Surface Model. Water Resour. Res. 2016, 52, 4164–4183. [Google Scholar] [CrossRef]
- Zaitchik, B.F.; Rodell, M.; Reichle, R.H. Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin. J. Hydrometeorol. 2008, 9, 535–548. [Google Scholar] [CrossRef]
- Devlet Su İşleri Genel Müdürlüğü (DSİ). Agricultural Water Efficiency; Republic of Türkiye Ministry of Agriculture and Forestry: Ankara, Türkiye, 2021. Available online: https://www.suverimliligi.gov.tr/en/agricultural-water-efficiency/ (accessed on 30 October 2025).
- OECD. Turkey Country Profile—Agriculture and Water Characteristics; OECD Publishing: Paris, France, 2020; Available online: https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/water-and-agriculture/oecd-water-policies-country-note-t%C3%BCrkiye.pdf (accessed on 30 October 2025).











| GLDAS Land Surface Model | Correlation with GRACE/GRACE-FO |
|---|---|
| GLDAS-Noah | 0.73 |
| GLDAS-VIC | 0.38 |
| GLDAS-CLSM | 0.64 |
| STD (cm) | MBE (cm) | MAE (cm) | RMSE (cm) | CC (%95) |
|---|---|---|---|---|
| 1.27 | −1.30 | 1.43 | 1.81 | 0.91 ± 0.02 |
| STD (°C) | MBE (°C) | MAE (°C) | RMSE (°C) | CC (%95) |
|---|---|---|---|---|
| 0.56 | 1.45 | 1.46 | 1.55 | >0.99 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazancı, E.; Erol, S.; Erol, B. Investigation of Water Storage Dynamics and Delayed Hydrological Responses Using GRACE, GLDAS, ERA5-Land and Meteorological Data in the Kızılırmak River Basin. Sustainability 2025, 17, 10100. https://doi.org/10.3390/su172210100
Kazancı E, Erol S, Erol B. Investigation of Water Storage Dynamics and Delayed Hydrological Responses Using GRACE, GLDAS, ERA5-Land and Meteorological Data in the Kızılırmak River Basin. Sustainability. 2025; 17(22):10100. https://doi.org/10.3390/su172210100
Chicago/Turabian StyleKazancı, Erdem, Serdar Erol, and Bihter Erol. 2025. "Investigation of Water Storage Dynamics and Delayed Hydrological Responses Using GRACE, GLDAS, ERA5-Land and Meteorological Data in the Kızılırmak River Basin" Sustainability 17, no. 22: 10100. https://doi.org/10.3390/su172210100
APA StyleKazancı, E., Erol, S., & Erol, B. (2025). Investigation of Water Storage Dynamics and Delayed Hydrological Responses Using GRACE, GLDAS, ERA5-Land and Meteorological Data in the Kızılırmak River Basin. Sustainability, 17(22), 10100. https://doi.org/10.3390/su172210100
